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Abstract6

Cost-effectiveness analysis of medical technologies requires valuing health,7

an uneasy task, as confirmed by variability of published estimates. Treat-8

ing the willingness-to-pay/accept (WTP/WTA) as fuzzy seems an intuitive9

solution. Based on this premise, I construct a framework allowing to com-10

pare multiple health technologies using choice functions. The final choice11

must be crisp, so I discuss various defuzzification methods and show that12

using indecisiveness point (IP) for WTP/WTA (the value the decision maker13

equally approves/disapproves) has desirable properties: satisfying the inde-14

pendence of irrelevant alternatives and not treating the Likert scale as inter-15

val. I suggest three approaches to infer about IP with Likert-based surveys16

in random samples (hypothesis testing, Bayesian or frequentist estimation).17

No difference between IPs for WTP/WTA is found, and an explanation of18

the WTP-WTA disparity is provided. Estimating IP results in stochastic un-19

certainty, and I show how to conduct sensitivity analysis in the framework20

and what new insight is gained.21

Keywords: Willingness-to-pay/accept; Fuzzy sets; Preference elicitation;22

Cost-effectiveness analysis; Sensitivity analysis23

JEL: C44; C13; D81; D6124

Highlights:25

• Willingness-to-pay/accept (WTP/WTA) for health should be modelled26

as fuzzy concepts27

• I propose how to use fuzzy WTP/WTA in cost-effectiveness analysis28

• I show three methods to estimate the fuzzy WTP/WTA with Likert-29

based surveys30

• The fuzzy framework explains away the WTP-WTA disparity31

• The proposed framework provides new insight in sensitivity analysis32
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1 Introduction1

Cost-effectiveness analysis (CEA) of health technologies (HT) require valuing2

life: determining the willingness-to-pay (WTP) for a unit of health (e.g. a quality-3

adjusted life year, QALY). Determining WTP feels difficult and apparently is,4

noting the variability of published results. Bellavance et al (2009) reviewed the5

literature on value of statistical life (VSL) and found standard deviations (SDs),6

across and within countries, approximately equal to the means. Lindhjem et al7

(2011) conducted a review in environmental, health, or transport context and SDs8

(based on standard errors) were twice as large as the means, these differing be-9

tween the categories (4 million in health and 9 million in environmental context, in10

2005 US$). Other reviews confirm this variability (e.g. Viscusi and Aldy, 2003),11

also within a single country (Hultkrantz and Svensson, 2012, in Sweden). The12

heterogeneity is partially explained by, e.g., country or year. Doucouliagos et al13

(2012) discussed these issues, but still estimating VSL accounting for heterogene-14

ity yielded a wide 95% confidence interval: (34–2,693) thousand 2000 US$.15

The variability is less surprising, with the non-market nature of health: health16

services, not health, are bought. The relation between the two is unclear (available17

to specialists, with inherent statistical uncertainty, and other uncertainties, e.g. the18

efficacy vs effectiveness) and translating the observed propensity to buy into WTP19

may mislead (due to paying via reimbursement not out-of-pocket, inconvenience20

or fear impacting the purchase decisions, or misjudging the risks to be reduced,21

cf. Andersson, 2007). Hence, no past market experience can precisely tell how22

we value health. Non-market goods are also specific regarding the relation of23

WTP to willingness-to-accept (WTA—a compensation demanded for a unit of24

good). Horowitz and McConell (2002) found on average WTA/WTP ≈ 10 for non-25

market, health, and safety-related goods vs 2–3 for other types. Thus, valuing26

health presents some difficulties, and explaining the WTP-WTA disparity should27

directly refer to the non-market character.28

In health technology assessment (HTA—a process supporting the decisions29

which technologies to finance from public resources) various approaches were30

used to set the WTP. The regulator may not present a threshold or deny using31

any (e.g. United Kingdom), or the threshold may be legally defined (e.g. Poland,32

125,955 Polish Zlotys, PLN, per QALY, e1≈4.4 PLN). The threshold may be a33

multiple of gross domestic product per capita (in Poland, see also World Health34

Organization, 2001; Tan-Torres Edejer et al, 2003) or the cost of a QALY for35

some benchmark medical procedure (Lee et al, 2009). The thresholds commonly36

referred to (e.g. US$50,000) may also reflect the convenience of round numbers37

(Grosse, 2008; Neumann et al, 2014). Setting the threshold impacts real decisions,38

so the ethical component emerges: refusing a treatment due to cost of QALY being39

$1 too large sounds inhumane, and repudiates the readiness to define a threshold.40
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Jakubczyk and Kamiński (2015), onwards J&K, suggested thinking about1

WTP/WTA in terms of fuzzy set theory, a mathematical approach to modelling2

imprecise perceptions (Zadeh, 1965). This represents the lack of market experi-3

ence and the resistance against a precise threshold. J&K’s show, based on survey4

results, that also HTA experts indeed perceive WTP/WTA fuzzily. I follow this5

path, making here three major contributions. Firstly, J&K defined the fuzzy pref-6

erence relation between HTs, effectively working with pair-wise comparisons. In7

HTA the choice is often made from more than two options, and the relation may8

not be transitive or complete, making it difficult to use. I show how to define9

choice functions in the fuzzy context. I discuss three approaches and advocate a10

particular one. Secondly, the respondents surveyed by J&K should be treated as11

random sample. I present three statistical methods (hypothesis testing, Bayesian,12

and frequentist) to formally calculate the parameters of the fuzzy model (I apply13

them to the same survey). The results show there is no WTP-WTA disparity in14

the present context. Thirdly, estimating the parameters results in stochastic uncer-15

tainty. I show how to combine it with other types of uncertainty in the sensitivity16

analysis. The new insights, as compared to standard methods used in CEA, ap-17

peal to intuition: considering technologies involving larger and larger trade-offs18

(i.e. offering larger effects at larger cost) increases the uncertainty present in the19

model under lack of conviction towards the exact WTP/WTA value. The partial20

results how to use choice functions in the fuzzy context in CEA were presented by21

Jakubczyk (2016), and here it is largely evolved, as, i), the present model allows22

the technologies to reduce the effectiveness (when WTA is used); ii), the single23

choice function presented there is shown to have unfavourable properties and a24

different one is advocated; iii), the methods of estimating the parameters of the25

model are presented; iv), the present model accounts for uncertainty.26

The current paper, trying to comprehensively describe how to introduce fuzzi-27

ness to CEA, covers various aspects: decision modelling, statistical estimation,28

and Monte Carlo sensitivity analysis. Hence, a short overview and rationale for29

the structure is due. In section 2 I set the stage, formally defining the fuzzy30

WTP/WTA and presenting the survey. Analysing the data at this point shows31

why Likert-based questions should be used in eliciting WTP/WTA, which in turn32

promotes choice functions not requiring an interval-scale interpretation. Then, in33

section 3, I introduce three choice functions that can be used to select among de-34

cision alternatives, and recommend one. Applying this choice function requires35

calculating only one parameter of the fuzzy WTP/WTA, and in section 4 I present36

possible methods. The proposed choice function along with estimation methods37

replace the fuzziness with stochastic uncertainty, and I show in section 5 how to38

account for this (and other types of) uncertainty in sensitivity analysis and what39

the properties of the proposed methods are. I summarize the findings and present40

some outlook in the final section. The proofs are gathered in the appendix.41
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2 Fuzzy willingness-to-pay/accept1

2.1 Fuzzy preferences on cost-effectiveness plane2

Throughout the paper we compare HTs using two criteria: effectiveness and cost,3

denoted by (e,c) (subscripts added if needed). If (e,c) is known and WTP is set4

(and equal to WTA), then we select HT maximizing net benefit: NB = WTP×5

e− c (cf. Garber, 2000). In the present paper we focus on the situation when6

WTP/WTA are not know precisely, and this imprecision is not of stochastic nature.7

J&K defined a fuzzy preference relation, µ : R2→ [0,1], that µ(e,c), (e,c) ∈8

R2, measures the conviction that HT given by (e∗+ e,c∗+ c) is at least as good9

as HT (e∗,c∗), irrespectively of (e∗,c∗) ∈ R2 (based on shift invariance axiom).10

We will refer to R2 as a cost-effectiveness (CE) plane. J&K’s axioms imply:11

1) µ(e,c) = 1 in the IV quadrant (of CE-plane) with axes and the origin; 2)12

µ(e,c) = 0 in the II quadrant with axes, without the origin; 3) µ(e,c) equal on rays13

stemming from (not containing) the origin, i.e. µ(e,c) = µ(γ × e,γ × c), γ > 0;14

