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December 21, 2015

Abstract. We generalize the normalized Constant Elasticity of Substitu-
tion (CES) production function by allowing the elasticity of substitution
to vary isoelastically with (i) relative factor shares, (ii) marginal rates of
substitution, (iii) capital–labor ratios, or (iv) capital–output ratios. Ensu-
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1 Introduction

The Constant Elasticity of Substitution (CES) production function, first introduced to
economics by Arrow, Chenery, Minhas, and Solow (1961), is probably the most pop-
ular framework which allows factor shares to be affected by endogenous variables.
The properties of an economy with CES production depend critically on the value of
the elasticity of substitution σ. Whether the factors of production (say, capital and
labor) are gross complements (σ < 1) or substitutes (σ > 1) is crucial both for long-
run growth perspectives and short-run fluctuations of the economy. First, above-unity
elasticity of substitution can be perceived as an engine of long-run endogenous growth
(Solow, 1956; Jones and Manuelli, 1990; Palivos and Karagiannis, 2010). If capital and
labor are gross substitutes then neither of them is essential for production, and thus
physical capital accumulation alone can, under otherwise favorable circumstances,
drive perpetual growth. Otherwise, the scarce factor limits the scope for economic
development and output is bounded. Concurrently, the magnitude of the elasticity
of substitution is also vital for the immediate impact of factor accumulation on fac-
tor shares. Under gross substitutes, accumulation of capital relative to labor increases
the capital’s share of output; under gross complements the opposite effect is observed.
Hence, labor share declines observed across the world since the 1970-80s (Karabar-
bounis and Neiman, 2014) can be directly explained by capital deepening or capital-
augmenting technological progress under CES production only if σ > 1.

The same caveat applies when dealing with other pairs of inputs. CES functions
have been applied to issue of substitutability between exhaustible natural resources
and accumulable physical capital (Dasgupta and Heal, 1979; Bretschger and Smulders,
2012) or human capital (i.e., quality-adjusted labor, Smulders and de Nooij, 2003). No
surprise that it is central to this literature whether these two inputs are gross comple-
ments (σ < 1) or substitutes (σ > 1), and thus if exhaustible resources are essential for
production. CES functions have also been applied to the question of substitution possi-
bilities between skilled and unskilled labor (e.g., Caselli and Coleman, 2006) as well as
capital-skill complementarity (Krusell, Ohanian, Ríos-Rull, and Violante, 2000; Duffy,
Papageorgiou, and Perez-Sebastian, 2004). Whether σ is above or below unity deter-
mines whether capital accumulation and factor-augmenting technical change increase
or depress the relative demand for skilled versus unskilled workers. The magnitude
of σ is also important when discussing the substitutability among consumption goods
in an agent’s utility function, between intermediate goods in the production of a final
good, or in the aggregation of domestic and imported goods by an open economy.

Empirical identification of σ is a notoriously difficult task, though. Looking at the
estimates of the elasticity of substitution between capital and labor, we already observe
disagreement. On the one hand, a voluminous literature exploiting time-series and
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cross-firm variation for the USA (Antràs, 2004; Chirinko, 2008; Klump, McAdam, and
Willman, 2007, 2012; Young, 2013; Oberfield and Raval, 2014) finds that the elasticity
of substitution is below unity (σ ≈ 0.6− 0.7), and thus both factors of production are
gross complements. On the other hand, numerous studies exploiting the cross-country
variation in factor shares (Duffy and Papageorgiou, 2000; Piketty and Zucman, 2014;
Piketty, 2014; Karabarbounis and Neiman, 2014) tend to imply gross substitutability,
with σ ≈ 1.2− 1.3. Moreover, studies allowing for cross-country heterogeneity in σ

find that it can be quite substantial (Duffy and Papageorgiou, 2000; Mallick, 2012).
But what if the key object at hand, the elasticity of substitution σ, is not constant

after all? What if it depends on the capital–labor ratio k – either in raw or effective,
technology-adjusted units – or on the capital–output ratio k/y? Crucially, what if σ is
systematically above unity for some configurations of factor endowments, and below
unity for others?

Obviously, we are not the first to ask these questions. A substantial number of
theoretical articles, proposing various production functions with variable elasticity
of substitution, were published in the late 1960s and early 1970s. Next, after a three
decade-long break, the topic re-emerged around 2000, with a much more empirical fo-
cus, fueled by the progress associated with production function normalization. Still, in
our opinion, the literature has not managed so far to design a satisfactory framework
for modeling endowment-specific elasticities of substitution. There are several loose
ends hanging which we would like to pick up.

Our contribution to the literature is to put forward and thoroughly characterize
a novel, tractable and empirically useful class of IsoElastic Elasticity of Substitution
(IEES)1 production functions. Our basic idea is simple. We design IEES functions so
that they generalize the CES function in the same way as the CES function generalizes
the Cobb–Douglas (Table 1): the Cobb–Douglas is isoelastic and implies constant fac-
tor shares, the CES function implies isoelastic factor shares and has a constant elastic-
ity of substitution, whereas IEES functions have an isoelastic elasticity of substitution
and a constant elasticity of elasticity of substitution. Moreover, just like both their pre-
decessors, IEES functions are consistent with factor-augmenting technical change and
exhibit globally constant returns to scale.

We consider four alternative variants of IEES functions by allowing the elasticity of
substitution to vary isoelastically with (i) relative factor shares, (ii) marginal rates of
substitution, (iii) capital–labor ratios, or (iv) capital–output ratios. Considering each
of the four possibilities underscores that we remain agnostic in our choice of exact
functional specification, at least in the space of two-input, constant-returns-to-scale
production functions. It also signifies that the IEES class is quite versatile. Moreover,

1Best pronounced as “yes”. Abbreviation designed to avoid confusion with the intertemporal elas-
ticity of substitution (IES).
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Table 1: How IEES Production Functions Generalize Cobb–Douglas and CES Functions

Cobb-Douglas CES IEES
Output per worker y isoelastic
Relative factor share π

1−π constant isoelastic
Elasticity of substitution σ 1 constant isoelastic
Elasticity of elasticity of substitution ψ 0 0 constant

owing to the fact that all our calculations have been carried out in normalized units
(de La Grandville, 1989; Klump and de La Grandville, 2000), not only is our basic idea
simple, but also our analytical results remain sharp and are not cluttered with unnesse-
cary algebra. Thanks to production function normalization the role of each parameter
of IEES functions has been precisely disentangled from all others, facilitating theoret-
ical discussions as well as parameter estimation (see Klump, McAdam, and Willman,
2012).

IEES production functions have a few notable advantages compared to functions
with a variable elasticity of substitution (VES) which have already been analyzed in the
literature. First, the class of IEES functions is sufficiently general to nest some of them
directly, such as the Revankar’s VES (1971) or the Stone–Geary production function
(Geary, 1949-50; Stone, 1954). In contrast to Revankar’s VES, most IEES functions al-
low σ to cross unity. This is crucial because it makes IEES functions useful in analyzing
poverty traps and growth reversals: physical capital accumulation alone can become
an engine of unbounded endogenous growth only if the elasticity of substitution σ(k)
exceeds unity, which in the IEES case may be true only for k sufficiently large. Second,
as opposed to the empirically popular translog function (Christensen, Jorgenson, and
Lau, 1973; Kim, 1992) or the empirically motivated VES function due to Lu (1967), it is
not a local approximation of an arbitrary function but has well-behaved and econom-
ically interpretable properties globally. Third, as opposed to a recent idea to view the
production function as an arbitrary spline of CES functions with different σ’s (Antony,
2010), it implies that σ(k) is a smooth function of k. Fourth, alike the translog function
but unlike VES production functions discussed in a wave of articles around 1970 (Lu,
1967; Sato and Hoffman, 1968; Kadiyala, 1972)2 it naturally lends itself to further gen-
eralizations. For example, mirroring the extension from the Cobb–Douglas to the CES
and from the CES to the IEES, the elasticity of elasticity of substitution could be made
isoelastic instead of constant. One could thus eliminate one of the potential limitations
of IEES functions: that σ(k) is monotone in k.3

2See Mishra (2010) for a review of the history of production functions.
3Another issue which ought to be addressed in the future is, how to generalize IEES functions into

higher dimensions. This task is, however, plagued by the fact that the elasticity of substitution is not
a unique concept for functions of more than two inputs (Blackorby and Russell, 1989). Notable early
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Finally, a big advantage of IEES functions is that they are readily useful for empir-
ical applications. To justify this claim, we estimate the parameters of all four consid-
ered types of IEES production functions, with capital and labor as inputs, based on
post-war US data, under three alternative estimation strategies. Upon comparison we
argue that, analogously to the case of CES functions (Klump, McAdam, and Willman,
2007), most reliable estimates are obtained when using a three-equation supply-side
system estimator.

In our empirical study we find that in post-war US, the elasticity of substitution σ

has been systematically positively related to the capital–labor ratio in effective units,
k̄ (i.e., after accounting for factor-augmenting technical change) as well as the capital–
output ratio k/y. The null hypothesis of the CES specification is very robustly rejected.
We also observe, consistently across all considered IEES functions, that the elasticity of
substitution σ has been below unity on average, first fluctuating around 0.8–0.9 until
the 1980s and then embarking on a secular downward trend.

