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Abstract—Determining how to trade off individual criteria is
often not obvious, especially when attributes of very different
nature are juxtaposed, e.g. health and money. The difficulty
stems both from the lack of adequate market experience and
strong ethical component when valuing some goods, resulting
in inherently imprecise preferences. Fuzzy sets can be used to
model willingness-to-pay/accept (WTP/WTA), so as to quantify
this imprecision and support the decision making process. The
preferences need then to be estimated based on available data.
In the paper I show how to estimate the membership function
of fuzzy WTP/WTA, when decision makers’ preferences are
collected via survey with Likert-based questions. I apply the
proposed methodology to an exemplary data set on WTP/WTA
for health. The mathematical model contains two elements: the
parametric representation of the membership function and the
mathematical model how it is translated into Likert options. The
model parameters are estimated in a Bayesian approach using
Markov-chain Monte Carlo. The results suggest a slight WTP-
WTA disparity and WTA being more fuzzy as WTP. The model
is fragile to single respondents with lexicographic preferences, i.e.
not willing to accept any trade-offs between health and money.

I. INTRODUCTION

Decision making with multiple criteria requires, explicitly
or implicitly, making trade-offs between attributes describing
decision alternatives. Even if the criteria are quantifiable and
expressed as numbers (not only as labels along nominal or
ordinal scale, e.g. ugly, mediocre, and beautiful), they may
be of very different type, making it difficult to juxtapose
them and decide about the exact trade-off coefficient. This
is the case when non-market goods, such as health, safety,
clean environment, etc., are being valued against money. The
present paper focuses on juxtaposing health and financial
consequences.

The amount of health gained with a given decision can,
in principle, be expressed as a number: an increase in the
life expectancy or—more generally—the additional quality-
adjusted life years (QALYs). The latter combines the improve-
ments in quality and longevity of life, is formally founded
in axiomatic approach [1], and is operationally calculated
via assigning numerical values, von Neumann-Morgenstern
utilities, to health states [2] defined within some system,
e.g. EQ-5D-3L [3]. Still, it is difficult to put a precise monetary

value on health, as strikingly visible in systematic reviews of
published estimates of the value of statistical life: the standard
deviations of published results (e.g. within a given country) are
usually of the order of magnitude of the mean values [4], [5],
[6]. The valuation of non-market goods is also specific in a
sense that there is a great difference between the willingness-
to-pay (WTP, the amount one is willing to pay for an additional
unit of good) and the willingness-to-accept (WTA, the amount
one demands to obtain in order to accept the loss of one
unit) [7]. In spite of these difficulties, it is necessary to grasp
the preferences quantitatively in order to support the decision
making process and make it transparent.

In social sciences, in order to formally model imprecision,
fuzzy sets and fuzzy logic have been used for many years
[12]. Therefore, as a solution, it was suggested to also treat
the WTP and WTA for health as a fuzzy concept [8], i.e. to
define a fuzzy number fWTP (or fWTA) over the universe
of R+ with a non-increasing (non-decreasing, respectively)
membership function µfWTP(λ) (µfWTA(λ)), interpreted as the
conviction that it makes sense to pay (accept) λ for an
additional QALY (a loss of QALY). It was shown how to
support decision making via fuzzy preference relations [8]
or choice functions, when multiple alternatives are present
[9], [10]. One of the choice functions used the 0.5-cut of
fWTP/fWTA, and formal statistical methods how to infer this
value based on data collected via surveys in random samples
were shown [10]. Some choice functions, however, required
knowing the complete shape of the membership function, and
learning this shape allows, additionally, to better understand
the nature of imprecision in the perception of WTP/WTA,
e.g. to compare the amount of fuzziness between these two.
Building on the above motivation, in the present paper I show
how to estimate the membership functions using the data
collected via Likert-based surveys in random samples.

II. DATA

I use the data set previously described in the literature [8].
Briefly, 27 health technology assessment experts in Poland
were asked to express their views on how much a society
should be willing to pay (should demand to be compensated)



for an additional QALY (for a QALY lost). Importantly, the
experts were asked to think about the societal value, i.e. the
value that should be used in public decision making, not about
how much they value the improvement/worsening in their own
lives. Therefore, all the respondents were asked about the same
thing; while still allowing for a difference in opinions. The
respondents were asked about their personal views, not simply
to quote the current regulations, which in Poland define the
threshold to be precisely three times the annual gross domestic
product per capita.