4) µ(e,c) increasing with e and decreasing with c; 5) ∀e : µ(e,c) = 0 (= 1) for c15

large (negative) enough (criteria tradeability).16

µ(·, ·) is fully characterized by its values for e= 1 and e=−1 (and vice versa),17

motivating a definition of fuzzy WTP (fWTP): a fuzzy number with membership18

function µfWTP(x) = µ(1,x), x ≥ 0, and fuzzy WTA (fWTA): with membership19

function µfWTA(x) = µ(−1,−x), x ≥ 0. Figure 1 illustrates µ , µfWTP, and µfWTA20

(as pictured, the axioms still allow non-trivial membership function).21

The model nicely describes the relation between two technologies, e.g. when22

comparing a status quo, (e1,c1), with a challenger, (e2,c2): we then analyse23

µ(e2− e1,c2− c1) to see how convinced the decision maker is towards a change24

(and J&K show how to do it under uncertainty). Problems arise when we compare25

three HTs: A = (e1,c1), B = (e2,c2), and the status quo, say a null option, (0,0).26

It is unclear which µ to consider: µ(A), µ(B), µ(B−A), or µ(A−B)? It may27

happen that µ(A) = 1 and µ(B−A) = 0, still telling nothing about µ(B); e.g. in28

Figure 1 consider A = (1,−1) and B−A = (1,3), (1,4) or (1,5). It is, thus, dif-29

ficult to refer to any form of transitivity. It may happen that µ(A−B) = 0 and30

µ(B−A) = 0, i.e. the relation needs not be complete (in Figure 1 for A = (1,2),31

B = (−1,−2)). The goal of the decision maker is to make a choice, not to perform32

a set of pairwise comparisons; and deriving the choice from the results of, neces-33

sarily pairwise, fuzzy preference measurements is not operational. In section 3 I34

take J&K’s model in another direction.35
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Figure 1: Fuzzy preference relation in cost-effectiveness plane (middle) and its rela-
tion to fuzzy willingness-to-pay/accept (right and left, respectively).

2.2 Survey results1

Differently than J&K, fWTP/fWTA can be taken as the primitive of the model:2

instead of assuming that the decision maker has preferences for every (e,c), we3

assume then that the decision maker has an (imprecise) idea of the value a unit of4

health (when gained or sacrificed) and accepts the axioms allowing to project it5

on the CE-plane (it suffices to assume that µWTP(0) = 1, µWTA(0) = 0, µWTP(·)6

is non-increasing, µWTA(·) is non decreasing, and both can be projected radially).7

It is then crucial to verify how decision maker perceives fWTP/fWTA and J&K8

surveyed HTA experts in Poland. This target group seems reasonable, being a9

proxy of an impersonal decision maker, while the general public may be unable10

to make an informed assessment (e.g. do not now the measures of effectiveness in11

HTA) and be biased by emotions (e.g. Johansson-Stenman and Svedsäter, 2012,12

showed that when valuing moral goods the respondents answer in a way that feels13

more socially-desirable). HTA experts are aware of the necessity to make trade-14

offs, so as to use public resources in the most efficient way. Nonetheless, the15

ideas presented in the present paper can be used with questionnaires collected in16

any group.17
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The details of the survey were presented by J&K. Among several questions 271

respondents (5 were removed due to inconsistencies) were asked to assess their2

WTP and WTA, by reporting their conviction that a technology adding (sacrific-3

ing) one QALY should be used for a given cost increment (saving), for various4

cost differences (referred to as λ s for brevity, presented in FIgure 2). The con-5

viction was measured on Likert scale with five options: definitely disagree, tend6

to disagree, I don’t know, tend to agree, definitely agree. From mathematical7

perspective it might be tempting to ask for a continuous [0,1] valuation, but it8

is doubtful whether respondents can differentiate between the conviction, e.g. 0.89

and 0.7, and what that would mean. Using a 5-option Likert is motivated, as levels10

can be assigned interpretation, e.g. definitely agree meaning This is surely a good11

decision, tend to agree—I would make this decision, but clearly see downsides, I12

don’t know—Can’t tell if downsides or upsides are greater, etc. The differences13

between the categories, alas, cannot be interpreted, which motivates building the14

framework based on the ordinal interpretation of the answers. The approach pre-15

sented in subsequent sections would also work for a 3-level Likert.16

Figure 2 (upper part for WTP, and the lower for WTA) presents the responses17

(vertical axis) for various λ s (horizontal axis, hundreds of 000s PLN/QALY). To18

no surprise, the individual experts differed, motivating the statistical approach to19

estimate the parameters of µWTP and µWTA. For option 3 individual respondents’20

answers are illustrated by horizontal bars spanning the λ s this option was selected21

for. For other options the area of the circles is proportional to the number of re-22

spondents. Black lines depict jumps across the middle answer (cf. section 4.2).23

µWTP(0) = 1 is violated by one respondent selecting 4. This suggests that the re-24

spondent considered other aspects (e.g. allowed for the technology possibly caus-25

ing adverse effects). This stresses the need to design questionnaires making the26

ceteris paribus condition maximally clear.27

We may be tempted to check if WTA>WTP. This requires rephrasing the ques-28

tion in terms of fuzzy approach: we now ask if µWTA is shifted rightward com-29

paring to µWTP (apart from a horizontal flip). The WTP-WTA disparity would30

then mean that ∀x ∈ R+ : µWTP(x)≤ 1−µWTA(x), and ∃x ∈ R+ such that the in-31

equality is strict (resembling the standard fuzzy numbers inequalities, Ramík and32

Římánek, 1985). It is not obvious how to conduct a statistical comparison (and33

still, with the survey we obtain Likert answers, not continuous membership). We34

might compare answers for fWTP vs fWTA (flipped around 3) using Wilcoxon35

paired test. If fWTP = fWTA, then H0 is true. Unfortunately, the test rejects H036

even when fWTA is not shifted, e.g. when fWTA is flatter (options 2–4 used more37

often). Then, testing individual λ s separately would reject H0 in one direction for38

small λ s, and in the other for large, while the result for the pooled λ s depends on39

the structure of λ in the survey. A different approach is proposed in section 4.40

The respondents were also asked to freely report their perceived WTP: a range41
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Figure 2: Survey results for WTP/WTA (above/below), values in horizontal axis in
hundreds of 000s of PLN/QALY, answers (vertical axis) from a 5-level Likert scale
(1—definitely disagree, 5—definitely agree). Horizontal bars represent individuals,
circles—the fraction of respondents, lines—jumps across the middle option.

and a single value (unfortunately, this wasn’t asked for WTA). On average the1

range amounted to (88.9;125) and the single value to 105 (all results in 000s2

PLN/QALY). Hence, the freely reported values corresponded to λ s towards which3

the respondents felt quite convicted in Likert-based questions. For each respon-4

dent I took the smallest range of λ s containing the whole freely reported range,5
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and calculated the average Likert response for these λ s (for a respondent reporting1

30–90 I consider λ = 25, 50, 75, and 100). The average (between the respondents)2

of these means amounted to 3.84, median to 4, 63.6% respondents had a mean≥ 4,3

and only 2 respondents (9.1%) <3. The analysis of Likert answers for the single4

freely reported WTP (if necessary, interpolating for two closest λ s) yields, simi-5

larly, the average of 3.92 and the median of 4. Thus, using Likert-based questions6

seems better at assessing the membership function for fWTP/fWTA than relying7

on directly reported ranges of values.8

Averaging the freely reported values (105) and Likert answers (for individual9

λ s) between the respondents, we find through interpolation that the single aver-10

age conviction towards the joint mean equals 3.63. Averaging the Likert answers11

for WTA, and proceeding backwards (assuming that the decision makers would12

also freely report WTA values towards which they feel convicted in Likert-based13

questions) yields the free value for WTA of 262.5. Thus, based on freely reported14

values, we would expect the WTP-WTA disparity of 262.5− 105 = 157.5 (000s15

PLN/QALY) or a 2.5-fold difference. The above mechanism (of freely reporting val-16

ues still characterized by large conviction) will give rise to greater disparity, when17

fuzziness is large (i.e. respondents slower change their Likert response with λ s).18

This may explain why larger disparities are observed for non-market goods, when19

getting a crisp valuation is mentally more difficult.20

3 Fuzzy choice functions under certainty21

3.1 Evaluating decision alternatives with fuzzy net benefit22

As mentioned in section 2, comparing alternatives with fuzzy preferences, µ(·, ·),23

may not be operational. Instead, we will now identify each option with a single24

fuzzy number—fuzzy net benefit (fNB), instead of two crisp numbers: c and e. I25

will then propose three methods how we can then compare these fuzzy numbers26

and select the greatest (defined in some way). Fuzzy NB represents the conviction27

of the decision maker that accepting a given option is equivalent to some monetary28

gain (the definition follows this of J&K).29

Definition 1 (fuzzy net benefit, fNB). For any decision alternative, identified by30

