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Abstract

We present a new approach for studying equilibrium dynamics in a class of

stochastic games with a continuum of players with private types and strategic

complementarities. We introduce a suitable equilibrium concept, called Markov

Stationary Distributional Equilibrium (MSDE), prove its existence, and provide

constructive methods for characterizing and comparing equilibrium distributional

transitional dynamics. To analyze equilibrium transitions for the distributions of

private types, we develop an appropriate dynamic (exact) law of large numbers.

Finally, we show that our models can be approximated as idealized limits of games

with a large (but finite) number of players. We provide numerous applications of the

results including: dynamic models of growth with status concerns, social distance,

and paternalistic bequest with endogenous preference for consumption.
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1 Introduction

This paper presents a new constructive method for studying the equilibrium dynamics in

a class of games with complementarities and a continuum of players, where each player’s

type is private and evolves stochastically over time. The types may be interpreted as

agents’s endowment, their social rank, payoff relevant private information, parameteriza-

tion of behavioral traits, etc., depending on the economic problem at hand. We study

the evolution of the equilibrium joint distributions of types and actions in the population.

Importantly, our approach allows for a robust characterization of both equilibrium dis-

tributional transitional dynamics as well as equilibrium comparative statics. Finally, we

show how such large games can be used to approximate equilibria in dynamic games with

a large (but finite) number of players.

Large dynamic games with private information find numerous applications to diverse

fields in economics, including: growth with heterogeneous agents and endogenous social

structure (as in Cole et al., 1992), inequality with endogenous preferences formation (as

in Genicot and Ray, 2017), industry dynamics with heterogeneous firms (as in Wein-

traub et al., 2008), dynamic network formation (as in Mele, 2017; Xu, 2018), economics

of identity and social dissonance (as in Akerlof and Kranton, 2000; Bisin et al., 2011),

models of endogenous formation of social norms (as in Acemoglu and Jackson, 2017),

macroeconomic models with public or private sunspots (as in Angeletos and Lian, 2016),

or Bewley-Huggett-Aiyagari models of wealth distribution in the presence of incomplete

markets (see Cao, 2020).1 The principal questions regarding each of these models include

how to compute, calibrate, and estimate dynamic equilibria. This concern is related to

both stochastic steady-states and equilibrium distributional dynamics.

The theoretical literature concerning equilibrium dynamics in games is very limited,

even in games with finitely many players.2 One obvious reasons for this is that characteriz-

1 Acemoglu and Jensen (2015, 2018) discuss the relation between large dynamic economies and large

anonymous games. Notably, the former may be view as the latter (e.g., Bewley-Huggett-Aiyagari models).
2 From a theoretical perspective, little is known about the nature of convergence of equilibrium transi-

tional dynamics to stochastic steady-states. This question is complicated by the presence of equilibrium

multiplicities and stability issues related to equilibrium transitional paths. The lack of theoretical foun-

dation makes counterfactuals from these models difficult to implement and interpret.
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ing sequential and Markovian equilibria dynamics in such models can become analytically

intractable very quickly as the number of players grows and the state space becomes large

and complex. Additionally, due to heterogeneity of private types, characterizing the up-

dating of players’ beliefs both on and off equilibrium paths is non-trivial. Even providing

sufficient conditions for existence of sequential equilibria is very challenging, let alone

describing (and computing) how types and actions evolve over time.

Due to such complications, the literature has focused on alternative notions of equi-

libria that simplify dynamic interactions. In particular, there have been two dominant

methodological approaches to this question. The first approach exploits inherit aggrega-

tive structure in the game, where the players’ interactions are limited to some statistic or

aggregate that summarizes the population distribution, as well as imposes some notion of

equilibrium (stochastic) steady state. A second approach (often used in conjunction with

aggregation and stationarity) is to simplify interaction in the equilibrium by imposing

some behavioral features in its definition. Such approaches include notions of oblivious

equilibria (as in Lasry and Lions, 2007, Achdou et al., 2014, Bertucci et al., 2018, Light

and Weintraub, 2019, Achdou et al., 2020), mean-field equilibria (as in Weintraub et al.,

2008, Adlakha et al., 2015, and Ifrach and Weintraub, 2016), or imagined-continuum

equilibria (as in Kalai and Shmaya, 2018), among others.3 In this paper, we argue that

such simplifications need not play a crucial role if one wants to analyze the equilibrium

dynamics in a class of games with strategic complementarities we consider.

Our results This paper tackles the above theoretical and numerical problems within

a unified methodological framework of large stochastic anonymous games with strategic

complementarities4 and no aggregate risk.5 To obtain our results, we exploit the nature

of games with infinitely many agents, where individuals have negligible impact on actions

of others, thus, sufficiently limiting their interactions. This approach enables us to define

3 See also the solution concept proposed in Krusell and Smith (1998) for Bewley models with aggre-

gate risk, where agents know only the moments of the random measure determining the distribution of

idiosyncratic shocks and assets. See also Doncel et al. (2016); Kwok (2019); Lacker (2018); Nutz (2018).
4 See Topkis (1978), Vives (1990), Veinott (1992) and Milgrom and Shannon (1994) for some early

contributions and motivations for studying games of strategic complemenentarities.
5 Following Jovanovic and Rosenthal (1988), Bergin and Bernhardt (1992); Karatzas et al. (1994).
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and provide sufficient conditions for the existence of a Markov stationary distributional

equilibrium (henceforth MSDE). Our solution concept consists of a probability measure

over types and actions in the population of players, and a law of motion that specifies

the evolution of such distributions. Critically, a MSDE is defined over a minimal set of

state variables6 and thus resembles the extensively used notion of recursive competitive

equilibria in macroeconomics.7 We discuss this further in the motivating example below.

Our equilibrium concept is inherently dynamic and enables us to characterize and

compare equilibrium transition paths. Notably, the results hold without the need of

restricting our analysis to any aggregative structure. In fact, in our economic applications

it is essential to study the entire distribution of types and actions of players.8

The particular structure of games with strategic complementarities is indispensable for

our results. First of all, it allows us to prove existence of extremal MSDE (with respect

to an appropriate order). To do this, a key tool is to provide a tractable formulation

of the evolution of (distributional) equilibrium beliefs. Using these tools, we develop a

new order-theoretic approach to characterizing the order structure of (Markovian) dis-

tributional equilibrium. Moreover, by analyzing a measure space of agents, we avoid the

well-known technical issues that can emerge in extensive-form supermodular games with a

finite number of players and private information.9 Our approach delivers a new collection

of computable equilibrium comparative statics/dynamics results. Thus, we complement

and extend the recent stationary equilibrium comparative statics results from a class of

mean field games and oblivious equilibria to distributional games and dynamic equilibrium

(see Acemoglu and Jensen, 2015; Light and Weintraub, 2019).

To analyze the transition of private types/signals between periods, as well as issues

related to characterizing the dynamics of players’ beliefs, we develop a new version of

6 By the minimal state space, we mean a domain that includes only current individual type and

probability measures summarizing current population distribution of types.
7 It bears mentioning, that there are no general results on the existence of minimal state space

Markovian (or recursive equilibrium) in large dynamic economies. Cao (2020) provides the general-

ized Markov equilibrium existence result for a class of Krusell-Smith economics (which include Bewley-

Huggett-Aiyagari models as a special case) that is not minimal state space.
8 Equilibrium distributions are also important in econometric evaluation of heterogeneous models with

macroeconomic data. See, e.g., Parra-Alvarez et al. (2017) and Auclert et al. (2019).
9 See Echenique (2004), Vives (2009), and Mensch (2020) for discussions of these complications.
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the dynamic exact law of large numbers (henceforth D-ELLN). Our D-ELLN builds on

the important work of Sun (2006), Podczeck (2010) and He et al. (2017), among others,

and allows us to (i) simplify our analysis by allowing for independent draws of types

for a continuum of players; (ii) simplify the dynamics of the aggregate law of motion

of distributions over types-actions in the population; and (iii) simplify the problem of

an individual agent, who forms their beliefs using the law of large numbers, rather than

updating their beliefs on (the product of) other players’ types. We consider these results

to be of independent interest themselves, as they can be applied in other dynamic settings

that have micro-level idiosyncratic risk but no aggregate risk.