In the survey the respondents were asked, inter alia, if they
would accept using a technology offering one QALY more
(less) if it costed λ more (less). The respondents declared
how much they agreed, using a 5-level Likert scale: 5—totally
agree, 1–totally disagree. The raw collected responses are
illustrated in Figure 2. The exact λ values can be read off
the horizontal axis ($1≈4 Polish Zloty, PLN).

Three respondents were altogether removed in the WTA part
(but included in WTP analysis and in sensitivity analysis), as
they did not use the tend to agree & agree Likert answers for
any, even strikingly large λ. Thus, they seemed to disagree
with the very possibility of trading off health for money, in
a sense rejecting the rules of the game. This paper focuses
on estimating the membership function of WTP/WTA, and
these three experts reject the very concept of being willing
to accept money for health, hence their views cannot be used
to quantitatively estimate (crisp or fuzzy) WTA. Still, these
opinions are important in constructing a general framework
how to decide about public spending in healthcare (perhaps
rejecting the very idea of explicit trade-offs), but should be
handled separately as they differ qualitatively.

To motivate the present research, let us notice here that—
on one hand—it would be, in principle, possible to esti-
mate the membership function in a naı̈ve approach, as fol-
lows. We could translate the Likert levels 1–5 into values
{0, 0.25, 0.5, 0.75, 1}, respectively, and average the resulting
values (separately for each λ) between the respondents. Then
we would simply interpret the resulting average as the value of
the membership function, additionally somehow interpolating
between available λs. On the other hand, such an approach
has several disadvantages. Most importantly, averaging the
membership function can result in the outcome being fuzzy,
even without any fuzziness in the individual data. This is
illustrated in Figure 1. Assume that four respondents have
different, yet crisp, opinions about what values, x, belong to
a given set, X , over a universe R. In their view, respectively,
X = [0, 1], X = [0, 2], X = [0, 3], and X = [0, 4].
The membership functions are thus discontinuous (left panel)
and take only values {0, 1} (and the respondents would only
use Likert levels 5 and 1, in their answers). Averaging the
results yields a stepwise function (right panel), taking on also
values between 0 and 1, and hence implying fuzziness. Thus
a stochastic noise is transformed into fuzziness, while the
two types of uncertainty are usually treated as qualitatively
different.

Secondly, the naı̈ve approach does not allow for any ex-

trapolation, and so we would only estimate the membership
function up to the maximal λ used in the questionnaire.
Thirdly, this approach does not allow (easily) to model the
heterogeneity of the respondents, so as to estimate the impact
of some personal traits on the WTP/WTA. In principle the
modelling approach presented below can include additional
explanatory variables characterizing individuals to see how
they are associated with the preferences.

Additionally, the naı̈ve averaging might not work if the
respondents were presented different λs in the questionnaire;
and using various λs might be a good idea if we wanted to
collect data for many distinct λs (e.g. to verify the impact of
using round numbers), while not asking a single respondent
too many questions. In the naı̈ve approach, the averaging
would be done over different subsets of respondents and
might lead, e.g., to an increasing estimated µWTP(·), a logical
impossibility.

Finally, explicitly modelling how the individual opinions
are translated into Likert levels (as equation 2 below) can
allow combining various data in a flexible way and may help
designing questionnaires in the future (e.g. how many levels
to use).

III. MODEL

A. Mathematical formulation

Below I present the model for WTP but the idea is analo-
gous for WTA. In what follows, I assume that every individual
has their own membership function, µi(·) (WTP suppressed in
the subscript, for brevity). I assume that this function is given
parametrically by the following equation

µi(λ) =
1

1 + aiλbi
, (1)

where ai and bi are strictly positive parameters, specific to a
given individual. Hence, I use a standard, decreasing S-shape
logistic curve for the natural logarithm of λ. S-shape is to
represent the smooth transition between the full and lack of
conviction for greater and greater values (and the location and
steepness is given as a function of the parameters, a and b, and
so can differ between the respondents). Using the logarithm of
λ reflects diminishing sensitivity to equal, absolute increases
in cost difference, is motivated by the skewness found in the
data [10], and makes the approach robust to considering PLNs
per QALY or QALYs per PLN. Still, non-log values are used
in sensitivity analysis.