(e,c), define fuzzy net benefit (fNB) as a fuzzy number with membership function31

µfNB given as µfNB(x) = µ(e,c+ x). I add (e,c) (or other symbol denoting the32

alternative) if needed to avoid confusion: fNB(e,c) and µfNB(e,c)(x) = µ(e,c+x).33

As µ is constant on rays, fNB can be equivalently defined using fWTP/fWTA34

(the notation simplifies further, taking µfWTP(x),µ fWTA(x) = 1 for x < 0; this35

approach is used in the proof of Lemma 1):36
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• for e = 0 we take µfNB(0,c)(x) = 1(−∞,−c](x),1

• for e > 0 we take µfNB(e,c)(x) = µfWTP (max((c+x)/e,0)),2

• for e < 0 we take µfNB(e,c)(x) = µfWTA (max((c+x)/e,0)).3

Effectiveness and cost for considered options are measured relative to status4

quo—the treatment that would be provided if no decision were made. The selec-5

tion of status quo is important; since we differentiate between WTP and WTA,6

changing the status quo may change if a given HT is effect-enhancing or reduc-7

ing, and so whether WTP or WTA are applied. That the selection of status quo8

may change the final decision motivates making the selection meaningful and9

representing the actual state of the world. Still, conveniently, having looked at10

the specific choice functions (subsection 3.2) and estimates of their parameters11

(section 4) we will see that with current dataset the selection of status quo is not12

important in the certainty case, as WTP-WTA disparity disappears. Another issue13

is, that the status quo may be a composite, i.e. a mix of treatments is currently14

used in patients. This will come back in section 5, when discussing uncertainty.15

The interpretation of fNB(e,c) is the following: the decision maker agrees16

with conviction µfNB,(e,c)(x) that adopting HT characterized by (e,c) (relative to17

status quo) would be attractive (compared to status quo) even if it costed x more.18

In other words, she agrees with this conviction that adopting (e,c) is equivalent19

to gaining a monetarily-expressed pay-off of x. It thus is intuitive to compare de-20

cision alternatives based on fNB. The shape of µfNB is identical as the shape of21

µfWTP (or µfWTA), for µfWTP from Figure 1 exemplary (e,c) values with corre-22

sponding fNBs are presented in Figure 3.23

To strengthen the rationale for using fNB when comparing options, I verify24

how it behaves in obvious cases of dominance or (less obvious) extended domi-25

nance. This is easier done working on α-cuts of fNB. An α-cut of a fuzzy number26

F defined on domain R with membership function µF(·) will be denoted by AF(α)27

and defined as28

AF(α) = {x ∈ R : µF(x)≥ α} , (1)

for α ∈ (0,1] and AF(0) = ∪α∈(0,1]AF(α). The following useful lemma holds (be-29

cause we work on sets we have to use special addition and product operators).30

Lemma 1. Take any α ∈ (0,1]. AfNB(e,c)(α) is linear with respect to (e,c), where31

c ∈ R, and either e≥ 0 or e≤ 0, in a sense that32

• AfNB(e1+e2,c1+c2)(α) = AfNB(e1,c1)(α)⊕AfNB(e2,c2)(α),33

• AfNB(γe,γc)(α) = γ�AfNB(e,c)(α) for any γ > 0,34

where A⊕B := {x+ y : x ∈ A∧ y ∈ B} and γ�A := {γx : x ∈ A}.35
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Two corollaries follow.1

Corollary 1. Assume (e2,c2) is Pareto-dominated by (e1,c1), i.e. e2≤ e1∧c2≥ c12

(at least one inequality strict). Then ∀α∈(0,1] : AfNB(e2,c2) ⊂ AfNB(e1,c1). Moreover,3

if c2 > c1 or (e2 < e1 and µfWTP(x) > 0, µfWTA(x) > 0 for some x > 0), then4

∃α∈(0,1] : AfNB(e2,c2) 6= AfNB(e1,c1).5

Notice that (e1,c1) and (e2,c2) can be in any quadrants of CE-plane and that6

the implication can be seen as the most typical fuzzy numbers inequality (see, e.g.7

Ramík and Římánek, 1985). In the following corollary we consider points in a8

predetermined half of the plane.9

Corollary 2. If (e3,c3) is extended dominated by (e1,c1) and (e2,c2), i.e. (e3,c3)10

is Pareto-dominated by some γ(e1,c1)+(1− γ)(e2,c2) with γ ∈ [0,1], and either11

e1,e2,e3 ≥ 0 or ≤ 0. Then ∀α∈(0,1] : AfNB(e3,c3) ⊂
(
AfNB(e1,c1)∪AfNB(e2,c2)

)
.12

We cannot use the above corollary to infer about points in different halves of13

CE-plane: take (e1,c1) = (1,1.5), (e2,c2) = (−1,−2), (e3,c3) = (0,0), and µ as14

in Figure 1. Then (e3,c3) is extended dominated but, e.g. the 1-cut for fNB(e3,c3)15

is not a respective subset.16

The two corollaries confirm that fNB behaves intuitively and also may be used17

to quickly eliminate alternatives having no chances of being picked up by specific18

choice functions (as defined in the next subsection). Figure 3 illustrates exemplary19

µfNB and the corollaries in work. X is dominated by A, and respective α-cuts are20

subsets (would be for µfWTP shaped in any way), illustrated by membership func-21

tion being shifted to the left. On the other hand, even though A is not dominated22

by B, its α-cuts are subsets, but would cease to be for some other µfWTP. Y is23

extended dominated by B and C, and its α-cuts are subsets of respective unions24

(not by α-subsets of only B or C).25

3.2 Making a choice26

In a standard, crisp approach in HTA the decision is made by maximizing the27

regular, crisp NB. Per analogiam, we want to make decision now by maximizing28

fNB, and below I present three possible approaches. We consider n alternatives,29

denoted by Di, where i ∈ I = {1, . . . ,n} and Di = (ei,ci). Each approach is a30

choice function, prescribing a crisp choice from a given menu of alternatives. It31

is easier to derive two of them when considering only HTs in quadrants I & IV of32

the CE-plane. These approaches can still be used for HTs in the whole CE-plane.33

Importantly none of the approaches violates the dominance (also extended), which34

easily follows from the above corollaries.35
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3.2.1 Conviction of bestness1

Start with n = 2, no Pareto-domination, e1,e2 ≥ 0, and, without loss of generality,
e2 > e1. Thinking in terms of linearity (Lemma 1), we can intuitively identify the
conviction that D2 is not worse than D1 with the conviction that fNB(D2−D1)≥
0, hence, µfNB(D2−D1)(0). Now, consider D3, e3 > e2. Analogously, the conviction
that D2 is best equals the conviction that fNB (non-strictly) increases between D1
and D2, and does not strictly increase between D2 and D3. Mathematically, it is the
conviction that fNB(D2−D1)≥ 0 and not fNB(D3−D2)> 0, which now requires
selecting the fuzzy logical operators (AND, NOT). I take NOT fNB(D3−D2) >
0 = 1− µfNB(D3−D2)(0) (typical approach), and the bounded sum AND (see, e.g.
Smithson, 1987) to get

max
{

µfNB(D2−D1)(0)+(1−µfNB(D3−D2)(0))−1,0
}

or max
{

µfNB(D2−D1)(0)−µfNB(D3−D2)(0)),0
}

, which equals 0 for D2 extended2

dominated by D1 and D3. The above calculations can be represented graphically:3

µfNB(D2−D1)(0) is the length of the segment of αs that AfNB(D1)(α)⊂ AfNB(D2)(α)4

(and this representation motivates the selection of AND operator). Based on this5

reasoning, I assign each Di the following conviction that it maximizes the fNB:6

βi :=

∫
1

0

[⋃
j∈I

AfNB(D j)(α)⊂ AfNB(Di)(α)

]
dα, (2)

where [P] = 1 if P is true, and 0 otherwise. Several options may have β > 0, as7

the decision maker is not fully confident of her WTP/WTA. Using this approach to8
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make a final decision it would be natural to select argmaxi∈I βi. In the example in1