Eventually, we address the question of approximation as well as some theoretical/be-

havioral justification of MSDE. Specifically, we define the precise notion in which our

large game can be interpreted as an idealized limit of a related stochastic game with a

finite number of players. This is particularly useful in applications, as in some settings,

large dynamic economies are used as a tool to characterize properties of finite models.

We organize the rest of the paper as follows. In the remainder of this section we present

a motivating example to discuss precisely the new issues that emerge relative to the class of

games studied in the literature. Section 2 is devoted to the presentation of the main model

and our analysis of equilibrium. Our monotone comparative dynamics results are then

presented in Section 3, and our approximation result in Section 4. Multiple applications

of our results are discussed in Section 5. In Section 6, we explore the broad literature

related to our work and provide a deeper connection of this paper to the existing literature.

Proofs and auxiliary results omitted in the paper, together with some preliminaries on

the law of large numbers and lattice theory, can be found in the online appendix.10

A motivating example Consider a growth model in which individuals are concerned with

their relative social status. The society consists of a continuum of players. Each time pe-

riod n ∈ {1, 2, . . . ,∞}, a typical player is endowed with some (private) wealth/capital

t ∈ T = [0, 1] that constitutes their type. This wealth can be transformed into con-

sumption c ∈ [0, 1] or investment a ∈ A = [0, 1] using a simple one-to-one technology,

10Available here: https://lwozny.github.io/assets/pdf/LargeSSGOnlineAppendix.pdf.
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thus, introducing the constraint t = c + a. By investing a ∈ [0, t], the agent influences

their wealth t′ in the following period via a stochastic technology q. Whenever a units of

wealth is being invested, the cumulative probability of attaining the capital t′ is q(t′|a).

We assume that higher investments make higher wealth more likely, i.e., distribution

q(·|a) increases stochastically in a. Moreover, the realization of the future capital t′ is

independent across players.

Status of each agent is determined by both their current consumption c and wealth t.

In each period, every individual interacts randomly with one other member of the society.

If an agent with capital t consuming c encounters an individual of wealth t̃ consuming c̃,

the former receives utility U(c, c̃, t, t̃) = m(t− t̃)+w(c− c̃), where m and w are continuous,

strictly increasing, and concave functions. Thus, meeting individuals with lower wealth

and consumption is preferable due to, e.g., the feeling of superiority.

We assume that (given their current wealth t), the individual has to determine their

consumption c and investment a at the beginning of each period, i.e., before the interaction

with other members takes place. In order to do so, they need to evaluate their belief about

the distribution µ over capital-investments pairs (t̃, ã) across the society, where ã = t̃− c̃

determines their expected payoff in that particular period given by:

r(t, a, µ) =

∫
A×T

[
m(t− t̃) + w(t− a− t̃+ ã)

]
µ(dã× dt̃).

In order to specify sequential payoffs of the agent, suppose all other players play a sym-

metric stationary strategy σ : T → A that maps the current capital/wealth t to the level

of investment a = σ(t). Given the distribution τn of types at time n, the joint distribution

of types and actions is denoted by µn(S) = τn
(
{t ∈ T : (t, σ(t)) ∈ S

})
.

Given the sequences of wealth and wealth-investment distributions {τn}, {µn}, the

sequential payoff of a player endowed with an initial capital t0 is

max
{an}

{
(1− β)Et1,{τn}

[
∞∑
n=1

βn−1

∫
A×T

[
m(tn − t̃) + w(tn − an − t̃+ ã)

]
µn(dã× dt̃)

]}
,

where β ∈ (0, 1) is a discount factor and the expectation Et1,{τn} is taken with respect to

realization of the sequences of private types {tn} of that individual, induced by q.
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We are interested in studying the socioeconomic dynamic distributional equilibrium

in this game. More generally, we want to investigate how the distributions of types and

actions in the population evolve and interact when (a) distributions of types and actions

are determined by strategies of individuals and the stochastic transition q defining the

evolution of private types, and (b) individuals form beliefs over future distributions of

types and actions that are consistent with the law of motion governing the distribution of

private types (e.g., capital levels), given the joint strategy of all players.

As we show in the sequel, our approach to studying equilibrium in this environment

benefits from the following observation: although the players’ problem is sequential with

each private capital type drawn randomly each period, it can be reformulated as a standard

Markov decision problem (henceforth MDP) once the sequence of distributions of types

{τn} and types-actions {µn} in the population are taken as fixed. This can be done

precisely because infinitesimal individuals do not affect those distributions directly. In

such a case, the measure µn (or τn) serves as an additional state variable at time n.

A recursive formulation of the player’s problem can be obtained by allowing the players

to share a macro belief Φ, i.e., a transition function of capital-investment distributions

between periods, where µn+1 = Φ(µn). Together with an initial distribution µ1, this allows

players to conjecture a candidate equilibrium path of the game, enabling us to reformulate

their sequential problem as a recursive one with the value function v∗ satisfying

v∗(t, µ; Φ) = max
a∈[0,t]

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ(µ); Φ

)
q(dt′|a)

}
.

Our notion of MSDE consists of a measure µ∗ over types-actions in the population and

a macro belief transition Φ∗ such that, conditional on the above, (almost) every player

solves their MDP and the resulting distribution of types-actions coincides with µ∗. Hence,

the perceived dynamics of distributions (which are deterministic under the D-ELLN) is re-

quired to be consistent with the actual transition q and it’s initial distribution. Moreover,

under a D-ELLN, one can associate probabilities q with empirical population distributions

on T . Since any equilibrium pair (µ∗,Φ∗) generates a sequence of “equilibrium” measures

{µ∗n}, where µ∗1 = µ∗ and µ∗n+1 = Φ∗(µ∗n), our concept is inherently dynamic, and allows

naturally to evaluate and compare distributional equilibrium transition paths.
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Importantly, with our equilibrium concept we can study interactions between individ-

ual players and the entire distribution of types-actions in the population. This is resembled

in the motivating example, which is inherently non-aggregative. Indeed, evaluating payoff

at time n requires the entire distribution of capital (types) and investments (actions) in

the population at time n, and beliefs about the future distributions. It is not sufficient to

substitute the measure µn with its summary statistics or an aggregate. This is a common

feature of large dynamic economies with social interactions.

The motivating example is also a game with dynamic strategic complementarities.

That is, in this game, it is optimal for every individual to increase their own wealth and

consumption as the distribution of wealth and consumption in the population “increases”

stochastically. More importantly, such complementarities are present within and across

periods. Concentrating on the latter, we study situations where higher anticipated distri-

butions of types tomorrow create dynamic complementarities for each player to increase

their own type in the next period.11 Whether a game exhibits such complementarities

depends critically on two reinforcing conditions: (i) increasing differences between private

type (status) and anticipated population distribution the next period; and (ii) agents

forming monotone beliefs, i.e., expecting higher population distribution tomorrow when

faced with higher distribution today.12 Our example possess both features. This is in

stark contrast to analyzing complementarities on stochastic steady-state equilibria only.