I then assume that, when the respondent faces a survey,
µi(λ) is translated into the Likert levels Li(λ) probabilisti-
cally, i.e. for each µi(λ) there is a probability distribution
defined over levels 1–5. Intuitively, the probability of observ-
ing a specific level Li(λ) = k, k = 1, . . . , 5, being selected
diminishes the farther away µi(λ) is from this level’s threshold
value, θk, θ5 = 1, θ4 = 0.75, θ3 = 0.5, θ2 = 0.25, and θ1 = 0.
More formally,

P (Li(λ) = k) =
exp(−si × |µi(λ)− θk|)∑5
j=1 exp(−si × |µi(λ)− θj |)

. (2)
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Fig. 1. The artefact of naı̈ve averaging of the membership function, µ. Individuals have crisp, however different, opinions. The average membership function
takes on values between 0 and 1, suggesting fuzziness. Discontinuities of µ denoted with thin, vertical lines.
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Fig. 2. Data. Values in horizontal axis in hundreds 000s PLN (λ = 0 was not used in WTA in the survey). Bold line denotes the median. Gray box denotes
the first and third quartile. The whiskers denote the min and max. The dotted lines denote the naı̈vely calculated average response.

Parameter si, si > 0, measures the diffusion of probabilities
along the Likert-scale. Figure 3 illustrates the above equation
in work for three values of s. Small si results in the proba-
bilities being distributed more evenly, and so for any µi still
all the Likert levels are quite probable (e.g. the respondent
is not capable of perceiving own µi or is not answering the
Likert questions meticulously enough). Increasing si results in
the level with θ closest to µi(λ) being selected with increas-
ing probability. Thus, importantly, the present specification
includes as a special case (with si → +∞) selecting the Likert
answer closest to µi(λ) (when interpreting Likert answers
being transformed to 0, 0.25, 0.5, 0.75, and 1).

Another nice (in my view) feature of the above approach
is that, e.g., even if µi(λ) = 0.76, it is still possible for the
middle option (and any other) to be selected, as the numerator
in equation 2 is always strictly positive. In that sense, the
respondent is not entirely able to perceive own membership
function being equal to 0.76 so as to rule out the middle
option due to it being blocked by level 4, with threshold
value 0.75. Of course, other formulas could be used, e.g.
implying randomizing only between two levels, directly above
and below a given µi(λ).

Parameters ai, bi, and si are idiosyncratic for each re-
spondent. They are drawn independently—of each other, and
between respondents—from lognormal distributions with the
underlying normal distributions with means and inverse vari-
ances N(mA, τA), N(mB , τB), and N(mS , τS), respectively.
Point estimates m̂A, m̂B , and m̂S are taken to define the
estimand, i.e. population-level membership function.

The point estimates are taken as medians of posterior
distributions. Percentiles 2.5 and 97.5 define the 95% credible
interval (95%CI). On technical note, non-informative priors
are assumed (normal for means, gamma for inverse variances).
The model is estimated with Markov-Chain Monte Carlo
method, implemented in JAGS/R. The results come from
20,000 iterations (thinning=5), with 5000 burn-in iterations.

B. JAGS code

Below I present the JAGS code used to estimate the model.
The following notation is used. nR and nV denote the number
of respondents and λs, respectively. answer[i,j] is a
matrix of Likert answers, i and k indexing respondents and
λs, respectively, l[k] = [0, 0.25, 0.5, 0.75, 1]. mA, mB, and
mS are the estimated mA, mB , and mS , respectively.
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Fig. 3. The conversion of a membership function (horizontal axis) into probabilities of Likert levels (shades of gray for various levels on vertical axis) for
three values of diffusion parameter, si.