Figure 3 we have βX = βY = βA = 0, βB = 0.25, βC = 0.3, and βD = 0.45 (ignore2

E for now). This approach is the most fuzzy one: it postpones the crispification3

until the last possible moment, just when the crisp choice is being made.4

More technically, β s can be calculated (i.e. integrals in equation 2 are well5

defined): Lemma 1 and monotonicity of µfNB (from the monotonicity of µfWTP)6

imply that the integrand will be equal to 1 over a single segment of αs. The sit-7

uation gets complicated when considering the whole CE-plane. No so intuitive8

derivation can be presented (still, the method and its graphical interpretation ap-9

peals to intuition). With no additional stipulations regarding µfWTP and µfWTA the10

resulting µfNB for various alternatives can intersect many times (countably many11

at maximum, though) for various αs, and so we would have to add up the lengths12

of several segments in equation 2. This is unlikely to cause any problems in real13

applications (µfWTA and µfWTA would be approximated by regular functions) and14

is not pursued here.15

There are at least two disadvantages to basing the choice on β . Firstly, we16

need to interpret membership as the interval scale to calculate the vertical distance,17

e.g. deriving µfWTP and µfWTA from Likert-based questions, we need to interpret18

differences between consecutive options. Secondly, the basing the choice on β s19

violates the Chernoff property (or Independence of Irrelevant Alternatives) of a20

choice function (see, e.g. Sen, 1970). An example: consider also E in Figure 3.21

The µfNB(E) would be very flat, intersecting with µfNB(D) for α = 0.2. Now βB =22

0.25, βC = 0.3, βD = 0.25, and βE = 0.2, and so C should be chosen (even though23

available before and not recommended). Therefore I do not recommend using24

β s to drive decisions, but find them useful in sensitivity analysis, as presented in25

section 5.26

3.2.2 Average fuzzy net benefit27

The remaining two choice functions are based on crispifying fNB, and comparing28

these crisp representations. First, I continue with measuring the vertical changes29

in µfNB, but I interpret them as probabilities (conveniently summing to 1; the30

membership function is treated as a, perhaps flipped horizontally, cumulative dis-31

tribution function). Then for each Di, take32

τi(α) := supAfNB(Di)(α), (3)

and calculate an average fNB (ANB): ANBi :=
∫ 1

0 τi(α)dα , i.e. average out the33

bounds of α-cuts. Then the choice is simply argmaxi∈I AfNBi. Technically, the34

integral exists, as τ is non-decreasing and bounded (for a given (e,c)). Consider-35

ing the complete CE-plane does not change the intuition behind the derivation nor36
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the feasibility to use. The method preserves the Chernoff property: the evaluation1

of each alternative is independent of other options. The obvious disadvantage is,2

again, the necessity to interpret the membership function as an interval scale.3

3.2.3 Median fuzzy net benefit4

A natural solution to avoid interval, and focus on ordinal, interpretation is to com-5

pare medians, not means. Hence, the choice function I recommend in the current6

framework is to maximize τi(0.5) (eq. 4), i.e. the supremum of the 0.5-cut of fNB,7

henceforth median fNB (MNB), formally:8

MNBi := supAfNB(Di)(0.5) = τi(0.5). (4)

MNB can be interpreted as a value that the decision maker equally agrees/disagrees9

that is a monetary equivalent of using a given technology. Maximizing MNB, as a10

decision making rule, can always be applied (no fancy integrals) and preserves the11

Chernoff property. It can also be used for the complete CE-plane, with the same12

interpretation. In the example in Figure 3 MNB selects C (due to the piece-wise13

linearity of the membership functions, maximizing ANB leads to the same choice,14

but in general the outcomes would differ).15

There are formal arguments motivating using MNB. As shown by Corollary 116

the dominated technologies are characterized by fNB included (via standard fuzzy17

set inclusion) in some other fNB. In case of no dominance this inclusion may18

not hold, but it can be shown that fNB of the MNB-maximizing option weakly19

includes other fNB (using definition of Dubois and Prade, 1980).20

Proposition 1. Take n decision alternatives, Di. If Di∗ maximizes MNB, then fNBi∗

weakly includes fNBi for any i not maximizing MNB, i.e.1

inf
x∈R

max
(
µfNB(Di∗)

(x),1−µfNB(Di)(x)
)
≥ 1

2
,

and fNBi weakly includes fNBi∗ at maximum to the same degree:

inf
x∈R

max
(
µfNB(Di)(x),1−µfNB(Di∗)

(x)
)
≤ 1

2
.

Moreover, two implications hold:21

• if µfWTP and µfWTA are strictly decreasing (for values within (0,1) interval),22

then the above inequalities are strict;23

1With the following intuition. Consider crisp sets, A, B, subsets of some universe Ω. Then
B ⊂ A if and only if A∪B′ = Ω. Hence we need to employ OR and NOT operators, and we use
the min-max ones (cf. Smithson, 1987).
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• if µfWTP and µfWTA are continuous and also i∗∗ maximizes MNB, then fNBi∗1

and fNBi∗∗ weakly include each other to the same degree.2

Maximizing MNB can be seen (not pursued formally, for brevity) as applying3

the Orlovsky-score (1978), i.e. maximizing the degree to which a given alternative4

is not dominated by any other. There is still additional intuition behind MNB,5

when thinking in terms of example in Figure 3 and options A–D, with increasing6

e. For options A and B the decision maker is convinced to a degree of >0.5 it is7

worth to switch to a more effective option, while option D—convinced it is worth8

to switch to a less effective one. Only for C no such conviction prevails.9

Maximizing MNB can be easiest done by estimating the upper bound of the10

0.5-cut for fWTP and fWTA and using these (crisp) values to calculate the, then11

crisp, NB. For each i we calculate NBi = ei× supAfWTP(0.5)− ci (if ei ≥ 0). In12

section 4 I propose three methods how to evaluate these 0.5-cuts for fWTP/fWTA.13

Finally notice that other percentiles (α-cuts of fNB) could be used, but again14

requiring an interval interpretation. Taking α > 0.5 would effectively mean taking15

lower WTP but greater WTA values, i.e. the fanning out in CE-plane (Obenchain,16

2008, and J&K). I.e. if increasing WTP is to represent being more permissive in17

switching from status quo (or using a lower percentile in the present framework)18

in the I quadrant, then we need to accompany it with lowering WTA.19

4 Calculating the 0.5-cut for fuzzy WTP & WTA20

For brevity, call the 0.5-cut for fWTP/fWTA the indecisiveness point (IP). IPs var-21

ied between respondents (horizontal bars scattered along the abscissa in Figure 2),22

and obtaining a single, population-level IP requires some aggregation, accounting23

for the randomness of the sample. Below I suggest three methods, using different24

approaches to statistical inference: hypothesis testing, Bayesian modelling, and25

frequentist estimation. The advantages and disadvantages are discussed, however,26

no clear winner is pointed. The last two methods require data transformation, de-27

scribed in subsection 4.2. The λ s denote the values used in the questionnaire and28

are presented in 000s PLN/QALY.29

4.1 Hypothesis testing30

The assumptions are presented for WTP, and are analogous for WTA. 1) For each31

λ ∈ R+ there is an (unknown) average conviction in the population, µWTP(λ ). 2)32

Our estimand is IP such that µWTP(IP) = 0.5 (no uniqueness has to be assumed).33

3) Assume that the values of µWTP,i(IP) for every individual, i, are drawn for a34

common, symmetric distribution, and so are the responses in the Likert scale.35
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For each λ we can test H0 : IP = λ , testing the symmetry of the distribution1

of answers. I used the test suggested by Dykstra et al (1995) (with H2 as the2

alternative hypothesis, according to their notation). Mann-Whitney test could also3

be used (comparing the actual responses to vector of 3s); with no impact on the4

conclusions in the present data. Dykstra et al (1995) test seems to be using more5

information from the data (Mann-Whitney not differentiating between 1 and 2 or 46

and 5 options), but the comparison of these (and other) tests should be performed7

when data have been collected.8

For WTP we do not reject H0 for λ = 125 (p∗ = 0.0612) and λ = 150 (p∗ =9

0.6313), while e.g. for λ = 100 or λ = 175 we get p∗ = 0.0001 and p∗ = 0.0028,10

respectively. For WTA, we do not reject H0 for λ = 150 (p∗ = 0.1994), λ = 17511

(p∗ = 0.2532), λ = 200 (p∗ = 0.166), λ = 250 (p∗ = 0.1308), and λ = 300 (p∗ =12

0.0849). The conclusions (which H0 are rejected) do not change if we double the13

p∗ values to account for one-sidedness of the alternative hypothesis. As we infer14

separately for each λ , there is no need to correct for multiple hypothesis testing.15

4.2 Data transformation16

Above I analysed each λ separately, but looked at the respondents’ jointly. In17

two remaining approaches I proceed conversely: I consider each respondent in-18

dividually, looking at all the λ s for which the middle Likert option was chosen19