Finally, it is important to determine the comparative structure of equilibrium tran-

sitional paths in such models (in addition to comparisons of stationary equilibria). In

particular, how changes in parameters of the game (e.g., discount factor, preference or

technology parameters, the initial distribution τ1) affect the paths of equilibrium distri-

butions {µ∗n} (as implied by equilibrium µ∗ and Φ∗). Importantly, since µ∗n is defined over

the space of types and actions, one needs to provide an equilibrium comparative statics

result for appropriate spaces of multidimensional distributions.

11 More formally, there is a dynamic single-crossing condition satisfied between the current investment

and the future anticipated type-action distribution in the population.
12 Our work is hence related to recent work on characterizing single crossing in distribution (e.g., Quah

and Strulovici, 2012 and Kartik et al., 2019).
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2 Large stochastic games with complementarities

Consider a stochastic game in discrete time of an infinite horizon. Let (Λ,L, λ) be a

probability space of players, which we assume to be super-atomless. The latter is critical

since it allows us to apply the dynamic law of large numbers. One example of such a space

is the product measure on [0, 1]I , where each factor is endowed with Lebesgue measure

and I is uncountable. See Section A.1 of the online appendix for details.

In each period n ∈ {1, 2, . . . ,∞}, a player is endowed with a private type t ∈ T ⊆ Rp,

where T is compact and T denotes its Borel σ-algebra. Given a distribution τ of types

of all (other) players, the player chooses an action a in Ã(t, τ) ⊆ A, where A ⊆ Rk is a

compact space of all conceivable action endowed with the Borel σ-algebra A. Endow T

and A with the natural product partial order ≥.

Let M be a set of probability measures on T ⊗ A and MT be the set of probability

measures on T . Endow both spaces with its induced first order stochastic dominance

order.13 The player’s payoff in a particular period is determined by a bounded function

r : T × A ×M → R taking values r(t, a, µ), for a private type t, an action a, and the

probability measure µ over types and actions of all players.

In this paper, we investigate dynamic games in which private types of players are

determined stochastically in each period. The transition probability is represented by a

function q : T × A ×M → MT that assigns a probability measure q(·|t, a, µ) over the

individual payer’s types in the following period, given their current type t, action a, and

measure µ of types-actions in the population.

2.1 Decision problems for the players

In order to define properly the sequential decision problems for each player, it is funda-

mental to specify how the individual is forming beliefs about types of all players in the

game, based on the current distribution of types and strategies of other players. We begin

13 For any two probability measures µ and ν over Y , we say that µ dominates ν in the first order

stochastic sense, if
∫
f(y)µ(dy) ≥

∫
f(y)ν(dy), for any measurable, bounded function f : Y → R that

increases with respect to the corresponding ordering ≥Y .
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with some basic assumptions on the primitives of the game:

Assumption 1. Assume the following.

(i) For all τ ∈MT , correspondence t→ Ã(t, τ) is measurable and compact-valued.

(ii) For all µ ∈M, function (a, t)→ q(·|t, a, µ) is Borel-measurable.

The super-atomless probability space of players together with Assumption 1 guarantee

that the (endogenous) transition of private signals satisfies the no aggregate uncertainty

condition in each period and evolves deterministically. Specifically, for the current distri-

bution µ of types and actions of all players, the measure of players with privates types in

some measurable set S in the following period is determined by

φ(µ)(S) :=

∫
T×A

q(S|t, a, µ)µ(dt× da). (1)

We now state a critical theorem that is applied repeatedly in the paper. It posits that,

under Assumption 1, the exact dynamic law of large numbers holds. See Section A.1 in

the online appendix for a formal definition of a (rich) Fubini extension.

Theorem 1. Under Assumption 1, there is a sampling probability space (Ω,F , P ) and a

rich Fubini extension (Λ × Ω,L � F , λ � P ) such that, for any sequence σ = (σn)n∈N

of functions σn : T × MT → A, any initial state t ∈ T , and any initial distribution

τ ∈MT ,there is sequence of (L� F)-measurable functions Xn : Λ× Ω→ T satisfying:

(i) For all n ∈ N, the random variables
(
(Xn)α

)
α∈Λ

are (conditional on the history)

essentially pairwise independent.14

(ii) For all n ∈ N and P -almost every ω ∈ Ω, we have

τn := λ(Xn)−1
ω = (λ� P )X−1

n ; 15

as well as µn(σ) := λ
(
Xn, σn(Xn, τn)

)−1

ω
= (λ� P )

(
Xn, σn(Xn, τn)

)−1
.

14 Recall that (Xn)α denotes the section of Xn, for a fixed α ∈ Λ.
15 To clarify our notation, recall that we denote λ(Xn)−1

ω = λ
(
{α ∈ Λ : (Xn)ω(α) ∈ U}

)
, for any

U ∈ T . We define the remaining measures analogously.
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(iii) The distribution of the random variable (Xn+1)α, conditional on
(
(Xj)α

)
j≤n, is given

by q
(
· |(Xn)α, σn

(
(Xn)α, µn(σ)

)
, µn(σ)

)
.

The proof of this theorem is in the online appendix. As pointed out in the introduction,

this theorem could be of independent interest for any large dynamic game/economy with

micro-level idiosyncratic risk that induces no aggregate risk.

We now define the decision problem of a player in a candidate Markov stationary

distributional equilibrium. Let H∞ be a set of all histories
{

(tn, an, τn)
}
n∈N, where

an ∈ Ã(tn, τn). Let Hn be the set of histories up to time n, that is Hn :=
{

(tj, aj, τj)
n
j=1 :

aj ∈ Ã(tj, τj)
}

. A strategy is a sequence of functions (σn)n∈N such that σn : Hn−1 × T ×

MT → A is Borel-measurable in (t1, t2, . . . , tn) ∈ T n, and σn(hn−1, tn, τn) ∈ Ã(tn, τn),

where we have H0 = ∅ and initial values of t1, τ1 are given.

A strategy profile is called Markov if in each period n, the strategy profile depends

only on the partition of histories consisting of the current state (t, τ). A strategy profile is

stationary if it is time-invariant. By Theorem 1, given any initial private state t, a public

distributional state τ , a Markov strategy profile σ′ of other players, a Markov strategy

σ induces the unique private measure P σ,σ′

t,τ on histories of the game.16 This implies the

sequential objective function for each player is:

R
(
t, (σ, σ′), τ

)
:= (1− β)Eσ,σ

′

t,τ

[
r(t, σ1(t, τ), µσ

′

1 ) +
∞∑
n=2

βn−1r
(
tn, σn(tn, τn), µσ

′

n

)]
, (2)

where β ∈ (0, 1) is a discount factor and Eσ,σ
′

t,τ is the expectation induced by P σ,σ′

t,τ and

µσ
′
n := τn(idT , σ

′(·, τn))−1. We impose the following additional assumptions.

Assumption 2 (Payoffs). The function r (i) is continuous in (t, a); (ii) is monotone sup-

and inf-preserving in µ; (iii) is increasing in t; (iv) is supermodular in a; and (v) has

increasing differences in
(
a, (t, µ)

)
and

(
t, µ
)
.17

Assumption 3 (Transition probability). The transition kernel q(·|t, a, µ) (i) is continuous

in (t, a); (ii) is monotone sup- and inf-preserving in µ; (iii) is stochastically increasing in

16 For λ−almost every α ∈ Λ, (Xα
n )n∈N has the same distribution, which exists by Ionescu-Tulcea

Theorem (Dynkin and Yushkevich, 1979; see also Theorem 15.26 in Aliprantis and Border, 2006).
17 See Section A in this paper for a formal definition of monotone sup- and inf-preserving functions.