From the theoretical angle, our research is also tangent to the papers which endo-
genize the elasticity of substitution within various general equilibrium frameworks.
First, following the lead of Miyagiwa and Papageorgiou (2007), some authors have
studied growth models with two-level CES production structures (Papageorgiou and
Saam, 2008; Saam, 2008; Xue and Yip, 2013). This literature implies that the aggregate
elasticity of substitution is a linear combination of elasticities of substitution between
capital and labor in intermediate goods sectors as well as the elasticity of substitution
between intermediate goods in final goods production. In equilibrium, σ(k) can be
either monotone, hump-shaped, or U-shaped in k (Xue and Yip, 2013). Second, follow-
ing the lead of Jones (2005), other authors have considered frameworks with optimal
technology choice at the level of firms (Growiec, 2008a,b; Matveenko and Matveenko,
2015). These are however static models where the aggregate elasticity of substitution
σ, although different from the local one, does not depend on k in equilibrium. Finally,
Irmen (2011) and Leon-Ledesma and Satchi (2015) have put forward dynamic models
with endogenous technology choice, demonstrating how the equilibrium value of σ

can evolve over time, driven by factor accumulation and technical change. In constrast
to these papers, our contribution posits that the linkage between σ and k is technolog-
ical, not economic.

The remainder of the article is structured as follows. Section 2 defines IEES pro-
duction functions and derives their key properties. Section 3 contains a detailed elabo-
ration of three cases of IEES functions: where the elasticity of substitution is isoelastic
with respect to the relative factor share, the marginal rate of substitution, and the factor
ratio k. Section 4 complements the analysis with the capital deepening representation of
the production function (Klenow and Rodriguez-Clare, 1997; Madsen, 2010) and elabo-

contributions in this vein have been due to Gorman (1965) and Hanoch (1971).
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rates on an IEES function where the elasticity of substitution is isoelastic with respect to
the degree of capital deepening, k/y. Section 5 discusses the role of factor-augmenting
technical change with IEES production. Section 6 illustrates the usefulness of IEES pro-
duction functions in empirical applications by applying the framework to post-war US
data. Section 7 concludes. The description of our dataset as well as some robustness
checks of the empirical exercise are relegated to the appendix.

2 Definitions and Construction

For any constant-returns-to-scale (CRS) production function F of two inputs, K and L,
one can write Y = F(K, L) in its intensive form y = f (k), where y = Y/L and k = K/L.
We assume that f : R+ → R+ is three times continuously differentiable, increasing
and concave in its whole domain.4

All the analysis will be carried out in normalized units. While generally redun-
dant for Cobb–Douglas production functions due to their multiplicative character, it
has been shown for the case of CES functions (de La Grandville, 1989; Klump and
de La Grandville, 2000) that production function normalization is crucial for obtaining
clean identification of the role of each of its parameters. As we shall see shortly, the
same argument applies equally forcefully to the proposed class of IEES functions.

The natural objects of comparison in the current study are the Cobb–Douglas and
the CES production function with constant returns to scale. The normalized Cobb–
Douglas function is written as:

y = f (k) = y0

(
k
k0

)π0

, k0, y0 > 0, π0 ∈ (0, 1). (1)

The normalized CES production function is, in turn:

y = f (k) = y0

(
π0

(
k
k0

) σ−1
σ

+ (1− π0)

) σ
σ−1

, k0, y0 > 0, π0 ∈ (0, 1), σ > 0, (2)

converging to the Cobb–Douglas function as the elasticity of substitution σ → 1, to a
linear function as σ→ +∞, and to a Leontief (minimum) function as σ→ 0+.

The following elementary concepts are central to our analysis:

• Factor shares. The partial elasticity of output Y with respect to K is defined as
π(k) = k f ′(k)

f (k) ∈ [0, 1]. If markets are perfectly competitive, this elasticity is also

equal to the capital’s share of output, rk
y . By constant returns to scale, implying

that the labor share is 1− π(k), it is also easily obtained that the ratio of factor

4Allowing K and L to be expressed in effective, technology-adjusted units is relegated to Section 5.
At this point, it suffices to mention that all our results remain unchanged.
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shares (and of partial elasticities), strictly increasing in π(k), is equal to π(k)
1−π(k) =

k f ′(k)
f (k)−k f ′(k) ≥ 0.

The Cobb–Douglas production function is characterized by constant factor shares,
with π(k) ≡ π0 for all k ≥ 0. For the CES production function, the ratio of fac-

tor shares π(k)
1−π(k) = π0

1−π0

(
k
k0

) σ−1
σ increases with k, from 0 when k = 0 to +∞ as

k → ∞, if σ > 1. Conversely, if σ < 1 then the ratio gradually declines, from +∞
towards 0.

• Marginal rate of substitution (MRS). For constant-returns-to-scale functions of
two inputs, the MRS – capturing the slope of the isoquant – is computed as
MRS(k) ≡ ϕ(k) = −1−π(k)

π(k) k = − f (k)
f ′(k) + k ≤ 0. If markets are perfectly com-

petitive, the MRS is also equal to minus the relative price of labor as compared
to capital, w

r = 1−π(k)
π(k) k = −ϕ(k). Monotonicity and concavity of the production

function f imply that the MRS is negative and (at least weakly) declines with k.

The Cobb–Douglas function has a linearly declining MRS ϕ(k) = ϕ0

(
k
k0

)
.5 The

CES function, in turn, has an isoelastic MRS ϕ(k) = ϕ0

(
k
k0

)1/σ
. In both cases,

MRS unambiguously declines from 0 when k = 0 to −∞ when k→ ∞.

• Elasticity of substitution. The elasticity of substitution – measuring the curva-
ture of the isoquant, i.e., the elasticity of changes in the factor ratio k in reaction
to changes in the MRS – is computed as σ(k) = ϕ(k)

kϕ′(k) = − f ′(k)( f (k)−k f ′(k))
k f (k) f ′′(k) ≥ 0.

Concavity of the production function f implies that the elasticity of substitution
is non-negative.

The Cobb–Douglas function implies σ(k) ≡ 1 for all k ≥ 0. For CES functions,
the elasticity of substitution σ > 0 is a constant parameter.

The following definitions are central to this paper.

Definition 1 The elasticity of elasticity of substitution with respect to x, EES(x), is de-
fined as the elasticity with which the elasticity of substitution σ reacts to changes in x:

EES(x) =
∂σ(x)

∂x
x

σ(x)
=

σ′(k)
σ(k)

x(k)
x′(k)

, (3)

where the last equality assumes that x is a differentiable function of k. We consider four argu-

5Using the notation ϕ0 = − 1−π0
π0

k0 < 0.
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ments of the EES:

EES
(

π

1− π

)
=

π(k)(1− π(k))
π′(k)

σ′(k)
σ(k)

, (4)

EES(ϕ) =
ϕ(k)
ϕ′(k)

σ′(k)
σ(k)

= kσ′(k), (5)

EES(k) =
kσ′(k)
σ(k)

, (6)

EES
(

k
y

)
=

k
1− π(k)

σ′(k)
σ(k)

. (7)

Definition 2 The isoelastic elasticity of substitution production function IEES(x) is a
function for which EES(x) ≡ const.

In what follows, we shall characterize the four respective IEES functions, with x ∈{
π

1−π ; ϕ; k; k
y

}
.6 Please observe that for every CES or Cobb–Douglas function with a

constant σ, EES(x) = 0 for all x, and thus they naturally belong to the wider IEES class
as well. Another observation is that EES is a third-order characteristic of any function
f : existence of σ′(k) for all k requires that f is at least three times differentiable in its
domain. Standard axioms of production functions do not place any sign restrictions
on f (3)(k) and thus on EES, a degree of freedom that we shall exploit.

We are now in the position to spell out the main results of the current study.

Construction. The construction of a function f whose elasticity of substitution σ(k) is
of given form can be obtained in two steps: in the first step, σ(k) is integrated up to
yield the marginal rate of substitution ϕ(k); in the second step ϕ(k) is integrated up to
yield the function f (k) itself.7 Formally,

σ(k) =
ϕ(k)

kϕ′(k)
⇒ ϕ(k) = − exp

(∫ dk
kσ(k)

)
, (8)

ϕ(k) = − f (k)
f ′(k)

+ k ⇒ f (k) = exp
(∫ dk

k− ϕ(k)

)
. (9)

Both constants of integration have to be picked specifically to maintain production
function normalization. For IEES production functions, integration (8) can be executed
easily, yielding closed, economically interpretable formulas for the MRS as a function
of k. In contrast, integration (9) generally cannot be performed in elementary functions
– but for a few notable exceptions, some of which have already been discussed in the
literature.

6The last case requires also a more general elaboration of the capital deepening production function
representation, i.e. rewriting y = f (k) in the form of y = h(k/y).

7Solving it in a single step is also possible but requires solving a second-order nonlinear differential
equation.
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3 Properties of IEES Functions

3.1 The IEES
(

π
1−π

)
Function

The IEES
(

π
1−π

)
production function, defined as a function for which EES

(
π

1−π

)
= ψ,

where ψ ∈ R is a constant, implies (upon normalization) that the elasticity of substitu-
tion follows:

σ

σ0
=

(
π

1− π

1− π0

π0

)ψ

. (10)

In this case, integration (8) yields the following formula for the MRS:

ϕ(k) = ϕ0

(
1
σ0

(
k
k0

)−ψ

+

(
1− 1

σ0

))− 1
ψ

, (11)

where ϕ0 = −
(

1−π0
π0

)
k0.

Hence, the relative factor share satisfies:

π

1− π
=

π0

1− π0

(
1
σ0

+

(
1− 1

σ0

)(
k
k0

)ψ
) 1

ψ

. (12)

Both above formulas demonstrate the symmetry, owing to which the IEES
(

π
1−π

)
func-

tion is an equally natural generalization of the CES as the CES is a generalization of
the Cobb–Douglas (isoelastic) production function. For the CES function, the MRS and
relative factor shares are Cobb–Douglas (isoelastic) functions of k and the elasticity of
substitution is constant. For the IEES

(
π

1−π

)
function, the MRS and relative factor share

are CES functions of k and the elasticity of substitution is Cobb–Douglas (isoelastic) in
the relative factor share.