(interpreted as µ(λ ) = 0.5) simultaneously. I call this range of λ s an indecisive-20

ness range (IR), and will use IR to estimate a single IP value.21

Identifying IRs requires data transformation and assumptions, described below22

for WTP (analogous for WTA). Firstly, if the respondent did not use the middle23

option, I assume IR 6=∅ (simply no λ ∈ IR was used in the survey). I assume that24

option 3 would be used for λ equal to the average of the greatest λ with options 425

or 5 selected and the lowest λ with 1 or 2.26

Secondly, I assume IR’s lower endpoint as the mean of the greatest λ with27

options 4 or 5 and the lowest λ with 3 (directly selected or inferred as above);28

analogously for the upper endpoint. Example 1: if the respondent selected option29

4 for λ = 100, option 3 for λ = 125 and λ = 150, and option 2 for λ = 175, then30

IR = [112.5;162.5]. Example 2: if the respondent selected option 4 for λ = 10031

and immediately switched to option 2 for λ = 125, then IR = [106.25;118.75].32

The assumptions suffice to calculate IRs for WTP. In case of WTA, however,33

two respondents used only options 1 & 2, and one respondent only option 3, for34

all the λ s, thwarting the calculation of IR. I removed all three from the sample,35

based on two reasons. 1) These respondents do not conform to the criteria trade-36

ability axiom of J&K: they seem to, in principle, disagree that the decision maker37

should sometimes sacrifice effectiveness to make savings. The decision support38

methods developed in the present paper accept such trade-offs (and aim to express39
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them quantitatively), and should not be based on the opinions in such a funda-1

mental disagreement with the foundations. 2) We aim here mostly to illustrate2

the estimation methods, and not to come up with ultimate, ready-to-use estimates.3

The latter would demand a larger sample and probably using more λ s in the ques-4

tionnaire (or a possibility to freely report large values if the scale is insufficient).5

Still, a further research is needed to consider how this, effectively infinite, WTA6

should be accounted for quantitatively (how to combine finite and infinite WTA7

in a mathematical framework).8

Finally, I took the log of λ s (1 PLN/QALY added, to avoid ln(0)), for three rea-9

sons. Firstly, the distribution of the middles of the IRs was highly skewed (skew-10

ness coefficient 3.77 for WTP and 1.75 for WTA for non-log data, and 0.14 and11

0.68, respectively, for logs), and statistical methods typically work on non-skew12

data better. Secondly, the length of IR is positively correlated with the middle of13

IR (for non-logs). Intuitively, the respondents thinking large allow larger tolerance14

in absolute terms; plus λ s were more sparsely located for large values. It is more15

convenient to model the respondents uncertainty in relative terms, not having to16

directly model the relation between the IR’s middle and length, and this is auto-17

matically done with logs. Thirdly, with logs the results will not change whether18

we use WTP/WTA expressed as a monetary value of a unit of health (PLN/QALY)19

or a health equivalent of a monetary unit (QALY/PLN); not the case with original20

data (arithmetic and geometric means not equivalent).21

4.3 Hierarchical Bayesian modelling22

In this and next subsection I use the following notation. For each of n respondents,23

indexed by i ∈ {1, . . . ,n}, we observe li (ui) denoting the lower (upper) endpoint24

of IR (logs). Let mi denote the middle of IR (i.e. mi = (li+ui)/2). In short, in the25

Bayesian approach we assume some statistical model how the observables are26

generated from parameters of interest (with some prior distributions). We then27

update the prior distributions based on actually observed values (for a description28

and examples see, e.g. Ntzoufras, 2009).29

Specifically, assume the following. Each respondent has a single, true, log of30

indecisiveness point, denoted by ηi, drawn from a common distribution N(η ,ξ 2);31

taking the logs, conveniently, allows using a normal distribution, as the non-log IR32

are bounded by zero from below. Then η is the main parameter of interest, allow-33

ing to calculate exp(η). The respondent does not precisely perceive ηi, but rather34

the bounds, li and ui, generated as li = ηi−∆′i and ui = ηi +∆′′i , where ∆′i and35

∆′′i are independent random variables drawn from a single (for every respondent),36

exponential distribution, Exp(κ). The above statistical model defines the distri-37

bution of observables (li, ui) based on parameters (η , ξ , κ). With a larger sample38

we might consider assuming idiosyncratic κs generated from some distribution.39
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The independence of ∆s reflects the unpredictability of misjudging one’s IP.1

Using the exponential distribution has two nice consequences. Firstly, this dis-2

tribution is memoryless—here implying: knowing that one’s IP is misjudged up-3

wards by at least some amount does not change the distribution of by how much4

more this IP is misjudged. This reflects the lack of regularity in perceiving one’s5

IP. Secondly, the resulting distribution of ∆′i/(∆′i+∆′′i ) is uniform, and so the relative6

location of the true value is non-informative, a reasonably conservative approach,7

again, reflect the difficulty with positioning one’s IP.8

I used non-informative priors (normal for µ , gamma for σ2 and λ ) and es-9

timated the model with MCMC in JAGS/R (10,000 burn-in iterations, 50,000 of10

actual iterations, thinning 5). The mean of the posterior was taken as the estimate,11

and percentiles 2.5% and 97.5% as boundaries of the 95% credible interval (CI).12

For WTP the estimate of exp(η) equals 145.68, 95%CI = (106.99;197.95),13

while for WTA we get 162.29 and (115.78;228.15), respectively. For the sake of14

section 5: the posterior distribution of η was unimodal, symmetric, and leptokur-15

tic (excess kurtosis equal to 0.53). The Shapiro test rejects normality (p∗< 0.001).16

4.4 A meta-analytic approach with bootstrap17

Here I employ the approach commonly used, e.g. to average the results of multi-18

ple randomized clinical trials (see, e.g. Whitehead, 2002). I assume the random19

effects model: respondents differ in terms of their true IP, denoted by ηi, drawn20

from a N(η ,ξ 2) (I use the same symbols as in the previous subsection to make it21

easier, as some intuitions are identical). In the frequentist approach here, η is the22

true, unknown parameter of interest (with no probability distribution).23

I assume the precision for each i is given by the length of IR (I take the ob-24

served length to be the actual precision, not accounting for the error of precision25

estimation). I assume that observed IR ([li,ui]) is uniformly distributed in the real26

axis, subject to ηi ∈ [li,ui]. Then mi = (li+ui)/2 is uniformly distributed around ηi27

with variance (ui−li)2/12, and mi is an unbiased point estimate of ηi for every i. I28

use the inverse-variance weighted average to calculate the point estimate η̂ , ac-29

counting for random effects, using standard formulae (see, e.g. Whitehead, 2002).30

The formulae are typically used for normal distributions, but are correct for31

a uniform distribution and allow to estimate the random-effect variance from the32

observables. Still, the distribution of estimated η̂ is not normal. For this reason I33

assess the 95%confidence interval (CI, with a slight abuse of notation) for η via34

bootstrapping (cf. Efron and Tibshirani, 1993): i) re-sample the set of respondents35

(to account for sampling error), ii) for each re-sampled respondent generate a new36

m∗i from a uniform distribution [li,ui], iii) keep the length of IR, iv) calculate the η̂∗37

in this bootstrap sample (inverse-variance, random effects), v) repeat for 10,00038

bootstrap samples and take percentiles 2.5% and 97.5% to define the 95%CI.39
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For WTP the exp(η̂) = 153.57, 95%CI = (121.19;202.89). For WTA, respec-1

tively, 163.29 and (120.94;225.13). No problem of a bias is present, as the mean2

of bootstrap results yields 154.26 and 163.03 for WTP and WTA, respectively3

(very close to the meta-analysis results). Notice, that assuming the normal dis-4

tribution of the standard error in the meta-analysis would yield more narrow (and5

probably wrong) 95%CI: (130.57;180.61) and (135.03;197.47), respectively. For6

the sake of section 5: the bootstrap distribution of η̂ was unimodal, slightly posi-7

tively skewed (0.33), and leptokurtic (excess kurtosis equal to 0.43). The Shapiro8

test rejects normality (p∗ < 0.001).9

4.5 Comparison of approaches10

Table 1 summarizes the—reassuringly consistent—results. The IP for WTP/WTA11

is greater than the official threshold in Poland (125,955 PLN/QALY as of 1st Nov,12

2015, and 111,381 PLN/QALY in the time the survey was run). There is no reason13

to believe that IP for WTA is greater than for WTP (increasing the sample size14

might change that conclusion), but all three methods suggest that there is more15

uncertainty for WTA.16

Table 1: Estimation results for the indecisiveness point (in 000s PLN/QALY) along with
95% confidence or credible (depending on context) interval (95%CI).