Supermodularity and increasing differences are defined in Section A.2 of the online appendix.
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(t, a, µ); (iv) is stochastically supermodular in a;18 and (v) has stochastically increasing

differences in
(
a, (t, µ)

)
and (t, µ).19

Assumption 4 (Feasible actions). The feasible action correspondence Ã : T × µT → A (i)

is upper hemi-continuous; (ii) its values are compact sublattices; (iii) increases with t in

the sense of set inclusion;20 and (iv) satisfies strict complementarities.21

Most of these assumptions are standard in dynamic games with complementarities

(see Curtat, 1996 or Balbus et al., 2014) with the exception of some monotonicity re-

quirements on the payoff and transition functions. As shown later in the paper, these

are indispensable to preserve strategic complementarities across periods in the extensive

formulation of the game under Markovian strategies. Importantly, our framework en-

compasses the linear social interaction models studied in the econometric literature by

Blume et al. (2015); Kline and Tamer (2020); Kwok (2019).22 Additionally, an interesting

example of a transition function q satisfying Assumption 3 is

q(·|t, a, µ) := g(t, a, µ)ρ(·) +
(
1− g(t, a, µ)

)
ν(·),

where g(t, a, µ) is supermodular in a; has increasing differences in
(
a, (t, µ)

)
and (t, µ);

and is increasing in (a, t, µ); while ρ, ν are probability distributions over T such that ρ

first order stochastically dominates ν. This class of transitions was introduced in Curtat

(1996) and Amir (2002), and has been successfully applied in the related literature.23

Remark 1. Our assumption on a stochastic transition generally implies that transition can

not be deterministic. Indeed, supermodularity and increasing differences of the integrand

18 The transition function q : X →MT is stochastically supermodular if the function x→
∫
f(t′)q(dt′|x)

is supermodular, for any T -measurable, bounded, and increasing function f : T → R.
19 The transition function q : X × Y → MT has stochastically increasing differences in (x, y) if the

function g(x, y) :=
∫
f(t′)q(dt′|x, y) has increasing differences in (x, y) for any T -measurable, bounded,

and increasing function f : T → R.
20 That is, if t ≥ t, then Ã(t, τ) ⊆ Ã(t′, τ).
21 See Section A.2 of the online appendix for a definition of a sublattice and strict complementarities.
22 There, we have r(t, a, µ) =

[
β1t+β2

∫
T
f1(t, t′)t′ µT (dt′)

]
a− 1

2a
2−β3

2

[
a−β4

∫
T×A f2(t′)a′ µ(dt′×da′)

]2
,

for some positive βi’s and linear, positive, increasing functions f1, f2 that weight social interaction by

measuring contextual and peer network effects respectively. Our computable monotone comparative

statics/dynamics results developed in the following section may be very useful in developing and char-

acterizing estimators to test equilibrium distributions in empirical models. See, e.g., Echenique and

Komunjer (2009, 2013), DePaula (2013), and Uetake and Watanabe (2013), among others.
23For example, see Balbus et al. (2013) for a discussion on the nature of these assumptions.
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∫
f(t′)q(dt′|t, a, µ) must hold for any integrable and monotone function f , which is gen-

erally not satisfied by deterministic transitions. However, if A ⊆ R (an important special

case in the applied literature), then the deterministic transition given by q(S|t, a, µ) = 1

if g(a) ∈ S, and q(S|t, a, µ) = 0 otherwise, for some continuous and increasing function

g : A→ T , satisfies our assumption.

Remark 2. Whenever the action space A is one-dimensional and the transition function

q depends only on action a, our results remain true even if the payoff function r and the

correspondence Ã are not increasing in t (in the appropriate sense). This follows directly

from our constructive argument in Section 2.3 and will be clear in a moment.

An important feature of our framework is that the original problem in (2) admits a

recursive representation. Specifically, suppose that function Φ : M → M determines

the next period distribution Φ(µ) over types and actions of all players based on the

current distribution µ. Given our observation in (1), the marginal of Φ(µ) over T must

be φ(µ)(S) =
∫
T×A q(S|t, a, µ)µ(dt× da), for any measurable set S. Moreover, we restrict

our attention to functions Φ that are monotone inf-preserving. Formally, let

D :=
{

Φ :M→M : Φ is increasing and monotone

inf-preserving and margT (Φ(µ)) = φ(µ), for any µ ∈M
}
, (3)

endowed with the componentwise order.

Remark 3. Dually, we can consider D′ :=
{

Φ :M→M : Φ is increasing and monotone

sup-preserving and margT
(
Φ(µ)

)
= φ(µ), for any µ ∈ M

}
. For expositional reasons,

we focus on D but all our constructions and results have their counterpart in D′.

Denote µT := margT (µ). In the remainder of this section, we show that for any initial

distribution µ and any function Φ, the value corresponding to the problem (2) satisfies

v∗(t, µ; Φ) = max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ(µ); Φ

)
q(dt′|t, a, µ)

}
.24 (4)

24 Equivalently, one may use t, τ as state variables and construct µ by composing τ and a strategy

σ : T → A. In such a case, the strategy σ would have to be another parameter of the value function.
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Given the initial distribution µ and a perceived law of motion Φ, the player’s problem

is a MDP with uncertainty about the private signal t only. Thus, under D-ELLN, the

sequence of aggregate distributions {µn}n∈N is deterministic. Using standard arguments,

we can show that the the best response correspondence of each player can be written as

Markov on the natural state space of t and µ. However, our definition of equilibrium

requires consistency between such policy correspondence and the perceived law of motion

Φ. Since Φ also specifies beliefs of players on continuation paths of the game, we write

v∗(t, µ; Φ) to stress that the value function and the corresponding policy depend on the

beliefs.25 We discuss the importance of this construction in the next section.

2.2 Markov stationary distributional equilibria

We are ready to specify the notion of equilibrium in the game.26

Definition 1 (Markov Stationary Distributional Equilibrium). A pair (µ∗,Φ∗) ∈ M× D

is a Markov Stationary Distribution Equilibrium (MSDE) whenever:

(i) there is a function v∗ such that, for any µ ∈M, and λ-almost every t ∈ T ,

v∗(t, µ; Φ∗) = max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ∗(µ); Φ∗

)
q(dt′|t, a, µ)

}
;

(ii) there is a measurable selection σµ,Φ∗ of correspondence Σµ,Φ∗ : T ⇒ A, where

Σµ,Φ∗(t) := arg max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ∗(µ); Φ∗

)
q(dt′|t, a, µ)

}
,

and µ∗ = µ∗T
(
idT , σµ∗,Φ∗)

−1 and Φ∗(µ) = φ(µ)
(
idT , σΦ∗(µ),Φ∗)

−1, for any µ ∈M.27

An MDSE consists of an initial distribution µ∗ and a Markov transition function Φ∗.

It also involves an equilibrium policy σµ,Φ∗ : T → A (or equivalently σ∗ : T ×MT → A).