Inserting (12) back into (10) implies that the elasticity of substitution is the following
function of k:

σ(k) = 1 + (σ0 − 1)
(

k
k0

)ψ

, (13)

and hence σ(k) > 1 for all k if σ0 > 1, irrespective of the value of ψ, and conversely,
σ(k) < 1 for all k if σ0 < 1. Hence, perhaps disappointingly, capital and labor are either
always gross substitutes or always gross complements here. Due to the strict mono-
tonicity of the relative factor share with respect to k (equation (10)), the elasticity of
substitution σ(k) cannot cross unity. Moreover, the case σ0 = 1 automatically reduces
the IEES

(
π

1−π

)
function directly to the Cobb–Douglas specification.

To further illustrate the properties of the current production function specification,
we shall consider four specific cases, delineated by the assumptions made with respect
to ψ and σ0. We shall also discuss the special cases with ψ = ±1 for which integration
(9) yields known closed-form formulas.8 The case ψ = 1 corresponds to the “variable

8Symbolic integration reveals that closed-form formulas (albeit huge and generally difficult to inter-
pret) exist also for ψ = ±2,± 1

2 ,−3. They are available from the author upon request.
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elasticity of substitution” (VES) production function due to Revankar (1971) whereas
the case ψ = −1 captures the Stone–Geary production function.

Case with ψ > 0 and σ0 > 1. In this case, factors of production are always gross substi-
tutes and hence the capital share increases with the capital–labor ratio k. Since also the
elasticity of substitution increases with the capital share, it follows that the elasticity of
substitution increases with k as well. The production function is well-defined, increas-
ing and concave in its entire domain k ∈ [0,+∞). We obtain the following limits:

lim
k→0

π(k)
1− π(k)

=
π0

1− π0
σ
− 1

ψ

0 > 0, lim
k→∞

π(k)
1− π(k)

= +∞, (14)

lim
k→0

ϕ(k) = 0, lim
k→∞

ϕ(k) = ϕ0

(
σ0

σ0 − 1

) 1
ψ

< 0, (15)

lim
k→0

σ(k) = 1, lim
k→∞

σ(k) = +∞. (16)

Case with ψ < 0 and σ0 > 1. In this case, factors of production are always gross
substitutes and hence the capital share increases with the capital–labor ratio k. Since
the elasticity of substitution, on the other hand, decreases with the capital share, it
follows that the elasticity of substitution decreases with k as well. The production
function is well-defined, increasing and concave in its entire domain k ∈ [0,+∞). We
obtain the following limits:

lim
k→0

π(k)
1− π(k)

= 0, lim
k→∞

π(k)
1− π(k)

=
π0

1− π0
σ
− 1

ψ

0 > 0, (17)

lim
k→0

ϕ(k) = ϕ0

(
σ0

σ0 − 1

) 1
ψ

< 0, lim
k→∞

ϕ(k) = −∞, (18)

lim
k→0

σ(k) = +∞, lim
k→∞

σ(k) = 1. (19)

Case with ψ > 0 and σ0 < 1. In this case, factors of production are always gross
complements and hence the capital share is inversely related to the capital–labor ratio
k. Since the elasticity of substitution, on the other hand, increases with the capital share,
it follows that the elasticity of substitution falls with k. The production function is well-
defined, increasing and concave only for k ∈ [0, kmax], where kmax = k0(1− σ0)

−1/ψ.
We obtain the following limits:

lim
k→0

π(k)
1− π(k)

=
π0

1− π0
σ
− 1

ψ

0 > 0, lim
k→kmax

π(k)
1− π(k)

= 0, (20)

lim
k→0

ϕ(k) = 0, lim
k→kmax

ϕ(k) = −∞, (21)

lim
k→0

σ(k) = 1, lim
k→kmax

σ(k) = 0. (22)

Case with ψ < 0 and σ0 < 1. In this case, factors of production are always gross
complements and hence the capital share is inversely related to the capital–labor ratio
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k. Since also the elasticity of substitution is inversely related to the capital share, it
follows that the elasticity of substitution increases with k. The production function is
well-defined, increasing and concave only for k ∈ [kmin,+∞), where kmin = k0(1 −
σ0)
−1/ψ. We obtain the following limits:

lim
k→kmin

π(k)
1− π(k)

= +∞, lim
k→∞

π(k)
1− π(k)

=
π0

1− π0
σ
− 1

ψ

0 > 0, (23)

lim
k→kmin

ϕ(k) = 0, lim
k→∞

ϕ(k) = −∞, (24)

lim
k→kmin

σ(k) = 0, lim
k→∞

σ(k) = 1. (25)

As shown in Section 6, our empirical analysis suggests that this case of IEES
(

π
1−π

)
functions is preferred by the data on aggregate production in the post-war US econ-
omy.

Revankar’s VES production function. Assuming that ψ = 1, following Revankar
(1971), allows us to find the antiderivative in (9) in elementary functions. The normal-
ized “variable elasticity of substitution” (Revankar’s VES) production function with
constant returns to scale reads:

y = f (k) = y0

(
k
k0

) π0
π0+σ0(1−π0)

(
π0

(
σ0 − 1

σ0

)(
k
k0

)
+

π0 + σ0(1− π0)

σ0

) σ0(1−π0)
π0+σ0(1−π0)

,

(26)
or in non-normalized notation, f (k) = Akα(Bk + 1)1−α, with α ∈ (0, 1), A > 0 and
B ∈ R. Please observe the domain restriction k ≤ −1/B which is in force if B < 0 (i.e.,
σ0 < 1).

It is notable that while several of the production functions derived around 1970,
which do not belong to the class of IEES functions, have remained something of a the-
oretical curiosity, the Revankar’s VES function has been repeatedly used in empirical
studies, even quite recently (Karagiannis, Palivos, and Papageorgiou, 2005).

Stone–Geary production function. Assuming that ψ = −1 also allows us to find the
antiderivative in (9) in elementary functions. The normalized Stone–Geary production
function (i.e., Cobb–Douglas production function of a shifted input) is:

y = f (k) = y0

((
k
k0

)(
σ0π0 + (1− π0)

σ0

)
+ (1− π0)

σ0 − 1
σ0

) σ0π0
σ0π0+(1−π0)

, (27)

or in non-normalized notation, f (k) = A(k + B)α, with α ∈ (0, 1), A > 0 and B ∈ R.
Please observe the domain restriction k ≥ −B which is in force if B < 0 (i.e., σ0 < 1).
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3.2 The IEES(MRS) Function

The IEES(MRS) production function, defined as a function for which EES(ϕ) = ψ,
where ψ ∈ R is a constant, implies (upon normalization) that the elasticity of substitu-
tion follows:

σ

σ0
=

(
ϕ

ϕ0

)ψ

, (28)

where ϕ0 = −
(

1−π0
π0

)
k0.

In this case, integration (8) yields the following formula for the MRS:

ϕ(k) = ϕ0

(
1 +

ψ

σ0
ln
(

k
k0

)) 1
ψ

. (29)

Hence, the relative factor share satisfies:

π

1− π
=

π0

1− π0

k
k0

(
1 +

ψ

σ0
ln
(

k
k0

))− 1
ψ

(30)

Inspection of the above formulas reveals that the MRS is a logarithmic function of k.
The relative factor share is, on the other hand, a product of a logarithmic and a linear
function of k. As opposed to the cases of the Cobb–Douglas, CES, and IEES

(
π

1−π

)
functions, relative factor shares are no longer a monotonic function of k. There exists
a unique point of reversal, coinciding with the point where the elasticity of substitution crosses

unity, k̃ = k0e−
σ0−1

ψ with σ(k̃) = 1.
Inserting (30) back into (28) implies that the elasticity of substitution is the following

function of k:
σ(k) = σ0 + ψ ln

(
k
k0

)
. (31)

To further illustrate the properties of the current production function specification,
we shall consider two specific cases, delineated by the assumptions made with respect
to ψ. Unfortunately, to our knowledge, IEES(MRS) functions cannot be obtained in a
closed form.

Case with ψ > 0. In this case, the elasticity of substitution decreases with the marginal
rate of substitution (ϕ0 < 0) and thus increases with the factor ratio k (recall that by
concavity and constant returns to scale, the MRS necessarily decreases with k). The
production function is well-defined, increasing and concave only for k ∈ [kmin,+∞),
where kmin = k0e−σ0/ψ. The relative factor share π(k)

1−π(k) (and thus the capital’s share

π(k) as well) follows a non-monotonic pattern with k, declining if k ∈ (kmin, k̃) and
increasing for k > k̃. The minimum capital share, obtained at the point k̃, is equal to:(

π

1− π

)
min

=
π(k̃)

1− π(k̃)
=

π0

1− π0
e−

σ0−1
ψ σ

1
ψ

0 . (32)
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We also obtain the following limits:

lim
k→kmin

π(k)
1− π(k)

= +∞, lim
k→∞

π(k)
1− π(k)

= +∞, (33)

lim
k→kmin

ϕ(k) = 0, lim
k→∞

ϕ(k) = −∞, (34)

lim
k→kmin

σ(k) = 0, lim
k→∞

σ(k) = +∞. (35)

As shown in Section 6, our empirical analysis suggests that this case of IEES(MRS)
functions is preferred by the data on aggregate production in the post-war US econ-
omy. We also find σ0 < 1.