model{
#OUTER LOOP OVER RESPONDENTS:
for (i in 1:nR){

#DRAW INDIVIDUALS’ PARAMETERS:
a[i] ˜ dlnorm(mA,tA)
b[i] ˜ dlnorm(mB,tB)
s[i] ˜ dlnorm(mS,tS)

#MIDDLE LOOP OVER LAMBDAS:
for (j in 1:nV){
x[i,j] <- 1/(1+a[i]*pow(v[j],b[i])) #***

#INNER LOOP OVER LIKERT LEVELS:
for (k in 1:5){
#PROB. OF LEVEL K (NOT NORMALIZED)
p[i,j,k] <- exp(-s[i]*abs(x[i,j]-l[k]))
}

#PROB. DIST. OF OBSERVABLES:
answer[i,j] ˜ dcat(p[i,j,1:5])

}
}

#PRIORS
mA ˜ dnorm(0,.01)
mB ˜ dnorm(0,.01)
mS ˜ dnorm(0,.01)
tA ˜ dgamma(.01,.01)
tB ˜ dgamma(.01,.01)
tS ˜ dgamma(.01,.01)
}

In order to use the code for WTA, it suffices to replace the
***-marked line with

x[i,j] <- 1-1/(1+a[i]*pow(v[j],b[i]))

as we expect an increasing membership function, and the sign
of parameters is predetermined by lognormal distributions.

IV. RESULTS

A. Baseline results

The estimation yields the following results for WTP:
• µ̂A = −17.62 with 95%CI = (−20.95;−14.13),
• µ̂B = 1.25 with 95%CI = (0.99; 1.44),
• µ̂S = 2.32 with 95%CI = (2.06; 2.61).

For the sake of estimating the 0.5-cut, the above implies
that µ = 0.5 for ca. 155,700 PLN/QALY, while the official
threshold amounts currently to 125,955 PLN/QALY (and
111,381 PLN/QALY at the time of the survey).

The results for WTA are as follows:
• µ̂A = −15.43 with 95%CI = (−19.58;−11.65),
• µ̂B = 1.03 with 95%CI = (0.74; 1.33),
• µ̂S = 2.48 with 95%CI = (2.28; 2.7),

and we get µ = 0.5 for ca. 246,800 PLN/QALY. Hence,
there is some disparity in 0.5-cuts. We still have to take into
consideration that the current methodology was not focused on
estimating the 0.5-cut, but on the whole membership function,
and so the estimates of the 0.5-cut may be driven by other
regions of the membership function.

The resulting membership functions, based on point esti-
mates, are presented in Figure 4 (the left panel). Now, having
estimated the membership functions allows comparing WTP
and WTA quantitatively. Firstly, notice that the 95%CI are
wider for WTA (for µA and µB , only which matter for the
shape of the membership function), and so there is more
stochastic uncertainty related to WTA than WTP. We can also
compare the two with respect to the amount of fuzziness.
I use two measures for that purpose, one was proposed in the
literatures and relies on the idea that the more the membership
function takes on values close to 0.5, the fuzzier the set is [11].
Formally, the amount of fuzziness is given by∫ +∞

−∞
(1− |2µ(x)− 1|) dx.

We obtain, for WTP, 137.98, and for WTA, 284.87 (calculated
numerically). I use another approach here, using the particular



shape of the membership function (decreasing monotonically
from 1 to 0). We can interpret the membership function in
the probabilistic fashion, as a flipped vertically cumulative
distribution function, and calculate the variance of the variable,
λ. Then the more the (upper bounds of the) α-cuts differ, the
fuzzier the set is. More formally, the amount of fuzziness is
then given by√∫ 1

0

sup(WTPα)2dα−
(∫ 1

0

sup(WTPα)dα
)2

.

We obtain 108.07 for WTP and 253.44 for WTA, and so
again—there is twice as much imprecision (in a fuzzy set
theory sense) in how WTA is perceived. Probably experts
feel more uncomfortably with quantifying trade-offs in the
context of selling health, which results in more of both—
stochastic noise (differences between the respondents) and
fuzziness (inability to precisely locate the threshold).