Our equilibrium is stationary in the sense that strategies and beliefs of players are time-

invariant. Nevertheless, we allow for a dynamic interaction of players in with future

periods distributions (generated by the law of motion Φ∗) and summarized by the value

25 Compare with Markov equilibrium in Kalai and Shmaya (2018) for large but finite repeated games.
26Dually, we can define MSDE in M×D′.
27 That is, µ∗(S) = µ∗T

({
t ∈ T : (t, σµ∗,Φ∗(t)) ∈ S

})
, Φ∗(µ)(S) = φ(µ)

({
t ∈ T : (t, σΦ(µ∗),Φ∗(t)) ∈ S

})
.
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v∗
(
·,Φ∗(µ∗); Φ∗

)
. Condition (i) is a standard Bellman equation that characterizes players

best reply correspondences, while (ii) imposes a two-fold consistency. On one hand, we

have µ∗ = µ∗T (idT , σµ∗,Φ∗)
−1, hence, the distribution of actions must be generated by the

equilibrium strategy σµ∗,Φ∗ , given the initial distribution of types and the equilibrium

law of motion. In addition, we require that Φ∗(µ) = φ(µ)(idT , σΦ∗(µ),Φ∗)
−1. Thus the

perceived (macro belief) and the actual law of motion (i.e., generated by the best-response

selection σ) for aggregate distributions coincide.28 The Markov transition Φ∗ specifies

common beliefs which players each use to determine future paths of candidate equilibrium

distributions. In macroeconomic literature on recursive equilibrium, such beliefs are often

called rational. Since we require Φ∗(µ) = φ(µ)(idT , σΦ∗(µ),Φ∗)
−1, for any µ ∈M, these are

beliefs on and off equilibrium paths.

Theorem 2. Under Assumptions 1–4, there exists the greatest MSDE of the game inM×D

and the least in M×D′.

The above theorem requires some comment. First, apart from providing sufficient

conditions to guarantee the existence of an MSDE, Theorem 2 implies the greatest MSDE

that determines the upper bound for all equilibria in the space M×D. Similarly, there

exists the least MSDE that is also a lower bound for all equilibria in M×D′. Moreover,

whenever the set of maximizers corresponding to the optimization problem on the right

hand-side in (4) is unique, then the set of MSDE is chain complete, i.e., closed under

monotone sequences of equilibria in M×{D ∩ D′}.

Remark 4. Any MSDE induces a sequential distributional equilibrium as defined by Jo-

vanovic and Rosenthal (1988), i.e., {µ∗n}n∈N, where µ∗1 = µ∗ and µ∗n = Φ∗(µ∗n−1).

Given this, a natural question arises as to whether there is an invariant distribution

induced by MSDE. Hence, the following proposition. We omit the proof.

Proposition 1 (Invariant distributions). Under assumptions 1–4, there exists the greatest

invariant distribution ν̄ induced by the greatest MSDE (µ̄∗,Φ
∗
), i.e., ν̄ = Φ

∗
(ν̄) and the

least invariant distribution ν induced by the least MSDE (µ∗,Φ∗).

28 Since we work with no aggregate uncertainty, we do not require for Φ∗ to be measurable.
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The greatest and least invariant distributions can be obtained through simple iterations

on the mappings Φ
∗

and Φ∗, respectively. Also note that for any MSDE (µ∗,Φ∗), and the

pair
(
Φ∗(µ∗), Φ∗

)
is also an MSDE. Thus, the pair (ν,Φ∗) is also an MSDE, for any

invariant distribution ν generated by Φ∗.29

Although we prove Theorem 2 in the following section, we make an important obser-

vation at this point. Importantly, our approach to MSDE is constructive. That is, we

can introduce an explicit iterative algorithm that can be used to approximate the great-

est equilibrium by successive approximation. To present our construction, we need to

introduce some additional notation. For any µ ∈M, Φ ∈ D, and function v, let

Γ(t, µ,Φ; v) := arg max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ)

}
, (5)

which is the set of maximizers of the player’s MDP. Define the greatest element of the set

by γ(t, µ,Φ; v), whenever it exists. Let ? be a binary operation between τ ∈MT and the

set of measurable functions h : T → A returning probability measure on T × A:30

τ ? h := τ(idT , h)−1. (6)

Define operator Ψ mapping M×D to itself, where Ψ(µ,Φ) = (µ′,Φ′) and

µ′ := µT ? γ(·, µ,Φ; v∗) and Φ′(µ) := φ(ν) ? γ
(
·,Φ(µ),Φ; v∗

)
, (7)

for all µ ∈M, where v∗ : T ×M×D → R is a function solving (4).

Proposition 2 (Bounds approximation). Let µ̄ and Φ be the greatest elements of M and

D, respectively. Under Assumptions 1–4, limn→∞Ψ
n
(µ̄,Φ) is the greatest MSDE.

Again, a similar construction allows to approximate the least MSDE.

2.3 Construction of equilibria

We devote this subsection to the proof of Theorem 2. We discuss the main intuition of

the argument and state the auxiliary results which may be of independent interest. Here,

29 However, it must be that ν̄ is dominated by µ̄∗.
30 That is, (τ ? h)(S) = τ

(
{t ∈ T : (t, h(t)) ∈ S}

)
, for any measurable set S.
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we concentrate on the greatest MSDE and spaceM×D only. The argument for the least

MSDE is analogous. Let Assumptions 1–4 be satisfied throughout. We begin by showing

that the problem of each player in (2) admits a recursive representation. In particular,

for any Markov transition function Φ ∈ D, there is a unique function v satisfying (4).

Consider the space V of functions v : T ×M × D 7→ R such that: (i) functions v

are uniformly bounded by a value r̄ > 0, (ii) v(·, µ,Φ) is increasing and continuous, for

any (µ,Φ) ∈ M× D, (iii) v(t, ·, ·) is monotone inf-preserving, for any t ∈ T , (iv) v has

increasing differences in
(
t, (µ,Φ)

)
. Endow V with natural sup-norm topology || · ||∞.

Lemma 1. V is complete metric space.

Given that V is a subset of all bounded functions, it is a subset of a Banach space.

Hence, it suffices to show the set is closed. Noting the fact that continuity, monotonicity,

and increasing differences are preserved in the sup-norm convergence, the main difficulty

is to show that any limit of monotone inf-preserving functions preserves this property.

The proof of this claim is shown in the online appendix.

The next lemma provides an important feature of the Markov transition functions Φ.

The proof is immediate from Lemma B.1 in the online appendix and we omit it.

Lemma 2. Let {µk}k∈N be a decreasing sequence in M that weakly converges to µ in M.

Let {Φk}k∈N be an decreasing sequence in D that pointwise weakly converges to some Φ in

D. Then
{

(Φk(µk)
}
k∈N weakly converges to Φ(µ).

Define an operator B : V → V as

(Bv)(t, µ,Φ) := max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ)

}
. (8)

Some basic properties of the operator B are provided in the following lemma.

Lemma 3. For any v ∈ V, function (Bv) is continuous and increasing in t, jointly mono-

tone inf-preserving in (µ,Φ), and has increasing differences in
(
t, (µ,Φ)

)
.

To keep our notation compact, denote the function within the brackets in (8) by

F (t, a, µ; v,Φ) := (1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ).
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Given Assumptions 2–4, F (t, a, µ; v,Φ) is increasing in t, jointly continuous in (t, a)

and has increasing differences in
(
a, (t, µ,Φ)

)
and

(
t, (µ,Φ)

)
. We claim it is also mono-

tone inf-preserving and monotone sup-preserving in (µ,Φ). We will show the former

property, where the latter property follows by a similar argument. So see monotone inf-

preserving, suppose that
{

(µn,Φn)
}
k∈N is a decreasing sequence that converges to (µ,Φ).

By Lemma 2, we have Φn(µn) → Φ(µ). By Assumption 2 and the choice of the set V ,

it must be that both r(t, a, µk) → r(t, a, µ) and v
(
t,Φk(µk), µk

)
→ v

(
t,Φ(µ), µ

)
. More-

over, we have
∫
T
v
(
t′,Φk(µk), µk

)
q(dt′|t, a, µk) →

∫
T
v
(
t′,Φk(µk), µk

)
q(dt′|t, a, µk), which

follows from Lemma B.2 in the online appendix. We are ready to prove Lemma 3.