Case with ψ < 0. In this case, the elasticity of substitution increases with the marginal
rate of substitution and thus falls with the factor ratio k. The production function is
well-defined, increasing and concave only for k ∈ [0, kmax], where kmax = k0e−σ0/ψ.
The relative factor share π(k)

1−π(k) (and thus the capital’s share π(k) as well) follows a

non-monotonic pattern with k, increasing when k ∈ (0, k̃) and falling for k ∈ (k̃, kmax).
The maximum capital share, obtained at the point k̃, is equal to:(

π

1− π

)
max

=
π(k̃)

1− π(k̃)
=

π0

1− π0
e−

σ0−1
ψ σ

1
ψ

0 . (36)

We also obtain the following limits:

lim
k→0

π(k)
1− π(k)

= 0, lim
k→kmax

π(k)
1− π(k)

= 0, (37)

lim
k→0

ϕ(k) = 0, lim
k→kmax

ϕ(k) = −∞, (38)

lim
k→0

σ(k) = +∞, lim
k→kmax

σ(k) = 0. (39)

3.3 The IEES(k) Function

The IEES(k) production function, defined as a function for which EES(k) = ψ, where
ψ ∈ R is a constant, implies (upon normalization) that the elasticity of substitution
follows:

σ

σ0
=

(
k
k0

)ψ

. (40)

In this case, integration (8) yields the following formula for the MRS:

ϕ(k) = ϕ0e
1

ψσ0

(
1−
(

k
k0

)−ψ
)

, (41)

where ϕ0 = −
(

1−π0
π0

)
k0.

Hence, the relative factor share satisfies:

π

1− π
=

π0

1− π0

k
k0

e
− 1

ψσ0

(
1−
(

k
k0

)−ψ
)

(42)
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Inspection of the above formulas reveals that the MRS is an exponential function of k.
Relative factor shares are, on the other hand, a product of an exponential and a linear
function of k. As opposed to the cases of the Cobb–Douglas, CES, and IEES

(
π

1−π

)
func-

tions, and alike the IEES(MRS) function, the relative factor share is a non-monotonic
function of k. There is a unique point of reversal, coinciding with the point where the elasticity
of substitution crosses unity, k̃ = k0σ

−1/ψ
0 with σ(k̃) = 1.

To further illustrate the properties of the current production function specification,
we shall consider two specific cases, delineated by the assumptions made with respect
to ψ. Unfortunately, to our knowledge, IEES(k) functions cannot be obtained in a closed
form.

Case with ψ > 0. In this case, we assume that the elasticity of substitution increases
with the factor ratio k. The production function is well-defined, increasing and concave
in its domain k ∈ [0,+∞). The relative factor share π(k)

1−π(k) (and thus the capital’s

share π(k) as well) follows a non-monotonic pattern with k, declining if k ∈ (0, k̃) and
increasing for k > k̃. The minimum capital share, obtained at the point k̃, is equal to:(

π

1− π

)
min

=
π(k̃)

1− π(k̃)
=

π0

1− π0
e−

σ0−1
ψσ0 σ

− 1
ψ

0 . (43)

We also obtain the following limits:

lim
k→0

π(k)
1− π(k)

= +∞, lim
k→∞

π(k)
1− π(k)

= +∞, (44)

lim
k→0

ϕ(k) = 0, lim
k→∞

ϕ(k) = ϕ0e
1

ψσ0 < 0, (45)

lim
k→0

σ(k) = 0, lim
k→∞

σ(k) = +∞. (46)

As shown in Section 6, our empirical analysis suggests that this case of IEES(k) func-
tions is preferred by the data on aggregate production in the post-war US economy. We
also find σ0 < 1.

Case with ψ < 0. In this case, we assume that the elasticity of substitution decreases
with the factor ratio k. The production function is well-defined, increasing and concave
in its domain k ∈ [0,+∞). The relative factor share π(k)

1−π(k) (and thus the capital’s share

π(k) as well) follows a non-monotonic pattern with k, increasing when k ∈ (0, k̃) and
falling for k > k̃. The maximum capital share, obtained at the point k̃, is equal to:(

π

1− π

)
max

=
π(k̃)

1− π(k̃)
=

π0

1− π0
e−

σ0−1
ψσ0 σ

− 1
ψ

0 . (47)
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We also obtain the following limits:

lim
k→0

π(k)
1− π(k)

= 0, lim
k→∞

π(k)
1− π(k)

= 0, (48)

lim
k→0

ϕ(k) = ϕ0e
1

ψσ0 < 0, lim
k→∞

ϕ(k) = −∞, (49)

lim
k→0

σ(k) = +∞, lim
k→∞

σ(k) = 0. (50)

4 The Capital Deepening Production Function Represen-

tation and the IEES(k/y) Function

It is popular, especially in the growth and development accounting literature (see e.g.,
Klenow and Rodriguez-Clare, 1997; Madsen, 2010), to rewrite the aggregate produc-
tion function so that it takes the capital–output ratio κ ≡ K/Y = k/y instead of k as
its input. Increases in κ are then identified with capital deepening. The key reason for
making such a transformation is that, unlike k, the capital deepening term κ should not
exhibit a strong upward trend, and dealing with variables without discernible trends
has its documented statistical advantages. And indeed, relative stability of the capital–
output ratio (one of the “great ratios” in macroeconomics) has been long taken as a
stylized fact, together with relative stability of factor shares. Only relatively recently
have both postulates been questioned; still, if y and k exhibit upward trends, by def-
inition k/y must be at least growing much slower than k, underscoring the empirical
value of the current representation.

As a preliminary remark, observe how easy it is to rewrite the normalized Cobb–
Douglas and CES functions with constant returns to scale in the capital deepening
form:

y = y0

(
κ

κ0

) π0
1−π0

, κ0, y0 > 0, π0 ∈ (0, 1), (51)

y = y0

(
1

1− π0
− π0

1− π0

(
κ

κ0

) σ−1
σ

)− σ
σ−1

, κ0, y0 > 0, π0 ∈ (0, 1), σ > 0. (52)

The implied relative factor shares Π(κ) ≡ π(κ)
1−π(κ)

are, respectively, equal to Π(κ) =
π0

1−π0
(a constant) in the Cobb–Douglas case, and

Π(κ) =

π0
1−π0

(
κ
κ0

) σ−1
σ

1
1−π0

− π0
1−π0

(
κ
κ0

) σ−1
σ

, π(κ) = π0

(
κ

κ0

) σ−1
σ

(53)

in the CES case. Hence, the capital share is isoelastic in the degree of capital deepening
κ and increases with κ if and only if σ > 1, i.e., if capital and labor are gross substitutes.
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Finally, observe that the functional form of equation (53) does not by itself preclude
cases with π(κ) > 1. These cases are made impossible only by the range of the CES
function which restricts the support of κ = k/y appropriately.

Although for arbitrary (increasing and concave) production functions, rewriting
them (and their implied elasticities) in terms of κ is not so easy anymore, it can always
be done. Let us now recall some known relevant results.

Existence. Any increasing, concave, and constant-returns-to-scale (CRS) production
function of two inputs, Y = F(K, L), can be rewritten as F

(K
Y , L

Y
)
= 1. Then, by the

implicit function theorem,9 there exists a function h : R+ → R+ such that L
Y = 1

h(K/Y)
and thus y = h(κ). Note that due to concavity of F, the capital deepening term κ is
always increasing in k. We also observe that the relative factor share can be computed
directly as the elasticity of h(κ) with respect to κ:

Π(κ) =
π(κ)

1− π(κ)
=

h′(κ)κ
h(κ)

. (54)

The existence of an explicit form of the function h(κ), however, hinges on the re-
quirement that F(κ, 1/y) = 1 can be solved for y explicitly, which need not be the case
even if the functional form of F is given. Notably, it cannot be done for IEES functions
whose explicit form is not known.10

Construction. Using this notation, the proposed two-step method for finding functions
whose elasticity of substitution is given as a predefined function of the degree of capital
deepening κ is as follows:

σ(κ) =
1

1− Π′(κ)κ
Π(κ)(1+Π(κ))

⇒ Π(κ) =
1

exp
(
−
∫ σ(κ)−1

κσ(κ)
dκ
)
− 1

, (55)

Π(κ) =
h′(κ)κ
h(κ)

⇒ h(κ) = exp
(∫ Π(κ)

κ
dκ

)
. (56)

Unfortunately, the integrals (55)–(56) can be computed in elementary functions only
for a very narrow set of functional specifications of σ(κ).

Still, this apparatus enables us to define and characterize the IEES(κ) production
function whose elasticity of substitution is isoelastic in the degree of capital deepening.

The IEES(κ) production function, defined as a function for which EES(κ) = ψ, where
ψ ∈ R is a constant, implies (upon normalization) that the elasticity of substitution
follows:

σ

σ0
=

(
κ

κ0

)ψ

=

(
k
y

y0

k0

)ψ

. (57)

9Which can be used because F is increasing and concave in its entire domain.
10It can be done for the special cases of Revankar’s VES and Stone-Geary production function, though.

Details are available upon request.

16



In this case, integration (55) yields the following formula for the relative factor
share:

Π(κ) =
π0

(
κ
κ0

)
e

1
ψσ0

(
1−
(

κ
κ0

)−ψ
)
− π0

(
κ
κ0

) . (58)

Slight rearrangement of the above formula reveals that the capital share π(κ) is a prod-
uct of an exponential and a linear function of κ:

π(κ) = π0

(
κ

κ0

)
e
− 1

ψσ0

(
1−
(

κ
κ0

)−ψ
)

. (59)

As opposed to the cases of the Cobb–Douglas, CES, and IEES
(

π
1−π

)
functions, and

alike the IEES(MRS) and IEES(k) functions, relative factor shares are a non-monotonic
function of κ here (and thus, owing to the concavity of F(K, L), of the capital–labor
ratio k as well). There exists a unique point of reversal, coinciding with the point where the
elasticity of substitution crosses unity, κ̃ = κ0σ

−1/ψ
0 with σ(κ̃) = 1.

To further illustrate the properties of the current production function specification,
we shall consider two specific cases, delineated by the assumptions made with respect
to ψ. Unfortunately, to our knowledge, IEES(κ) functions cannot be obtained in a closed
form.