Method Willingness-to-pay Willingness-to-accept

hypothesis testing not rejected for 125, 150 not rejected for 150–300
Bayesian modelling (95%CI) 145.7, (107.0; 197.9) 162.3, (115.8; 228.1)

meta-analysis (95%CI) 153.6, (121.2; 202.9) 163.3, (120.9; 225.1)

The statistical testing requires fewest assumptions (e.g. no specific distribution17

assumed) and its results do not require (or change with) any transformation of18

λ s; the other two methods would yield larger values if applied to original λ s,19

but still, taking the logs was motivated. Hypothesis testing works on complete20

data, while other methods have problems with respondents not crossing the middle21

Likert option. Also, the extremely undecided respondents (selecting the middle22

option option), when added to the sample, would change the results of the last two23

methods, while are effectively ignored by hypothesis testing.24

The last two methods require the middle option, so as to account for possi-25

bly wide IR (otherwise we would underestimate the intra-respondent uncertainty26

regarding the location of IP). The middle option cannot, however, be too inclu-27

sive (e.g. neither entirely agree, nor entirely disagree in a 3-level Likert) for the28

last two methods, as that would change the estimand. The hypothesis testing ap-29

proach can be used irrespectively whether or not the middle level is used, how30
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it is worded (e.g. neither/nor or I don’t know, as long as it is symmetric, i.e. not1

leaning towards agreeing or disagreeing), and whether it is framed to be more at-2

tractive for respondents. Still, making the middle answer too attractive reduces3

the power of the test, as fewer observations constitute the actual sample for the4

Dykstra et al (1995) test. Matell and Jacoby (1972) showed that using more (odd5

number of) levels decreases the frequency of selecting the middle option—hence.6

All the methods might profit from using a greater than five, odd number of lev-7

els. Even though the levels might then lose natural interpretation (section 2.2), if8

respondents symmetrically behave on two sides of the middle option that would9

increase the precision of IP estimation.10

None of the methods interpreted the Likert scale as an interval one. In the11

hypothesis testing we do, however, assume that options 1 & 2 are symmetrical12

counterparts of 5 & 4. This does not seem to be a strong assumption, as the13

wording is symmetrical. Hypothesis testing can only be used to assess IP, while14

the other two methods could be adapted to estimate the range of λ s for which,15

e.g. µ(·) = 0.75 (interpreting Likert scale in that way).16

The usefulness of hypothesis testing depends most heavily on the number of17

λ s used in the questionnaire: for WTA we did not reject H0 for λ = 300, and reject18

it for 400, with a wide range of untested values. Using more λ s would be tire-19

some for the respondents, and increasing the density, e.g, around 150 PLN, could20

bias the respondents towards locating IP in this region, suggesting that something21

should be happening there (a form of a central tendency bias). This is the biggest22

downside to the hypothesis testing approach.23

The outcome of hypothesis testing may be disappointing for some. Not re-24

jecting H0 does not denote accepting it in statistical parlance. We also have to25

treat all the non-rejected λ s in the same way—there is no telling which are more26

likely to actually represent IP (one might try to use p∗ for this purpose, adopting a27

Fisherian rather than Neyman-Pearson approach, a discussion beyond the scope of28

this paper). Bayesian approach conveniently produces a posteriori distributions,29

to be easily used in sensitivity analysis (cf. section 5). It could also account for30

covariates and explain part of the heterogeneity between the respondents.31

Interpreting the Likert scale in a stronger way would allow to define other32

approaches. One could assume some (most likely, S-shape) parametric function33

how the 1–5 Likert responses change with λ , and estimate the parameters based34

on all observed responses (a form of the Rasch model could be used). This would35

be required to be then able to calculate β s and ANBs as defined in section 3.2.36

Finally, we might try to explicitly allow for µfWTP(x) = 0.5 (µfWTA(x) = 0.5)37

for a range of x. Looking at the definition of MfNB we now need to find the38

largest such x for fWTP and the smallest for fWTA. We don’t need to change39

anything in the hypothesis testing approach, and then, conveniently, we infer that40

this value amounts to 150 (000s PLN/QALY) for both WTP and WTA. For the re-41
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maining two approaches we would be interested in the respective ends of the IR,1

ui or li. It is difficult to naturally quantify the individual-level error of ui (li),2

and so the most natural approach is to average the observed values, and account3

for the sampling error with, e.g. bootstrap over the respondents. We then obtain4

(in 000s PLN/QALY) 165.96 with 95%CI = (131.21;219.49) for WTP, and 140.535

with 95%CI = (103.84;197.09) for WTA. However numerically greater WTP is6

WTA, the difference is not statistically significant (even a 90%CI for difference7

contains 0). Hence, whatever approach we take, there seems to be no rationale to8

systematically differentiate WTP from WTA.9

5 Uncertainty & sensitivity analysis10

The fuzzy framework, apart from suggesting a new decision making rule, allows a11

form of SA not referring to stochastic uncertainty. In spite of choosing with MNB,12

parameters βi (subsection 3.2.1) illustrate whether the choice is best per se (large13

β ) or is a compromise between too costly and too ineffective alternatives (low β ).14

For example (Di ranked by ei) whether β1 = 0.2, β2 = 0.7, β3 = 0.1 or β1 = 0.45,15

β2 = 0.1, β3 = 0.45 using MNB selects D2, but the story behind differs.16

The three decision making rules start to agree, when fuzziness is reduced, as17

the following proposition states (presented for the right half of CE-plane but holds18

for the whole plane).19

Proposition 2. Consider a sequence of fuzzy numbers, fWTP( j), converging to a20

crisp number WTP, i.e. supAfWTP( j)(0)→WTP and supAfWTP( j)(1)→WTP, limits21

when ( j)→+∞. Take n technologies, (ei,ci)∈R+×R, such that there is a single22

technology, i∗, maximizes NBi = WTP× ei− ci. Then ∀ε > 0∃M ∈ N, such that23

∀ j > M if we calculate MNBi, ANBi, and βi for fWTP( j):24

1. i∗ maximizes MNBi, as the only technology,25

2. i∗ maximizes ANBi, as the only technology, and |ANBi∗−MNBi∗|< ε ,26

3. i∗ maximizes βi, as the only technology, and βi∗ > 1− ε .27

In HTA there is stochastic uncertainty, and SA is used to illustrate its im-28

pact. The main source is that (ei,ci) are estimated based on clinical trials, meta-29

analyses, or pharmacoeconomic models (cf. Briggs et al, 2012). The current30

framework, adds two elements. Firstly, the IPs are also estimated, and so us-31

ing MNB removes fuzziness in the end, introducing more stochastic uncertainty.32

Secondly, the selection of baseline technology (with respect to which (ei,ci) are33

calculated) impacts the results by moving the points between halves of the CE-34

plane, important when fWTP and fWTA differ. Often a mix of technologies will35
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be used. Then we can calculate (ei,ci) with different baseline technologies in this1

mix, with proper market shares taken as weights/probabilities. This uncertainty2

can be simply joint with (e,c)-estimation uncertainty (but will be left out, for3

clarity, in the examples that follow).4

We will (as often done) approach uncertainty in a Bayesian way: assume a dis-5

tribution of model parameters, from which to draw (ei,ci) and IPs to use in Monte6

Carlo analysis. The IPs will be drawn independently from (ei,ci). Whether IPs for7

fWTP and fWTA should be independent can be disputed. On one extreme, they8

were elicited and estimated separately, suggesting independence. On the other9

extreme, there is no statistical reason (in our case) to reject their equality, hence10

they should be assumed equal. In between, the individuals assessing WTP to be11

large, tend to assess WTA to be large, and so sample randomness still suggests12

some positive correlation between the two. If IPs are not equalized by definition,13

then randomizing status quo impacts the results.14

To present a wider context, how to change WTA with WTP depends on the15

goal. We want them to change in the same direction, to represent uncertainty on16

the actual value and we want to introduce a positive correlation in estimation error.17

Severens et al (2005) suggested to, when performing SA with cost-effectiveness18

acceptability curves (CEACs), keep the WTA/WTP constant, and change WTP (hence,19

changing WTA in the same direction). On the other hand, we want to change WTP20

and WTA in the opposite directions, to represent a changing decision making rule.21

To be more permissive in our decisions (lowering the α in α-cut for fNB), then22

we should fan out: use higher WTP and lower WTA.23

Back to SA, as a result we get, for each i, the empirical distribution of MNBi.24