Proof of Lemma 3. Continuity of (Bv) follows from Berge’s Maximum Theorem (see The-

orem 17.31 in Aliprantis and Border, 2006). Monotonicity of (Bv) in t is implied by mono-

tonicity of F and the fact that Ã increases in t in the sense of set inclusion. To show that

it is monotonically inf-preserving in (µ,Φ), take any decreasing sequence
{

(µk,Φk)
}
k∈N

that converges to some (µ,Φ). We know that F (t, ak, µk; v,Φk) → F (t, a, µ; v,Φ) when-

ever ak → a. By Lemma B.3 in the online appendix, this suffices for (Bv)(t, µk,Φk) →

(Bv)(t, µ,Φ). Finally, the fact that (Bv) has increasing differences in
(
t, (µ,Φ)

)
can be

shown as in the proof of Lemma 1 in Hopenhayn and Prescott (1992).

The conditions guaranteeing that the value function has increasing differences in both

arguments (i.e., in t, µ) along with the transition Φ∗ being monotone allows us to avoid

the problems in characterizing dynamic complementarities in actions between periods

and beliefs that have been reported in the literature (e.g., Mensch, 2020). As a result,

we dispense with some continuity assumptions that are typically critical for existence of

equilibria in these games. This is due to no aggregate uncertainty and the fact that a

player has no influence on aggregate distribution and macro beliefs.31 The next result

follows immediately and concerns the solution to equation (4).

Proposition 3. Operator B : V → V has a unique fixed point in V.

31See also Kalai and Shmaya (2018).
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Indeed, Lemma 3 guarantees that B is well-defined operator that maps a complete

metric space into itself. Since it is also a contraction, it has a unique fixed point v∗.

Finally, showing that the value coincides with the value of the original problem (2) can

be done using standard arguments. See, e.g., Theorem 9.2 in Stokey et al. (1989).

We now proceed with the second half of the argument in which we prove existence of

the greatest MSDE. First, recall the definition of the correspondence Γ from (5), with its

greatest selection γ : T ×M×D → A. Consider the following lemma.

Lemma 4. For any v ∈ V, the greatest selection γ(t, µ,Φ; v) is a well-defined function,

measurable in t, increasing in (t, µ,Φ), and monotone inf-preserving.

Proof. Take any v ∈ V . Clearly, we have Γ(t, µ; v,Φ) = arg maxa∈Ã(t,µT ) F (t, a, µ; v,Φ).

It is straightforward to verify that F is supermodular and continuous in a. Since set

Ã(t, µT ) is a complete sublattice of A, by Corollary 4.1 in Topkis (1978), set Γ(t, µ; v,Φ)

is a complete sublattice of A. Therefore, it admits both the greatest and least element.

The proof of measurability of γ is in the online appendix. Monotonicity follows from

increasing differences of F and Theorem 6.2 in Topkis (1978). To show that γ is monotone

inf-preserving, let
{

(µk,Φk)
}
k∈N be decreasing sequence converging to (µ,Φ). By the

previous argument, sequence
{
γ(t, µk,Φk; v)

}
k∈N is decreasing. Suppose it converges to

some γ, and thus γ(t, µk,Φk; v) ≥ γ, for all k ∈ N. Since F continuous and monotone inf-

preserving, Lemma B.3. in the online appendix guarantees that γ ∈ Γ(t, µ; v,Φ). Thus,

it must be γ ≤ γ(t, µ,Φ; v), and so γ ≤ γ(t, µ,Φ; v) ≤ γ(t, µk,Φk; v).

Next, recall the definition of operator ? from (6).

Lemma 5. Take any measures τ, τ ′ ∈MT such that τ ′ first order stochastically dominates

τ , and increasing functions h, h′ : T ×A→ A such that h′ dominates h pointwise. Then,

the measure (τ ′ ? h′) first order stochastically dominates the measure (τ ? h).

The proof of the above lemma is straightforward, hence, we omit it.

Lemma 6. Let {τk}k∈N be a decreasing sequence in MT converging to some τ , and let

{hk}k∈N be a (pointwise) decreasing sequence converging to some h, where hk : T ×A→ A

are increasing and monotone inf-preserving functions. Then (τk ? hk)→ (τ ? h) weakly.
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Proof. This follows from Lemma B.1 in the online appendix.32 We only need to show that

any of τ ? h is inf-preserving in h. Let τ ∈ MT be arbitrary and let hk be a decreasing

sequence of Borel functions from T to A. Let h = lim
k→∞

hk. Then, for any measurable,

continuous, and bounded function f : T × A→ R, we obtain

lim
k→∞

∫
T×A

f(t, a)(τ ? hk)(dt× da) = lim
k→∞

∫
T

f
(
t, hk(t)

)
τ(dt)

=

∫
T

f
(
t, h(t)

)
τ(dt) =

∫
T×A

f(t, a)(τ ? h)(dt× da).

Hence (τ ? hk)→ (τ ? h) weakly. This completes the proof.

To prove Theorem 2, take the unique function v∗ that solves the equation (4). Define

operator Ψ as in (7). Given monotonicity of γ(t, µ,Φ; v) and Lemma 5, we conclude that

it is increasing. Moreover, by Lemmas 4 and 6, it is also monotonically inf-preserving.

Lemma 7. The set D is a lower chain complete poset.

Proof. Let {Φj}j∈J be a chain of elements in D. Let Φ :=
∧
j∈J Φj. It suffices to show that

Φ is monotone inf-preserving. Let {µk}k∈N be a decreasing sequence inM that converges

to µ. For any k, j, and increasing, measurable function f : T × A→ R,∫
T×A

f(t, a)(Φµ)(dt× da) ≤
∫
T×A

f(t, a)(Φµk)(dt× da) ≤
∫
T×A

f(t, a)(Φjµk)(dt× da).

As k →∞, we obtain∫
T×A

f(t, a)(Φµ)(dt× da) ≤ lim inf
k→∞

∫
T×A

f(t, a)(Φµk)(dt× da)

≤ lim sup
k→∞

∫
T×A

f(t, a)(Φµk)(dt× da) =

∫
T×A

f(t, a)(Φjµ)(dt× da).

We conclude by taking the infimum with respect to j on the right hand-side.

We proceed with the proof of Theorem 2.

Proof of Theorem 2. It suffices to show that there is the greatest fixed point of Ψ defined

in (7). Note that Ψ is monotone in (µ,Φ). Indeed, by Lemma 4, γ(t, µ,Φ; v∗) is jointly

32 Here the role of Ξ plays MT , and the role of fk plays h 7→ (τk ? h).
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increasing in (t, µ,Φ). By Lemma 6, this implies monotonicity of µ′ in (7). By the same

argument Φ′ is increasing in µ and Φ. Moreover, by Lemmas 4 and 6, we conclude that

Ψ is a monotone inf-preserving self-map on M×D. By applying Proposition A.1 at the

end of this paper, we conclude that there exists the greatest MSDE.

3 Monotone equilibrium comparative dynamics

We next discuss the nature of monotone equilibrium comparative dynamics in the class

of games studied in Section 2. To do this, we parameterize primitives of our game with θ

in a poset Θ, and seek conditions under which MSDE are ordered in the deep parameters

of the game. Given our definition of equilibrium, this means that a selection θ → µ∗(θ)

and the equilibrium law of motion θ → Φ∗(θ) are increasing. Hence, the use of the term

monotone comparative dynamics rather than monotone comparative statics.

We first define a positive shock.33

Assumption 5 (Positive shock). Let Θ be a poset, and assume the following: (i) Payoff

function r(t, a, µ; θ) has increasing differences in (a, θ) and (t, θ). (ii) Transition kernel

q(·|t, a, µ; θ) is increasing in θ and has increasing differences in (a, θ) and (t, θ). (iii) Fea-

sible action correspondence Ã(t, µ; θ) has strict complementarities in (t, θ).