Case with ψ > 0. In this case, we assume that the elasticity of substitution increases
with the degree of capital deepening κ. Due to restrictions in the range of F(K, L), the
support of κ is restricted to κ ∈ [κmin, κmax] where κmin and κmax are the two solutions
to the equation π(κ) = 1. The capital’s share π(κ) follows a non-monotonic pattern
with κ, declining if κ ∈ (κmin, κ̃) and increasing for κ ∈ (κ̃, κmax). The minimum capital
share, obtained at the point κ̃, is equal to:

πmin = π(κ̃) = π0e−
σ0−1
ψσ0 σ

− 1
ψ

0 . (60)

As shown in Section 6, our empirical analysis suggests that this case of IEES(κ) func-
tions is preferred by the data on aggregate production in the post-war US economy. We
also find σ0 < 1.

Case with ψ < 0. In this case, we assume that the elasticity of substitution decreases
with the degree of capital deepening κ. The capital’s share π(k) follows a non-monotonic
pattern with κ, increasing when κ ∈ (0, κ̃) and falling for κ > κ̃. The maximum capital
share, obtained at the point κ̃, is equal to:

πmax = π(κ̃) = π0e−
σ0−1
ψσ0 σ

− 1
ψ

0 , (61)

with the following limits:

lim
κ→0

π(κ) = 0, lim
κ→∞

π(κ) = 0. (62)
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The production function is well-defined, increasing and concave in its domain κ ∈
[0,+∞) as long as πmax ≤ 1.

5 Factor-Augmenting Technical Change

One of the many advantages of assuming constant returns to scale lies with a clean
treatment of factor-augmenting technical change. Indeed, with just a slight modifica-
tion of notation, technical change can be incorporated in any CRS production function
by replacing Y = F(K, L) with Y = F(ΓKK, ΓLL), or – in the intensive form – by re-
placing y = f (k) with ȳ = f (k̄), where ȳ = Y

ΓLL and k̄ = ΓKK
ΓLL . Crucially, owing to

constant returns to scale, the functional form of f remains unchanged. And if one
is ultimately interested in y instead of ȳ, then one may simply compute y = ΓLȳ =

ΓL f (k̄) = F(ΓKk, ΓL) after all the necessary derivations.
This last step implicitly separates the Hicks-neutral component of technical change

from the capital bias in technical change (cf., e.g., León-Ledesma, McAdam, and Will-
man, 2010). This is the key insight for the current study because it allows us to define
the capital share π(k̄), the marginal rate of substitution ϕ(k̄) and, crucially, the elastic-
ity of substitution σ(k̄), as a function of the capital–labor ratio in effective units. Hence,
any capital-biased technical change (i.e., increase in ΓK/ΓL) acts just like physical cap-
ital accumulation, whereas labor-biased technical change (decline in ΓK/ΓL) affects
factor shares, MRS and σ alike a decline in the capital–labor ratio k.11 All functional
forms remain unchanged.

Factor-augmenting technical change can be studied in the capital deepening pro-
duction function representation as well. With the notation κ̄ = k̄

ȳ = ΓKk
y , one can

easily replace y = h(κ) with ȳ = h(κ̄) and all the above results still go through. At
the same time, this specification emphasizes that capital-augmenting technical change
adds to capital deepening just like capital accumulation, while labor-augmenting tech-
nical change is neutral for capital deepening.

Clearly, both theory and data suggest that labor-augmenting technical change are
likely to be dominant over the long run (Acemoglu, 2003; Klump, McAdam, and Will-
man, 2012), and therefore the capital–labor ratio in effective units k̄ will likely grow
slower (if at all) than the raw capital–labor ratio k. Indeed, US data include, apart from
periods of growth, also prolonged periods of decline in k̄. Hence, for empirical appli-
cations of IEES functions (and CES ones as well), it is important whether one considers
the capital–labor ratio in effective units (k̄) or just as a raw variable, measured in dollars
per worker (k).

11See Growiec (2013) for a discussion of the micro-level forces behind the direction of factor-
augmenting technical change.
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6 Application: The US Aggregate Production Function

Usefulness of the proposed class of IEES production functions in empirical applica-
tions follows from the fact that they provide testable predictions for the functional
relationships between two observables: factor shares and the capital-labor ratio k (or
the degree of capital deepening, κ). Each of the nonlinear equations (12), (30), (42) and
(59) can be estimated, either separately or in a larger system, based on country-level,
sectoral-level, or even firm-level data.

An important advantage of production function normalization which we use here
is that each of the four IEES specifications can be used to determine simultaneously
the magnitude of elasticity of elasticity of substitution ψ and the average elasticity of
substitution in the sample, σ0. As for the latter parameter, elasticity of substitution σ

estimated under the CES specification works as a natural benchmark for comparisons.
In this section we consider an empirical application of the proposed class of IEES

production functions to post-war US data. Our dataset covers the non-residential busi-
ness sector of the US economy (see Rognlie, 2015, for discussion) and consists of quar-
terly time series spanning the period 1948Q1–2013Q4. All variables are normalized
around their respective geometric sample means. Detailed description of the dataset
and construction of variables is included in Appendix A.1.

Having sorted out the issue of factor-augmenting technical change and estimated
the parameters of IEES functions, we shall study the trajectory of the elasticity of sub-
stitution between capital and labor in the US, σt. Thus far, the magnitude of this deep
technological parameter has been consistently estimated for the US only when assum-
ing its constancy over time (see Klump, McAdam, and Willman, 2012, for a review). In
contrast, our empirical investigation reveals that σt has exhibited substantial variation
over time, and since the 1980s it has also systematically followed a downward trend.

6.1 Estimation Strategies

The parameters of IEES functions will be estimated under the baseline assumption that
technological progress is exponential and purely labor-augmenting.12 Hence, we shall
assume that ΓKt ≡ 1 and ΓLt = eγl(t−t̄) where γl is the constant and exogenous rate of
labor-augmenting technical change. The capital–labor ratio in effective units is then
equal to:

k̄t =
ΓKt Kt

ΓLt Lt
=

Kt

Lt
e−γl(t−t̄). (63)

12This assumption is consistent with a bulk of empirical literature (see the review by Klump,
McAdam, and Willman, 2012). Moreover, extensive robustness analysis confirms that all our key re-
sults remain in force also when this assumption is relaxed.
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The parameter t̄ is set such that the sample average of ln k̄t is zero. It is also observed
that under purely labor-augmenting technical change, κ̄t = κt.

We consider three alternative estimation strategies.

Single-equation NLS estimation. This strategy consists in estimating the parameters
of each of the nonlinear equations (12), (30), (42) and (59) with nonlinear least squares
(NLS), after taking logs. The pace of labor-augmenting technical change, γl, is set at
0.0045 per quarter (about 0.018 per annum)13 and not estimated.

The advantage of single-equation NLS estimation is that it is simple to execute and
requires data solely on the relative factor share, πt/(1− πt), and the capital-labor ra-
tio expressed in effective units, k̄t, or alternatively the degree of capital deepening, κt.
The problem with this estimation method is, however, that the identification of the
estimated parameters – the average elasticity of substitution σ0 and the elasticity of
elasticity of substitution ψ – based on such a scarce dataset is hard because they are
deep technological constants. This argumentation is analogous to the one put forward
in the CES literature which has identified the advantages of using normalized supply-
side system estimation over the single-equation approach in estimating the (constant)
elasticity of substitution based on time-series data (Klump, McAdam, and Willman,
2007; León-Ledesma, McAdam, and Willman, 2010). Hence, we shall also seek to esti-
mate σ0 and ψ jointly with π0 and γl in a three-equation system, using additional data
on output and relative prices.

Two-step estimation. This strategy consists in, first, estimating the parameters of a
CES production function with factor-augmenting technical change (π0, σ0, γl) follow-
ing the three-equation system strategy due to Klump, McAdam, and Willman (2007)
and, next, assuming that the elasticity of substitution σ(k) is given by an IEES specifi-
cation and thus estimating ψ.

In the first step, the normalized supply-side system with CES production is jointly
estimated:

ln
(

rtKt

PtYt

)
= ln(π0) +

1− σ0

σ0

(
ln
(

Yt

Kt

K0

Y0

)
− ln (ξ)− ln

(
ΓKt
))

, (64)

ln
(

wtLt

PtYt

)
= ln(1− π0) +

1− σ0

σ0

(
ln
(

Yt

Lt

L0

Y0

)
− ln (ξ)− ln

(
ΓLt
))

, (65)

ln
(

Yt

Y0

)
= ln (ξ) +

σ0

σ0 − 1
ln

π0

(
Kt

K0
ΓKt

) σ0−1
σ0

+ (1− π0)

(
Lt

L0
ΓLt

) σ0−1
σ0

 ,(66)

where (rtKt)/(PtYt) = πt and (wtLt)/(PtYt) = 1 − πt stand for the capital and la-

13This number corresponds to our estimates of the US supply-side system which will be discussed
shortly.
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bor share, respectively.14 The first two equations are first-order conditions of profit
maximization under perfect competition, for capital (64) and labor (65). The third
equation captures the log of a CES production function (66). Residuals are allowed
to be correlated across equations and therefore we use a Generalized Nonlinear Least
Squares (GNLS) estimator. However, our findings are robust to alternative choices of
the estimator (e.g., multivariate NLS), as well as initial values used in the estimation
procedure. System estimation is expected to yield superior estimates of σ0 (and π0)
compared to single-equation CES estimates, based uniquely on the difference between
equations (64) and (65), cf. Klump, McAdam, and Willman (2007); León-Ledesma,
McAdam, and Willman (2010).

In the second step, the estimate of σ0 as well as the parameters describing determin-
istic factor-augmenting technical progress, obtained in the previous stage, are taken as
given. It allows us to estimate the second deep parameter ψ, based on equations (12),
(30), (42) and (59), with much more precision.

The advantages of two-step estimation are that (i) the properties of the first step
have been thoroughly characterized in the CES literature, and that (ii) the second step
is less demanding of data than in the single-equation approach. On the other hand, the
disadvantage of this approach is that it inconsistently assumes the production function
to be CES in the first step and IEES in the second step. This may lead to systematic
errors in the case of a substantial discrepancy between both specifications (i.e., if ψ is
far away from zero). Therefore we also seek to estimate ψ jointly with π0, σ0 and γl in
a single system.