(Notice, that had we estimated the complete µfWTP, µfWTA, we could also consider25

the β s and ANBs.) The next proposition shows the properties of this random26

variable when uncertainty is reduced, to make sure that accounting for uncertainty27

is a natural extension, i.e. MNB behaves in a predictable way.28

Proposition 3. Take a sequence of random variables (e( j),c( j), IP( j)
fWTP, IP

( j)
fWTA),29

with ( j) numbering elements. Assume the sequence converges in probability to a30

degenerate distribution located in (e,c, IPfWTP, IPfWTA). For each ( j) define a ran-31

dom variable MNB( j) as in eq. 4. Then the sequence MNB( j) converges in proba-32

bility to a degenerate random variable: MNB calculated for (e,c, IPWTP, IPWTA).33

The insights gained by analysing the distributions of MNBs is illustrated via34

two examples. Start with one presented in Figure 3. Assume that uncertainty re-35

garding each (ei,ci) is given by a bivariate normal distribution, around the means36

in the Figure, with SDs equal to 0.2 (and no correlation). Assume IPfWTP =37

exp(η) with η ∼ N(ln(1.5),0.25). Some points may fall in quadrants II & III,38

so we consider fWTA, distributed as fWTP. We disregard E (used only to show39

the Chernoff property violation).40
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As a reminder: point estimates led to choosing C, with MNBC = 3× 1.5−1

2 = 2.5, while, e.g. MNBD = 2.45; βC = 0.3 was not the greatest (βD = 0.45),2

showing that C was a compromise. Now, the average MNB (for 10,000 Monte3

Carlo draws) equals: 0.41, 2.41, 1.30, 2.35, 2.64, and 2.63, for X , Y , A, B, C,4

and D, respectively. The asymmetry of distributions in Monte Carlo makes C5

almost equal to D now, the log-normal distribution results in average of exp(η)6

being greater than exp(1.5), and so the average MNBs may differ from the ones7

calculated in baseline analysis. Larger uncertainty might result in average MNB8

larger for D than C, introducing a discordance between the baseline and sensitivity9

analysis (possible also for standard SA in HTA, when skewness is present).10

Just like using CEACs, a popular tool in SA (for more information see, e.g.11

van Hout et al, 1994; Fenwick et al, 2004), we can calculate the probability of12

each i maximizing MNB. Technically, we would obtain similar result averaging13

the CEAC values over horizontal axis with weights taken as probability distribu-14

tion for WTP. The difference would stem from lack of possibility to differentiate15

between WTP and WTA by regular CEACs (see Severens et al, 2005; Araki and16

Kamae, 2015, for some ideas).The probability of maximizing MNB amounts to17

0%, 16.2%, 0.7%, 19.5%, 29.2%, and 34.5%, for X , Y , A, B, C, and D, respec-18

tively. Hence, just like with regular CEACs, the probability driven results need not19

agree with expectation driven Fenwick et al (2001). The approaches would agree20

in the limit when uncertainty is being reduced (Proposition 3). Interestingly, this21

discordance would not occur here for regular CEACs due to the normality of (e,c)22

distribution and lack of correlation (Jakubczyk and Kamiński, 2010; Sadatsafavi23

et al, 2008), and is only introduced by additional uncertainty of WTP and WTA.24

So as to present the properties of SA in the current framework, consider a25

simpler example. Take the means of (ei,ci) to be D1 = (−1,−1), D2 = (0,0) (ex-26

plicitly modelling the null option), and D3 = (1,1). Assume (ei,ci) are normally27

and independently distributed with all SD = 0.1. Take IPfWTP, IPfWTA to be iden-28

tically, independently distributed as exp of the underlying distribution N(0,0.2).29

The skewness of the fWTP/fWTA results in an asymmetric treatment to effect-30

improving and -reducing technologies. Mean MNBs are almost equal: -0.02, 0,31

and 0.02 (for D1–D3), but the probabilities of maximizing MNB amount to, re-32

spectively, 33.7%, 29.4%, and 36.9%. There are two reasons. Firstly, the distri-33

bution of MNB spreads more the farther away a given technology, Di = (ei,ci), is34

from the y-axis, as uncertainty on fWTP/fWTA results in a bigger spread when ei35

is recalculated to monetary values. Secondly, due to the log-normal distribution36

of IPs, the the distribution of MNBs is left-skew for D1 and right skew for D3, and37

the long right tail helps D3 to maximize the probability.38

It is most informative to calculate some low percentiles of MNB distributions,39

to see how risky the available alternatives are. For example, the 5% percentile40

is equal to -0.47, -0.23, and -0.35 (for D1–D3), and so the risk averse decision41
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maker should favour the null option. Analysing the percentiles of MNB has a1

nice property that moving away from the origin in CE-plane (to be more precise:2

increasing the absolute value of e) increases the risk. That seems intuitive, as3

implies that larger trade-offs are being made, which should feel risky for a decision4

maker uncertain of own WTP/WTA. That is a new property, absent in standard5

CEAC analysis (and criticized, e.g. by Koerkamp et al, 2007).6

This is illustrated in Figure 4. When WTP is given as parameter, then mov-7

ing the cloud of points (representing uncertainty) away from the y-axis does not8

spread the distribution of NB (density function, pdf, illustrated in the left panel), as9

calculating NB can be visualised as projecting the scattered points on the y-axis10

along lines with slope representing WTP. When WTP is given with uncertainty11

(right panel), then the projection is done along lines fanning out (represented by12

gray areas), and moving the cloud of points results in wider spread.13
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Figure 4: Increasing the absolute value of effect does not change the total uncertainty
of NB when WTP is given (in central panel, left panel represents the density function
of NB) and increases it when WTP is estimated with uncertainty (right panel).

As mentioned above, the probability of maximizing MNB could be (almost)14

read off the standard CEAC, by averaging over the range of WTPs. That is not15

the case for expected value of perfect information (EVPI). An example below16

illustrates that the uncertainty in IPs for WTP and WTA results in qualitatively17

new phenomena, that cannot be seen in standard graphs used to illustrate EVPI.18

Of course the very amount of uncertainty is larger, and so EVPI increases, but the19

difference is also a qualitative one. Consider comparing (e,c) = (k,k) with SD20

equal to 1 (for e and c) for k = 1,2,5,10,20 versus (0,0), i.e. consider a set of five21

decision problems. Larger k represents larger shift outwards. In Figure 5 the EVPI22

are presented for various WTP. As k increases (represented by a darker shade),23

EVPI seems to decrease for all but one value of WTP, giving the impression that24

overall there is less uncertainty in the problem. When we assume WTP is only25

23



given as a distribution (here, a uniform [1/2,3/2]), then the resulting EVPI (now, a1

single number) increases with k: 0.59, 0.61, 0.8, 1.36, and 2.55.2

WTP

EVPI

0 0.5 1 1.5 2
0

0.5

Figure 5: EVPI for a comparison of (e,c) distributed around (k,k) vs (0,0) when
k = 1,2,5,10,20 (darker shade, larger k).

6 Concluding remarks3

In the paper I tried to comprehensively show how to make the fuzzy approach to4

modelling WTP/WTA operational, i.e. how to build a complete decision making5

process, along with methods how to estimate model’s parameters and conduct SA.6

The framework works for multiple alternatives, effect improving or reducing, and7

can be combined with other types of stochastic uncertainty. Apart from (crisp)8

choices the model yields via SA additional information on decision robustness9

and can be used along regular, crisp CEA. Importantly, parts of the present paper10

(e.g. estimation techniques) can be applied on their own.11

Fuzzy approach can be discredited, as introducing too much subjectivity. In12

the defence, the subjective notions are commonly used in CEA, e.g. assigning13

utilities requires patients subjectively determining their quality of life via ques-14

tionnaires. If carefully elicited and not wilfully biased, the subjective notions can15

be used to inform better decisions. Additionally, the core of the methodology in16

the paper uses the middle Likert answer, the least ambiguously defined.17

What is achieved by introducing fuzziness, if it’s dropped in the final choice?18