Theorem 3 (Monotone Comparative Dynamics). Suppose that the parameterized mappings

r(·, θ), q(·; θ), and Ã(·; θ) satisfy Assumptions 1–4, for all θ ∈ Θ. Under Assumption 5,

the greatest equilibrium
(
µ̄∗(θ),Φ

∗
(θ)
)

of the parameterized game increases in θ. Similarly

does the least equilibrium
(
µ∗(θ),Φ∗(θ)

)
.

Proof. We prove the case for the greatest equilibrium only. Let Ψ
θ

be the counter-

part of the operator Ψ in the parameterized game with θ ∈ Θ. Similarly we denote

φθ and γθ. Given that q(·|t, a, µ; θ) is increasing in θ, it suffices to show that θ → γθ

is increasing. Observe that, under our assumptions, the objective (1 − β)r(t, a, µ, θ) +

33 Our notion of a positive shock is consistent with the terminology of Acemoglu and Jensen (2015).

The difference here is we consider the situation of comparative equilibrium transitional dynamics. In a

sense, our question here is more related to related issues for Bewley models studied in Huggett (1997).
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β
∫
T
v∗(t′, φ(µ), θ)q(dt′|t, a, µ, θ) has increasing differences in (a, θ) and v∗(t, µ, θ) has in-

creasing differences in (t, θ), for any µ ∈M. By Theorem 6.2 in Topkis (1978), we conclude

that γ is increasing in θ. See also Hopenhayn and Prescott (1992). By Assumption 5 and

definition we conclude that θ → φθ is increasing. The same property is inherited by Ψ
θ

from its definition and Lemma 5. Moreover, similarly as in the proof of Theorem 2, we

conclude that Ψ
θ

is an increasing operator, for any fixed θ. To finish this proof we apply

Proposition 4 at the end of this paper, recalling that a poset of distributions and poset of

uniformly bounded functions are chain complete.

An immediate corollary to the above result is the following: Under Assumptions 1–4,

the greatest equilibrium increases in the initial distribution of types τ0.34 Indeed, if we

let θ = τ0 and Θ =MT is ordered in the stochastic sense, then Assumption 5 holds.

Our monotone comparative dynamics result improves upon and complements impor-

tant results in the existing literature, e.g., Adlakha and Johari (2013), Acemoglu and

Jensen (2010, 2015), Light and Weintraub (2019). These papers discuss equilibrium com-

parative statics of (a) the set of equilibrium invariant distributions and/or steady states,

and (b) in games with aggregative structure. In contrast, we provide conditions under

which MSDE equilibrium transition paths are increasing in the parameter. This extension

is of utmost importance. The conditions in Acemoglu and Jensen (2015) or Light and

Weintraub (2019) that determine comparative statics of invariant distributions are not

sufficient for comparison of MSDE equilibrium transitional dynamics. In our case, as the

equilibrium distribution µ∗(θ) and the law of motion/belief Φ∗(θ) increase in θ, so does

the distribution Φ∗
(
µ∗(θ)

)
(θ) in the following period. This guarantees that the entire

equilibrium path shifts with respect to the parameter θ. This also suffices for the greatest

invariant distribution ν̄ induced by the greatest equilibrium to be increasing in θ.35

Additionally, our results apply to distributions over multidimensional space Rn. In

fact, the multidimensionality is inherent if one studies distributions over types and actions

(like in our motivating example). Since spaces of measures over multidimensional spaces

are not lattices, it is critical to employ the new tool from Proposition 4. See also the

34 An analogous comparative equilibrium transitional dynamics results applies to the least MSDE.
35A similar argument works for the least equilibrium and the least invariant distribution.
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interesting discussion in Section 3 of Light and Weintraub (2019).

4 Approximating dynamic games with finitely many players

We now show how a large dynamic game of strategic complements can serve as an ap-

proximation (or “idealized limit”) of its counterpart with a finite number of players N ,

for N is sufficiently large. To relate the sets of equilibria in the two different classes of

games, it is useful to introduce a behavioral equilibrium concept for a game with finitely

may players. To do so, we first define an N -player, dynamic Bayesian game, where the

sequence of priors from which player types are drawn in each period n is given by τn.36

Then we impose the following behavioral assumption in the finite player game: each of

the N players believes that the law of large numbers holds and updates their beliefs ac-

cordingly. That is, they do not form beliefs about the possible private type profiles in the

finite game; rather, they behave as if each period the types were drawn as in a game with

infinitely many players.37 Therefore, the belief regarding the distribution of types τn at

time n is determined as in (1), where τ1 = τ , for some initial τ , and

τn+1(Z) =

∫
T×A

q
(
Z|t, a, (τn ? σn)

)
(τn ? σn)(dt× da),

for n ≥ 1, where τn ? σn = τn(idT , σn)−1, for the symmetric strategy σn : T → A used

by all players at time n. This sequence of priors is assumed to be common knowledge.

In this section we formally compare the corresponding equilibrium in the finite game to

MSDE in the game with continuum of players.

Let (Ω,F ,P) be a probability space and T̃n : Ω→ TN be a random variable determin-

ing the types of players in period n. Define the mapping T̃n = (T̃ 1
n , . . . , T̃

N
n ), where T̃ ln

is the random variable determining the type of agent l, drawn i.i.d. from the theoretical

distribution τn. For any vector of types t̃ := (t̃1, . . . , t̃N) ∈ TN of players, i.e., vector of

36 As a matter of notation, when it causes no confusion, we shall denote the set of players in the finite

player game and its cardinality both by N .
37 This is analogous of imagined-continuum equilibrium in Kalai and Shmaya (2018) for repeated games.
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realizations of the random variable T̃n, we construct the empirical distribution

τ̂Nn (t̃)(Z) =
#
{
l ∈ {1, 2, . . . , N} : t̃l ∈ Z

}
N

.

We seek to compare symmetric equilibrium profiles of games with different number of

players. To do this, suppose that all but the j’th player apply a sequence of (now fixed)

Markov policies (σn)n∈N. That is, any player l 6= j, after observing t̃l ∈ T and knowing

the theoretical distribution τn at time n, chooses the action σn(t̃l) ∈ Ã(t̃l, τn), where σn

is Borel measurable. Player j at time n selects strategy Sjn (a random variable). Let t̃ be

a realization of T̃n, sj a realization of Sjn, and sl = σn(t̃l) some realization for l 6= j. The

empirical distribution on types-actions is given by:

µ̂Nn (t̃, sj)(D) :=
#
{
l ∈ {1, 2, . . . , N} : (t̃l, sl) ∈ D

}
N

=
1

N

∑
l 6=j

1D
(
t̃l, σn(tl)

)
+

1

N
1D(t̃j, sj).

The following preliminary lemma will allow us to formalize the appropriate notion of an

idealized limit of this finite player dynamic game. It states that the empirical distribution

over types-actions of our Bayesian game with finitely many players converges weakly to

the theoretical one as the number of players increase.

Lemma 8. For any n ∈ N, let T̃−jn = (T̃ ln)l 6=j be a collection of T -valued random types for

l 6= j, drawn i.i.d. from τn. Let Sln := σn(T̃ ln), for all l 6= j. For any N , let (ξN , ηN) be

an alternative random vector of type and policy for j, such that (ξN , ηN) ∈ Gr
(
Ãn(·, τn)

)
almost surely. Then µ̂Nn

(
(T̃−j, ξ

N), ηN
)

converges weakly to (τn ? σn), P-almost surely.

We now proceed with the formal definition of histories in the game and player’s payoff.