Joint estimation of the supply-side system with IEES production. This strategy con-
sists in estimating all parameters of the supply-side system (64)–(66) jointly with ψ,
while allowing the elasticity of substitution to be time-varying. Thus σ0 is systemati-
cally replaced with σt, which itself follows the considered IEES production function:

IEES
(

π

1− π

)
: σt = 1 + (σ0 − 1)

(
k̄t

k̄0

)ψ

, (67)

IEES(MRS) : σt = σ0 + ψ ln
(

k̄t

k̄0

)
, (68)

IEES(k) : σt = σ0

(
k̄t

k̄0

)ψ

, (69)

IEES(κ) : σt = σ0

(
κt

κ0

)ψ

. (70)

There are two key advantages of joint estimation of all parameters of this system:
it is consistent with the theoretical formulation of IEES production functions, and it

14The additional scaling parameter ξ is expected to be around unity, cf. Klump, McAdam, and Will-
man (2007), and will not play any role in our analysis.
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uses a richer dataset than the single-equation NLS approach. On the other hand, it
must be emphasized that after substituting any of the equations (67)–(70) into the sys-
tem (64)–(66), a highly nonlinear system of equations is obtained. In particular, note,
factor-augmenting technical change is embodied in the formula for the elasticity of
substitution (apart from the case of the IEES(κ) production function). Identification of
parameters of such a complex system can, in principle, be difficult. Fortunately, in our
analysis we have not encountered any problems in this regard.15

6.2 Estimation Results

Estimation results are presented in Table 2. The top panel summarizes single-equation
NLS estimates, the middle one – two-step estimates, and the bottom one – results of
joint estimation of the supply-side system with IEES production. Consecutive columns
pertain to the respective types of IEES functions. CES estimates are included in the
first column for comparison. The results for two-step estimation of the CES function
are omitted because in such a case, the first step corresponds exactly to the system
approach (presented in the bottom panel) whereas the second step is void.

These results deliver three key messages. First, capital and labor are, on average,
gross complements. Depending on the production function specification and estima-
tion method, the estimated value of σ0 ranges from 0.590 to 0.866, fully corroborating
the CES results summarized by Klump, McAdam, and Willman (2012). Second, the
elasticity of substitution is not constant over time. Across all (but one) considered spec-
ifications of IEES functions, the estimates of ψ are statistically significantly different
from zero at the 1% significance level. The null of a CES production function specifi-
cation is thus robustly rejected. Third, apart from single-equation NLS estimates of ψ

which are likely biased (see below), we find that across all IEES specifications, the rela-
tionship between the elasticity of substitution σ(k̄) and the effective capital–labor ratio
k̄ is consistently positive, i.e., ψ > 0 in the cases of IEES(MRS), IEES(k) and IEES(κ),
and (σ0− 1)ψ > 0 with σ0 < 1 and ψ < 0 in the case of IEES

(
π

1−π

)
. In other words, we

find that the more capital is accumulated per worker (in effective units), the higher is
the elasticity of substitution σ.

More specifically, the elasticity of substitution estimated within the normalized
supply-side system with CES production equals 0.757 (bottom panel, first column) and
thus is close to the literature consensus of σ0 ≈ 0.6− 0.7. Moreover, the result that the
pace of labor-augmenting technical change equals γl = 0.0045 per quarter (0.018 per
annum) is equally well aligned with the literature. In the second step of the two-step
estimation procedure, both these numbers are taken as given; in the single-equation

15Such problems appear, however, in the robustness checks where we also allow for capital-
augmenting technical change (see below).
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Table 2: Summary of Baseline Estimates of IEES Production Functions

CES IEES( π
1−π ) IEES(MRS) IEES(k̄) IEES(κ)

Single-Equation NLS (γl = 0.0045)
π0 0.327∗∗∗ 0.331∗∗∗ 0.331∗∗∗ 0.331∗∗∗ 0.324∗∗∗

(0.001) (0.001) (0.001) (0.002) (0.001)
σ0 0.613∗∗∗ 0.623∗∗∗ 0.605∗∗∗ 0.590∗∗∗ 0.745∗∗∗

(0.019) (0.027) (0.021) (0.019) (0.029)
ψ 6.064∗∗∗ −2.535∗∗∗ −3.936∗∗∗ 2.676∗∗∗

(1.586) (0.671) (1.201) (0.726)
ADF (12), (30),
(42), (59)

−2.995∗∗∗ −4.156∗∗∗ −4.107∗∗∗ −4.030∗∗∗ −2.998∗∗∗

Two-Step (σ0 = 0.757 and γl = 0.0045)
π0 0.324∗∗∗ 0.324∗∗∗ 0.325∗∗∗ 0.324∗∗∗

(0.001) (0.001) (0.001) (0.001)
ψ −7.687∗∗∗ 2.381∗∗∗ 1.985 2.867∗∗∗

(0.688) (0.540) (1.212) (0.887)
ADF (67)–(70) −3.562∗∗∗ −3.256∗∗∗ −3.108∗∗∗ −2.979∗∗∗

System Approach
π0 0.331∗∗∗ 0.324∗∗∗ 0.326∗∗∗ 0.326∗∗∗ 0.326∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
σ0 0.757∗∗∗ 0.866∗∗∗ 0.796∗∗∗ 0.793∗∗∗ 0.795∗∗∗

(0.001) (0.018) (0.014) (0.015) (0.014)
ψ −7.956∗∗∗ 0.608∗∗∗ 0.644∗∗∗ 1.032∗∗∗

(1.048) (0.228) (0.301) (0.243)
ξ 0.999∗∗∗ 1.002∗∗∗ 1.001∗∗∗ 1.001∗∗∗ 1.003∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
γl 0.004∗∗∗ 0.005∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
ADF (64) −2.715∗∗∗ −2.805∗∗∗ −2.856∗∗∗ −2.830∗∗∗ −2.903∗∗∗

ADF (65) −3.646∗∗∗ −3.578∗∗∗ −3.519∗∗∗ −3.520∗∗∗ −3.601∗∗∗

ADF (66) −2.494∗∗∗ −2.946∗∗∗ −2.971∗∗∗ −2.973∗∗∗ −2.977∗∗∗

Notes: the superscripts ∗∗∗, ∗∗ and ∗ denote rejection of the null about parameters’ insignificance
at the 1%, 5% and 10% significance level, respectively. In the case of σ0, the null hypothesis is that
σ0 = 1 (Cobb–Douglas production). ADF stands for the Augmented Dickey-Fuller test without a
constant term. The superscripts ∗∗∗, ∗∗ and ∗ in the ADF test denote rejection of the null about a unit
root of the respective residuals at the 1%, 5% and 10% significance level. The number of lags for the
ADF test has been determined by the BIC criterion. The numbers in parentheses are robust standard
errors.
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NLS procedure, only the latter one. Crucially, however, when both parameters are es-
timated jointly with ψ in the system approach (bottom panel, columns 2–5), they still
remain in the same ballpark. Even if the estimated average elasticity of substitution
may be somewhat higher that 0.7, the null of the Cobb-Douglas form is always re-
jected by the data. Finally, we also observe that the only specification for which we are
not able to reject the null of ψ = 0 (CES production) is the case of the IEES(k) func-
tion, estimated in a two-step procedure. Although the standard error of estimation is
quite substantial in this case, the sign of the point estimate of ψ remains in line with
the results for other specifications.

Let us now clarify why we believe our single-equation NLS estimates are likely
biased whereas the other ones are reliable. The reason is that simultaneous identifica-
tion of two deep parameters of the production function, σ0 and ψ, based on a single,
highly nonlinear equation and two time series only (the capital–labor ratio in effec-
tive units and the relative factor share), is very demanding of the data. It is likely
that the puzzling result of an opposite sign of ψ estimates is driven by short-run cor-
relation between both variables, and thus captures cyclical co-movement rather than
the underlying production technology. This conclusion is further strengthened by our
robustness checks which tend to agree with our alternative, two-step and system es-
timates. In particular, the signs of ψ estimates under the single-equation strategy are
reversed once we use quality-adjusted labor input.

The ADF statistics indicate that residuals from all estimated equations are station-
ary at all conventional significance levels. It is particularly important because, on the
other hand, we do not find evidence for stationarity of relative factor shares.16 Viewed
from the cointegration perspective, this ensures that there is no problem of spurious
regression.

6.3 Inferring the Path of Time-Varying Elasticity of Substitution

Plugging the actual time series of the effective capital–labor ratio k̄t and the degree of
capital deepening κt (see Figure A.1 in the Appendix) into equations (67)–(70) allows
us to infer the exact time path of σt under each IEES specification. These paths are
presented in Figure 1. All considered IEES functions are marked by different colors,
whereas the horizontal black lines represent the CES benchmark.

We observe that the elasticity of substitution has exhibited substantial variability
over time. The overall time pattern of σt, except under single-equation estimation
which is likely biased, is familiar. Broadly speaking, it remained relatively stable, at

16The ADF statistic for the log relative factor share equals −1.967 and the null about a unit root can-
not be rejected at the 10% significance level. This result aligns with the fact that evidence for covariance
stationarity of the US labor share is weak (see Mućk, McAdam, and Growiec, 2015, for a general discus-
sion).

24



Figure 1: Implied Time Paths of the Elasiticity of Substitution σt
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about 0.8–0.9, from 1948 to the 1980s, after which it entered a period of secular decline.
While the magnitude of the cumulative decline in σt since the 1980s is uncertain and
depends on the assumed production function specification, the sheer existence of a
downward trend in the elasticity of substitution appears to be a very robust finding.
In its core, it mirrors the decline in the effective capital–labor ratio and the degree of
capital deepening in the US economy (Figure A.1).