At least four things. Face validity for one: if WTP/WTA is perceived fuzzily, then19

the arguments are rather needed not to use it. Using fuzzy WTP/WTA, as long20

as possible, matches the actual process of thinking better and the primitives of21

the model are more strongly ontologically grounded. Secondly, building on con-22

cepts independently developed in fuzzy-set theory (e.g. weak inclusion) allowed23

to formally motivate useful simplifications—basing the choice on (crisp) IPs for24
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WTP/WTA. Even though using IPs seems as disregarding fuzziness, had it not1

been for the fuzzy approach, we wouldn’t have been able to even define the IP.2

Thirdly, estimating the membership function for fuzzy WTP/WTA necessarily3

involves statistical uncertainty. Handling this estimation error is only possible in4

the fuzzy model within which it originates. Then the uncertainty (combined with5

other forms of uncertainty) can be used in SA to inform about the robustness of6

a given, crisp decision. The imprecise knowledge of WTP/WTA, when addressed7

in formal statistical inference fashion, yields new, intuitively-appealing, insight8

in SA: considering larger cost-effect trade-offs results in more uncertainty in the9

problem (not accounted for by standard CEAC or EVPI analysis).10

Fourthly, the fuzzy approach allows to redefine the WTP/WTA disparity, and11

the proposed estimation methods allow to grasp it quantitatively. With the present12

data WTP-WTA disparity, when related to IPs, is not confirmed. Importantly, bas-13

ing the decision on IP followed from different criteria, the eradication of disparity14

came as a convenient by-product. Still, if people base actual decisions on values15

closer to freely reported WTP/WTA (hence values with higher than 0.5 convic-16

tion, see section 2.2), then the elicited WTP and WTA will differ. This mech-17

anism somewhat resembles the one introduced by Zhao and Kling (2001), who18

modelled the value of the good as given with stochastic uncertainty. The decision19

maker then plays it safe: decides to wait and collect information unless the price20

to pay is sufficiently low (to discourage from incurring the cost of waiting) or the21

price to accept is sufficiently high. In the fuzzy context: not certain about their22

perceptions, the respondents play safe and report values of higher conviction. This23

‘playing safe’ was also observed by Dubourg et al (1994): when having to select a24

single value from a range of possible WTPs/WTAs, the respondent selected point25

in the lower region for WTP (that is not confirmed by J&K’s data, though) and26

higher region for WTA. Dubourg et al (1994) also observed that often the very27

regions for WTA were located higher than and did not overlap with regions for28

WTP, which fuzzy model explains as reporting α-cuts for large αs.29

The paper can help to design questionnaires eliciting WTP/WTA. Likert scales30

seem more credible than and different from freely reported WTP/WTA values31

(observed by J&K). The neutral option must be used, so as to employ Bayesian32

or frequentist approach to estimate IP. More than 5 levels can be considered to33

improve the precision of hypothesis testing. Increasing the number of values (λ s)34

in the questionnaire improves the precision but tires the respondent. Perhaps using35

different sets could be considered to reduce the impact of gaps, but that prevents36

hypothesis testing, unless sample size is large. Finally, the respondents may have37

tried to answer symmetrically for WTA and WTP (even though asked not to go38

back to previous questions). It might be a good idea, then, to use two sets of39

questionnaires, starting from either WTP or WTA, to compare the results.40

Several ideas for further research originate. Firstly, fuzzy sets, not numbers,41
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were used to describe fNB (α-cuts were left-unbounded). Less technically, the1

interpretation of, e.g. µfNB(5) = 1 was: ‘I’m fully convinced that (using a given2

HT) I gain at least 5 (in monetary terms)’. A different approach would be to use3

fuzzy numbers and represent the opinions ‘I’m . . . convinced that I gain exactly4

. . . ’. Secondly, the fuzzy set theory allows multiplication or addition of fuzzy5

values. Hence, the presented framework can also accommodate fuzzy measures of6

effectiveness, e.g. fuzzily perceived gains in quality of life. Thirdly, in the model I7

differentiated between the left and right halves of the CE-plane (i.e. between WTP8

and WTA). Why not divide between the upper and lower halves? Looking at the9

sign of effects, not costs, seems intuitive, yet lacks formal rationale. Perhaps the10

trade-off coefficient differ in all the quadrants, and these differences are simply11

overlooked in quadrants II & IV, as are overshadowed by dominance. Still, when12

performing SA, it is needed to also analyse quantitatively the part of distribution13

in all the quadrants to average out the results.14
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Proofs19

Lemma 1. It is intuitively straightforward (when looking at CE-plane), but let’s20

do the algebra. Take any α ∈ (0,1]. We focus on the right side of CE-plane, but21

all is analogous in the left side.22

For γ > 0, x ∈ AfNB(e,c)(α)
(i)⇔ µ(e,c+ x)≥ α

(ii)⇔ µ(γe,γc+ γx)≥ α
(iii)⇔ γx ∈23

A f NB(γe,λc), (i) and (iii) from the def. of α-cut, and (ii) as µ is constant on rays.24

Now, AfNB(e1,c1+c)
(i)
= {−c}⊕AfNB(e1,c1)(α)

(ii)
= (−∞,−c]⊕AfNB(e1,c1)(α)

(iii)
=25

AfNB(0,c)(α) ⊕ AfNB(e1,c1)(α), (i) from Def. 1, (ii) from α-cuts being left-26

unbounded, and (iii) from the shape of µ along the y-axis.27

Consider adding (e,0) to (e1,c1), where e > 0 < e1 (otherwise back to the28

preceding paragraph). If µfWTP(x/e) ≥ α and µfWTP((c1+x1)/e1) ≥ α , then also29

µfWTP((c1+x1+x)/(e1+e)) ≥ α as (c1+x1+x)/(e1+e) ≤ max{x/e, (c1+x1)/e1}, and fWTP30

is non-increasing; hence, AfNB(e,0)(α)⊕AfNB(e1,c1)(α)⊂ AfNB(e1 + e,c1)(α).31

On the other hand, assume µfWTP((c1+x)/e1+e)≥α and let c∗= e(c1+x)/(e1+e), c∗∗=32

e1(c1+x)/(e1+e). Clearly, µfWTP(c∗/e) = µfWTP(c∗∗/e1) ≥ α , and c∗+(c∗∗− c1) = x;33

hence AfNB(e1 + e,c1)(α)⊂ AfNB(e,0)(α)⊕AfNB(e1,c1)(α).34

35
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Corollary 1. Notice that (e1,c1) = (e2,c2)+ (∆c,∆e), ∆e ≥ 0 and ∆c ≤ 0, and so1

0∈AfNB(∆e,∆c)(α) for any α ∈ (0,1]; then use⊕. Strict version follows trivially. If2

(e1,c1), (e2,c2) are separated by y-axis, then use (0, (c1+c2)/2) as an intermediary.3

4

Corollary 2. If γ ∈ {0,1}, then we have the regular dominance. If AfNB(e3,c3) 6⊂5

AfNB(e1,c1)∪AfNB(e2,c2), then ∀γ ∈ (0,1), AfNB(e3,c3) 6⊂ γ �AfNB(e1,c1)⊕ (1− γ)�6

AfNB(e2,c2), and (e3,c3) can’t be Pareto-dominated by the convex combination.7

Proposition 1. Proving the first part. Take any x ∈ (MNBi,MNBi∗) (the inter-8

val is non-empty), µfNB(i)(x)≤ 1/2≤ µfNB(i∗)(x); using the monotonicity of µfNB9

(for i∗, i) yields the result. Proving the first bullet implication: take any x ∈10

(MNBi,MNBi∗) (again, exists), µfNB(i)(x)< 1/2< µfNB(i∗)(x), and use monotonic-11

ity again. Proving the last bullet. First consider ei∗ 6= 0 6= ei∗∗ , and so µfNB are con-12

tinuous for i∗, i∗∗. Then µfNB(i∗)(x) = µfNB(i∗∗)(x) = 1/2, and the rest follows from13

monotonicity. Now consider ei∗ = 0 = ei∗∗ , then fNBs are equal, crisp numbers14

(with upper semi-continuous, step membership functions, jumping from 1 to 0),15

and so weakly include each other to the degree 1. Finally consider ei∗ 6= 0 = ei∗∗ .16

µfNB(i∗) is continuous and monotonic, and fNBi∗∗ is a crisp number. It easily fol-17

lows (considering x=MNBi∗) that fNBi∗ weakly includes fNBi∗∗ to the degree 1/2.18

Approaching this x from right yields the weak inclusion to the same degree.19

Proposition 2. If for all i = 1, . . . ,n we have ei = 0, then technology i∗ must have20

the lowest cost, and fWTP does not matter. Assume at least one ei > 0 (remember,21

we are in quadrants I & IV) and let ε = NBi∗−max j 6=i∗NBi. We may always find22

m ∈ N, such that for all ( j) > m we have the suprema of α-cuts not farther from23

fWTP than ε/2×max(ei). Then any α-cut of fNB for i∗ is greater than respective24

α-cuts of other technologies. Increasing ( j) we also get 0-cut arbitrarily close to25

(in Hausdorff metric) 1-cuts for fNB for i∗. These immediately yield 1–3.26

Proposition 3. Looking at the definitions of fNB (Def. 1), α-cuts (eq. 1), and τ27

(eq. 4) we see that τ = supAfNB(e,c)(α) is a continuous function of (e,c) in R2. By28

the continuous mapping theorem (cf. Billingsley, 1999) we get the result.29
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