B. Results for WTA for a complete data set

As a sensitivity analysis, I repeat the calculations for the
complete data set, i.e. keeping in the three respondents that
were removed for WTA analysis. Then, only the results for
WTA change, as follows:
• µ̂A = −15.13 with 95%CI = (−19.94;−10.7),
• µ̂B = 0.79 with 95%CI = (0.33; 1.23),
• µ̂S = 2.59 with 95%CI = (2.39; 2.85).

The membership function is also illustrated in Figure 4 (the
left panel, dashed line). As can be seen, including the—
qualitatively different-respondents results in the results being
completely different, and not too reliable (taking into account
the raw data, Figure 2). This stresses the necessity to handle
the data violating the underlying assumptions (accepting some
trade-offs) separately.

C. No logarithmic transformation

For baseline analysis log of λs were used. Here I verify
the impact of this transformation, redoing the calculations for
original values. For that purpose, instead of equation 1, we
need to use the following one:

µi(λ) =
1

1 + eai+bi×λ
. (3)

The above expression obviously simplifies to equation 1 when
we take ln(λ) instead of λ (and denote eai , abusing notation,
by ai). We also need to make adequate changes in JAGS code
in the line marked with ***, taking:

x[i,j] <- 1/(1+exp(a[i]+v[j]*b[i]))

Now, ai can also take negative values, and so I assume it is
normally distributed, with parameters N(mA, τA).

The estimation yields, for WTP:
• µ̂A = −4.2 with 95%CI = (−5.3;−3.24),
• µ̂B = −3.68 with 95%CI = (−4.09;−3.28),
• µ̂S = 2.5 with 95%CI = (2.29; 2.74),

and for WTA:

• µ̂A = −3.92 with 95%CI = (−5.14;−2.88),
• µ̂B = −3.92 (coincidentally equal to µ̂A) with 95%CI =

(−4.42;−3.41),
• µ̂S = 2.49 with 95%CI = (2.21; 2.87).

The results are depicted in the right panel of Figure 4. As
can be seen, this approach reduces the WTP-WTA disparity
in terms of 0.5-cuts. The problem with the non-log approach
with the µ(·) given by equation 3 is that now necessarily
µ(0) < 1 for WTP and µ(0) > 0 for WTA, which does not
seem intuitive and desirable. That’s why this is not treated as
the baseline result.

D. Results for WTA for non-log, complete data

For completeness, I present the results of the non-log
approach with all the respondents in the WTA analysis. The
estimation yields:

• µ̂A = −3.84 with 95%CI = (−5.19;−2.75),
• µ̂B = −4.56 with 95%CI = (−5.48;−3.68),
• µ̂S = 2.7 with 95%CI = (2.33; 3.25).

The results are illustrated with the dashed line in the right
panel of Figure 4. Apparently, the non-log approach is more
robust to including respondents strongly opposing to accepting
trade-offs resulting in losing some health.

V. CONCLUSION

Understanding the shape of the membership function of
fuzzy trade-off coefficients is important to formally support
decision making. When imprecise opinions about possible
values of this coefficient are collected via surveys from a group
of respondents, these judgements will most certainly differ,
and statistical methods must be employed to estimate the joint,
average one. Naı̈ve methods may be misleading: e.g. they
can artificially suggest more fuzziness than actually present
in the raw data. Hence, approaches based on modelling—as
one presented in the present paper—may be more useful.

The proposed model clearly distinguishes between the pa-
rameterisation of the membership function and the mechanism
of its conversion into Likert scale, thus providing flexibility on
changing the two independently. Respondents’ characteristics
could be added to equation 1 (or 2, or 3), thus allowing to
model heterogeneity and find factors associated with, e.g.,
accepting greater WTP or larger WTP-WTA disparity.

Further work should be focused on building more robust
model, that could handle also respondents with qualitatively
different opinions (not crossing the middle Likert option). That
may require using models with more flexibility to vary the
membership function between the respondents, and so with
more parameters: hence, larger data sets are required. As an
idea: a scaling parameter could be used to limit the range
of values that the membership function can take for a given
respondent. Also, perhaps differently shaped functions should
be tested for WTP and WTA. That could account for larger
fuzziness for WTA, while restoring the equality of 0.5-cuts,
detected by different methods [10].
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