More specifically, in the case of two-step estimation (middle panel in Figure 1) the
implied total decline in σt has been largest for the case of the IEES

(
π

1−π

)
function:

the post-2000 average value of σt equals just 0.48. The IEES(k) function is located at
the other end of the spectrum: in its case, the post-2000 average of σt is 0.63. System
estimates (bottom panel) imply somewhat smaller variability of σt because the abso-
lute value of estimated ψ is lower. Except for the case of the IEES

(
π

1−π

)
function, the

implied elasticity of substitution has been stable around 0.8–0.85 until mid-1980s and
afterwards it decreased to about 0.7. The outstanding IEES

(
π

1−π

)
function implies a

higher initial value of σ, about 0.9 until late 1970s, and a more pronounced decline
afterwards.

6.4 Robustness Checks

As a robustness check of the previous results, we have modified our assumptions on
technical progress as well as used additional data.

Firstly, we have relaxed the restriction of exponential labor-augmenting technical
change by introducing a more general and flexible Box-Cox technology term (follow-
ing Klump, McAdam, and Willman, 2007). Table A.1 confirms the robustness of our
baseline estimates to this change. Puzzlingly, the estimated curvature parameter λl

is slightly (but statically significantly) above unity, suggesting that labor-augmenting
technical change has been accelerating throughout the sample. Nevertheless, the es-
timated parameter ψ has the same sign as in the baseline setting and is statistically
significant in all specifications. Apart from single-equation NLS estimation strategy,
this exercise also replicates the secular decline in the elasticity of substitution since the
1980s (see the top panel of Figure A.2).

Secondly, we have considered an alternative measure of the labor input. Indeed,
total employment (employees plus the self-employed) or aggregate hours might in fact
be a poor proxy of the actual flow of labor services in the economy because they ignore
the ongoing changes in labor composition, or “quality”. Therefore, quality-adjusted
aggregate hours due to Fernald (2012) have been used as our measure of the labor
input in this robustness check (see Appendix A.1 for a detailed description). Table
A.2 confirms that all our previous empirical findings are robust to this change as well.
Interestingly, signs of all estimated parameters are now consistent across all estimation
strategies (the inconsistency in the single-equation NLS case disappears), whereas the
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implied trajectory of σt (middle panel of Figure A.2) consistently features a substantial
decline in the elasticity of substitution since the early 1980s.

Thirdly, we have combined the above two scenarios, allowing both for (i) a quality-
adjusted labor input, and (ii) Box-Cox labor-augmenting technical progress. Table A.3
summarizes the estimates for this case. The estimated curvature parameter of labor-
augmenting technical change λl is more convincing now as it is (statistically signif-
icantly) below unity, in line with the earlier CES-based results of Klump, McAdam,
and Willman (2007). Thus we identify a slight decreasing tendency in the rates of
labor-augmenting technical change. More flexibility in the specification of technolog-
ical progress does not affect our other findings. Signs of all estimated parameters re-
main consistent across all estimation strategies, whereas σt, irrespectively of estimation
strategy and the IEES function specification, has been fluctuating until the late 1980s
and displayed a substantial decline afterwards (bottom panel of Figure A.2).

Fourthly, we have also tried allowing technical change to be simultaneously labor-
and capital-augmenting (left panel of Table A.4). We have then, in three consecutive
steps, coupled this extension with inclusion of (i) a quality-adjusted labor input (right
panel of Table A.4), (ii) a Box-Cox specification of technological progress (left panel of
Table A.5), and (iii) both (right panel of Table A.5). Although the signs of key estimated
coefficients are generally preserved in this series of robustness checks, the ensuing re-
sults are somewhat less convincing than the previous ones. Crucially, our estimates of
the pace of capital-augmenting technical change are consistently negative. This out-
come has a bearing on other findings as well: σ0 is now found to be visibly closer to
unity than in the baseline case (though still in the range of gross complementarity); the
elasticity of elasticity of substitution ψ is now closer to zero and statistically insignif-
icant in the system approach. The predicted paths of σt (Figure A.3) generally agree
that σt has been declining over the years. They are now less consistent across the four
IEES specifications, however, and no longer indicate a qualitative change in the behav-
ior of σt after 1980. This is likely because when we agnostically fit a highly nonlinear
model featuring both labor- and capital-augmenting technical change to the data, the
observed declines in the rate of real investment rate and the capital–output ratio after
1980 (and even more strongly so after the world economic crisis) can potentially be
(mis)interpreted as technological regress. Alternatively, however, this result could also
be explained by the ongoing routinization of production (Acemoglu and Restrepo, 2015)
or shifts in the composition of industries (Elsby, Hobijn, and Sahin, 2013; Oberfield
and Raval, 2014). We observe that the puzzling result of negative capital-augmenting
technical change appears strongest in the system approach which is relatively most
demanding of the data (technological progress terms are nested in the σ(k) formulas),
and is likely further amplified by the fact that our estimation strategy does not allow
for markups. Addressing these issues in more detail is left for further research.
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7 Conclusion

In the current paper, we have constructed a novel class of normalized Isoelastic Elas-
ticity of Substitution (IEES) production functions and analyzed its properties. Our
analytical results are summarized in the following Table 3, expanding upon Table 1
provided in the Introduction. We have also discussed the empirical usefulness of these
functions and the ways in which they can be reconciled with factor-augmenting techni-
cal change. Our empirical results for the aggregate production function in the post-war
US economy imply that the elasticity of substitution σ between capital and labor has
been systematically positively related to the capital–labor ratio in effective (technology-
adjusted) units, k̄, as well as the capital–output ratio κ. We also observe that σ has been
below unity on average, first fluctuating around 0.8–0.9 until the 1980s and then em-
barking on a secular downward trend.

The scope for further applications of IEES functions is very broad. First, when
understood as macroeconomic production functions with capital and labor, they could
improve our understanding of the dynamic behavior of factor shares over time as well
as their dispersion across countries, regions, sectors, and firms. They could also turn
out useful in growth and levels accounting.

Second, when applied to the substitution possibilities across other pairs of inputs,
they could be helpful in analyzing the problems of essentiality of exhaustible resources,
skill-biased technical change, capital-skill complementarity, aggregation of intermedi-
ate goods, aggregation of domestic and imported goods, and preferences over con-
sumption goods with varying degrees of complementarity.

Third, from the point of view of theory, IEES functions may become a useful tool
for analyzing long-run growth, poverty traps, medium-run swings, and short-run fluc-
tuations in economic activity. In particular, allowing for an endogenous shift between
production factors being gross complements and gross substitutes (as it is possible for
IEES(MRS), IEES(k) and IEES(κ) functions) can substantially change long-run predic-
tions of known growth models. Note that physical capital accumulation alone can be-
come an engine of unbounded endogenous growth only if the elasticity of substitution
exceeds unity, σ > 1 (Solow, 1956; Jones and Manuelli, 1990; Palivos and Karagian-
nis, 2010). Because IEES(MRS), IEES(k) and IEES(κ) functions with ψ > 0 imply that
σ(k) > 1 if and only if k is sufficiently large, they may therefore become a useful tool
not only in the modeling of endogenous growth, but also poverty traps and multiple
equilibria in growth performance. Endogenous shifts between production factors be-
ing gross complements and gross substitutes could also enrich our understanding of
short- and medium-run responses of factor shares to technological shocks.
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A Appendix

A.1 Data Construction

Our dataset contains long-dated time series for the non-residential business sector in
the US economy and covers the time span from 1948Q1 to 2013Q4. The basic data
source is BEA NIPA.

Real and nominal output is calculated as follows. First, gross domestic product
is reduced by government gross value added and gross output in the housing sec-
tor. Then, effects of indirect taxation are subtracted from the data. The data are taken
from BEA NIPA tables 1.3.5 (Nominal GDP, GVA), 1.3.6 (Real GDP, GVA), 1.12 (Indi-
rect Taxes less Subsidies). Effects of indirect taxation are eliminated from real output
by assuming that its share in real output is the same as in nominal output.

The annual real capital stock in the non-residential business sector is taken from
NIPA FAT table 4.2. Because there is no available data on quarterly capital stocks,
growth rates of nominal private non-residential fixed investment (BEA NIPA table
1.1.5) are used to interpolate the series. As a result, the obtained quarterly series has
the same trend.

BEA does not publish data on the labor input at a quarterly frequency. Instead of
interpolating the annual series, we use the BLS series to construct this variable. Our
measure of the labor input is a simple sum of the number of employees (FRED code:
USPRIV) and the self-employed (LNS12032192). Since the proposed measure does not
take ongoing changes in labor composition into consideration, as a robustness check
we use Fernald’s (2012) data on quality-adjusted aggregate hours which can be easily
converted from annualized growth rates into an index.

To measure factor income shares that are consistent with our definition of output
we proceed as follows. The labor share is adjusted by the number of the self-employed
in order to deal with the problem of assignment of ambiguous income to either capital
or labor (see Mućk, McAdam, and Growiec, 2015, for a wider discussion):

Labor share: 1− πt =
wtLt

PtYt
=

CEt

Outputt

(
1 +

SEt

Et

)
(A.1)

where CEt denotes compensation of employees, Outputt is the above described output
in nominal terms, SEt and Et stand for the number of the self-employed and employ-
ees, respectively. The data on SEt and Et are consistent with our measure of the labor
input. For consistency in terms of the range of economy, CEt is calculated as the com-
pensation of employees reduced by wages and salaries in the government sector and
supplements to wages in this sector.17 These series are taken from NIPA table 1.12.

17We assume that the proportion of supplements to wages in the government sector and in the entire
economy is the same as the ratio of wages and salaries earned in the government sector to aggregate
wages and salaries.
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The measurement of the user cost of capital is extremely problematic. We also
assume throughout the analysis that the production function has constant returns to
scale. Therefore, the capital share is calculated residually:

Capital share: πt =
rtKt

PtYt
= 1− wtLt

PtYt
. (A.2)

As shown by McAdam and Willman (2013), this agnostic approach of measuring the
capital share allows to identify correctly the most critical parameters characterizing the
supply side of the postwar US economy.
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Figure A.1: The US Time Series: 1948Q1:2013Q4
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A.2 Robustness Checks: Detailed Results

Figure A.2: Implied σt: Alternative Specifications

a: Box-Cox Labor-Augmenting Technical Change
Single-Equation NLS
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b: Quality-Adjusted Labor Input
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Table A.1: Summary of Estimates of IEES Production Functions - Box-Cox Labor-
Augmenting Technical Change

CES IEES( π
1−π ) IEES(MRS) IEES(k̄) IEES(κ)

Single-Equation NLS (γl = 0.005 and λl = 1.148)
π0 0.325∗∗∗ 0.327∗∗∗ 0.327∗∗∗ 0.326∗∗∗ 0.324∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)
σ0 0.634∗∗∗ 0.611∗∗∗ 0.607∗∗∗ 0.609∗∗∗ 0.745∗∗∗

(0.019) (0.019) (0.021) (0.023) (0.029)
ψ 3.339∗∗ −1.002∗ −1.318 2.676∗∗∗

(1.541) (0.567) (0.897) (0.726)
ADF (12), (30),
(42), (59)

−3.249∗∗∗ −3.326∗∗∗ −3.292∗∗∗ −3.276∗∗∗ −2.688∗∗∗

Two-Step (σ0 = 0.755, γl = 0.005 and λl = 1.148)
π0 0.323∗∗∗ 0.323∗∗∗ 0.323∗∗∗ 0.324∗∗∗

(0.001) (0.001) (0.001) (0.001)
ψ −5.340∗∗∗ 1.719∗∗∗ 2.334∗∗∗ 2.833∗∗∗

(0.572) (0.338) (0.647) (0.886)
ADF (67)-(70) −3.182∗∗∗ −3.108∗∗∗ −3.054∗∗∗ −2.694∗∗∗

System Approach
π0 0.330∗∗∗ 0.323∗∗∗ 0.323∗∗∗ 0.328∗∗∗ 0.325∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
σ0 0.755∗∗∗ 0.861∗∗∗ 0.837∗∗∗ 0.802∗∗∗ 0.805∗∗∗

(0.001) (0.016) (0.015) (0.015) (0.015)
ψ −5.913∗∗∗ 1.159∗∗∗ 0.814∗∗∗ 1.457∗∗∗

(0.673) (0.149) (0.016) (0.244)
ξ 0.988∗∗∗ 0.987∗∗∗ 0.986∗∗∗ 1.010∗∗∗ 0.991∗∗∗

(0.004) (0.003) (0.003) (0.004) (0.004)
γl 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗∗ 0.005∗∗∗

(0.0000 (0.000) (0.000) (0.000) (0.000)
λl 1.148∗∗∗ 1.188∗∗∗ 1.205∗∗∗ 0.887∗∗∗ 1.165∗∗∗

(0.031) (0.026) (0.026) (0.014) (0.030)
ADF (64) −2.720∗∗∗ −2.705∗∗∗ −2.721∗∗∗ −2.646∗∗∗ −2.738∗∗∗

ADF (65) −3.869∗∗∗ −3.434∗∗∗ −3.484∗∗∗ −2.621∗∗∗ −3.678∗∗∗

ADF (66) −3.206∗∗∗ −3.219∗∗∗ −3.220∗∗∗ −3.049∗∗∗ −3.214∗∗∗

Notes: as in Table 2. In case of λl , the null hypothesis is that λl = 1 (exponential technical change).
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Table A.2: Summary of Estimates of IEES Production Functions - Quality-Adjusted Labor
Input

CES IEES( π
1−π ) IEES(MRS) IEES(k̄) IEES(κ)

Single-Equation NLS (γl = 0.005)
π0 0.327∗∗∗ 0.325∗∗∗ 0.323∗∗∗ 0.321∗∗∗ 0.324∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
σ0 0.706∗∗∗ 0.773∗∗∗ 0.777∗∗∗ 0.768∗∗∗ 0.745∗∗∗

(0.024) (0.030) (0.036) (0.035) (0.029)
ψ −5.790∗∗∗ 2.121∗∗∗ 3.196∗∗∗ 2.676∗∗∗

(0.944) (0.372) (0.646) (0.726)
ADF (12), (30),
(42), (59)

−2.569∗∗∗ −2.656∗∗∗ −2.833∗∗∗ −2.929∗∗∗ −2.688∗∗∗

Two-Step (σ0 = 0.775 and γl = 0.005)
π0 0.324∗∗∗ 0.324∗∗∗ 0.323∗∗∗ 0.324∗∗∗

(0.001) (0.001) (0.001) (0.001)
ψ −5.872∗∗∗ 2.102∗∗∗ 3.322∗∗∗ 3.172∗∗∗

(0.546) (0.308) (0.617) (0.895)
ADF (67)-(70) −2.968∗∗∗ −2.977∗∗∗ −2.975∗∗∗ −2.708∗∗∗

System Approach
π0 0.332∗∗∗ 0.324∗∗∗ 0.323∗∗∗ 0.323∗∗∗ 0.325∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
σ0 0.775∗∗∗ 0.887∗∗∗ 0.863∗∗∗ 0.846∗∗∗ 0.856∗∗∗

(0.001) (0.019) (0.020) (0.019) (0.020)
ψ −7.061∗∗∗ 1.399∗∗∗ 1.654∗∗∗ 2.045∗∗∗

(0.905) (0.161) (0.216) (0.327)
ξ 1.001∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.002∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
γl 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
ADF (64) −2.681∗∗∗ −3.140∗∗∗ −3.133∗∗∗ −3.100∗∗∗ −3.002∗∗∗

ADF (65) −3.400∗∗∗ −3.552∗∗∗ −3.517∗∗∗ −3.505∗∗∗ −3.514∗∗∗

ADF (66) −3.238∗∗∗ −3.225∗∗∗ −3.229∗∗∗ −3.224∗∗∗ −3.218∗∗∗

Notes: as in Table 2.
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Table A.3: Summary of Estimates of IEES Production Functions - Quality-Adjusted Labor
Input & Box-Cox Labor-Augmenting Technical Change

CES IEES( π
1−π ) IEES(MRS) IEES(k̄) IEES(κ)

Single-Equation NLS (γl = 0.005 and λl = 0.883)
π0 0.329∗∗∗ 0.325∗∗∗ 0.325∗∗∗ 0.325∗∗∗ 0.324∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
σ0 0.690∗∗∗ 0.744∗∗∗ 0.730∗∗∗ 0.716∗∗∗ 0.745∗∗∗

(0.025) (0.034) (0.034) (0.030) (0.029)
ψ −6.598∗∗∗ 2.290∗∗∗ 3.399∗∗∗ 2.676∗∗∗

(1.292) (0.545) (0.900) (0.726)
ADF (12), (30),
(42), (59)

−2.787∗∗∗ −3.192∗∗∗ −3.185∗∗∗ −3.179∗∗∗ −2.961∗∗∗

Two-Step (σ0 = 0.767, γl = 0.005 and λl = 0.883)
π0 0.325∗∗∗ 0.324∗∗∗ 0.324∗∗∗ 0.324∗∗∗

(0.001) (0.001) (0.001) (0.001)
ψ −7.599∗∗∗ 2.831∗∗∗ 4.438∗∗∗ 3.031∗∗∗

(0.687) (0.439) (0.959) (0.891)
ADF (67)-(70) −3.191∗∗∗ −3.184∗∗∗ −3.161∗∗∗ −2.994∗∗∗

System Approach
π0 0.333∗∗∗ 0.325∗∗∗ 0.324∗∗∗ 0.328∗∗∗ 0.326∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
σ0 0.767∗∗∗ 0.891∗∗∗ 0.840∗∗∗ 0.806∗∗∗ 0.834∗∗∗

(0.001) (0.020) (0.019) (0.018) (0.019)
ψ −8.534∗∗∗ 1.345∗∗∗ 0.839∗∗∗ 1.609∗∗∗

(1.274) (0.200) (0.014) (0.344)
ξ 1.012∗∗∗ 1.007∗∗∗ 1.006∗∗∗ 1.025∗∗∗ 1.010∗∗∗

(0.003) (0.003) (0.003) (0.004) (0.003)
γl 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
λl 0.883∗∗∗ 0.924∗∗∗ 0.934∗∗∗ 0.813∗∗∗ 0.911∗∗∗

(0.019) (0.019) (0.019) (0.011) (0.020)
ADF (64) −2.693∗∗∗ −2.698∗∗∗ −2.717∗∗∗ −2.700∗∗∗ −2.739∗∗∗

ADF (65) −3.316∗∗∗ −3.128∗∗∗ −3.176∗∗∗ −2.573∗∗ −3.279∗∗∗

ADF (66) −3.254∗∗∗ −3.245∗∗∗ −3.245∗∗∗ −3.241∗∗∗ −3.241∗∗∗

Notes: as in Table 2. In case of λl , the null hypothesis is that λl = 1 (exponential technical change).
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Figure A.3: Implied σt: Alternative Specifications

a: Exponential Labor- and Capital-Augmenting Technical Change
Single-Equation NLS
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b: Exponential Labor- and Capital-Augmenting Technical Change & Quality-Adjusted La-
bor Input
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c: Box-Cox Labor- and Capital-Augmenting Technical Change
Single-Equation NLS
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d: Box-Cox Labor- and Capital-Augmenting Technical Change & Quality-Adjusted Labor
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Notes: CES estimates, IEES
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)
, IEES(MRS), IEES(k) and IEES(κ).
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