Let Fn be the sigma-algebra generated by the sequence of random variables of types

(histories) T̃k, for k ≤ n. The selection Sjn for j is called admissible if

P
(
Sjn ∈ Ãn(T̃ jn, τn)

∣∣Fn) = 1, P-almost surely.

The selection for players other than j is admissible by definition of (σn). For any l, assume

that T̃ ln is a Markov chain controlled by all players, and the transition probability satisfies

P
(
T̃ ln+1 ∈ Z

∣∣Fn) = q
(
Z
∣∣T̃ ln, Sln, µ̂Nn (T̃n, S

j
n)
)
, for any Z ∈ T , P-almost surely.
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Moreover, the random variables T̃ 1
n+1, . . . , T̃

N
n+1 are Fn-conditionally independent.38 The

history is generated by types and actions of all players. The set of histories up to time

n is Hn ⊆
∏n

k=0

(
Gr(Ãk)

)N
, with a generic element hn = (t̃1k, s

1
k, . . . , t̃

N
k , s

N
k )nk=0 and slk =

σk(t̃
l
k), for all l 6= j. Moreover, for any k, t̃jk+1 is in the support of q

(
· |t̃jk, s

j
k, µ̂n(t̃k, s

j
k)
)
.

Any initial type t̃j0 of player j, their (behavioral) policy π, policy of other players (σn),

initial distribution for all types τ1, and the transitions between types induce a unique

private probability measure on histories and its expectation Eσ,π
t̃j0

.39 If player j unilaterally

deviates from the Markov policy (σn) to π = (πn), the strategy profile is
(
(σn)−j, (πn)

)
,

since (σn) is symmetric for l 6= j. For an initial private state t̃j0 = t, player j payoff is

RN(σ−j, π)(t) := (1− β)Eσ,πt

[
∞∑
n=1

rNn (t̃jn, s
j
n)βn−1

]

= (1− β)E

[
∞∑
n=1

rNn (T̃ jn, S
j
n)βn−1

∣∣∣T̃ j1 = t

]
,

where rNn is a reward function defined as follows

rNn (t, a) :=

∫
TN−1

r
(
t, a, µ̂Nn

(
(t, t̃−j), a

))
τN−1
n (dt̃−j),

where τN−1
n = τn ⊗ τn . . .⊗ τn︸ ︷︷ ︸

N−1 times.

Similarly, let

qNn (·|t, a) :=

∫
TN−1

q
(
· |t, a, µ̂Nn ((t, t̃−j), a)

)
τN−1
n (dt̃−j).

Given the evolution of τn specified earlier and the policy for all players (σn)n∈N, the

problem for player j is a Markov decision process with the value function

ṽN1 (t) := sup
π∈Σ
R(σ−j, π)(t),

where Σ is the set of all feasible policies, i.e., Borel measurable functions π := (πn)∞n such

that πn : Hn × T ×MT 7→ MA and πk
(
Ãn(tjn, τn)|hn, tjn

)
= 1 for all n, tjn ∈ T , hn ∈ Hn,

and all πn are Borel measurable function.40

38 That is, T̃n+1 has Fn-conditional distribution qP
(
· |T̃n, Sn, µ̂Nn (T̃n, S

j
n)
)

:=
⊗N

j=1 q
(
· |T̃ jn, S̃jn, µ̂Nn (T̃n, S

j
n)
)
,

that is P
(∏N

j=1{T̃
j
n+1 ∈ Zj}|Fn

)
=
∏N
j=1 q

(
Zj |T̃ jn, Sjn, µ̂Nn (T̃n, S

j
n)
)
, for any Z1, . . . , ZN , all belonging to

T , and all ω ∈ Ω̃ (or modifying Ω̃ on a null set if necessary).
39As previously, see Ionescu-Tulcea Theorem in Dynkin and Yushkevich (1979).
40 We denote by MA the set of probability distributions over A.
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Definition 2 (Approximation). A profile σ̂ = (σ̂n) is an ε-equilibrium for an initial distri-

bution τ0, if there is some N0 ∈ N such that for any N > N0, any player j = 1, 2, . . . , N ,

any type t ∈ T , and any π ∈ Σ, we have

ε+RN(σ̂)(t) ≥ RN
(
(σ̂)−j, π

)
(t).

A symmetric action profile σ̂ is an ε-equilibrium if it constitutes an ε-equilibrium for

a sufficiently large N . Clearly, both ε and N0 depend on the initial distribution τ0.

Assumption 6. Suppose that (i) function r is continuous, (ii) for any continuous function

f : T → R, the function (t, a, µ) →
∫
T
f(t′′|t, a, µ) is continuous, and (iii) for any τ , the

correspondence t→ Ã(t, τ) is continuous.

It is important to note that in our specification of the dynamic Bayesian game with

finitely many players, the agents do not control the theoretical distribution τn — rather,

they only control the empirical distribution µ̂n. Now, for some MSDE (µ∗,Φ∗) in the

counterpart large dynamic game, consider an associated equilibrium strategy profile σ∗

and its associated value function v∗. For µ∗0 = µ∗, consider the sequence of measures (µ∗n)

defined recursively by macro belief operator µ∗n+1 = Φ∗(µ∗n). Similarly, take the associated

distributions on types {τ ∗n}, the policies {σ∗n}, and values vn(t), where τ ∗n = margT (µ∗n),

σ∗n(t) := σ∗(t, µ∗n) = σµn,Φ∗(t) and vn(t) := v∗(t, µ∗n; Φ∗).

We then have the following main theorem of this section.

Theorem 4. Under Assumption 6, for any MSDE (µ∗,Φ∗) and ε > 0, the sequence of

implied policy functions {σ∗n} is an ε-equilibrium for τ1 = τ ∗.

We make a few remarks on this result relative to related results in the existing litera-

ture. Weintraub et al. (2008) and Adlakha et al. (2015), for example, study the asymptotic

Markov properties of both oblivious (OE) and mean-field equilibrium (MFE). Specifically,

they show in an OE-MFE for a dynamic game with finitely many players, the invariant

distribution becomes “approximately optimal” as the number of players tends to infinity.

Such approximation notion in their work requires both uniqueness and continuity of the

best reply. Moreover, as the authors work with unbounded states spaces and unbounded
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payoffs, their result also requires the so-called light tail condition. Relative to this work,

we dispense with uniqueness and continuity of the best reply, but impose stronger condi-

tion relative to the boundedness on the state space and payoffs (so no light tail condition

is needed). Alternatively, Kalai and Shmaya (2018) show in their work that an imagined-

continuum Bayesian equilibrium with a finite number of players is an ε-equilibrium of the

actual (repeated) game. Moreover, they also show that ε is arbitrarily small as N tends

to infinity. Aside from considering dynamic vs. repeated games, our results differs from

theirs as we do not require the aggregative structure of the interactions in the dynamic

game. Our results also complement earlier contributions by allowing for Markovian envi-

ronment in a dynamic game, and without restricting the asymptotic analysis to invariant

distributions, unique and continuous best replies, or aggregative games.41

5 Applications and examples

5.1 Motivating example revisited

Recall the motivating example from the Introduction. In each period, the type of a player

was identified with their level of capital/wealth t ∈ T = [0, 1]. Their actions (investments)

a ∈ A = [0, 1] were chosen from the feasible correspondence Ã(t, τ) = [0, t]. Given the

distribution µ of types-actions of all players, the payoff in a single period was

r(t, a, τ, θ) :=

∫
A×T

[
θm(t− t̃) + w(t− a− t̃+ ã)

]
µ(dã× dt̃).

Here we introduce a positive parameter θ with respect to the initial example.

Given an investment a, the cumulative probability distribution of capital level t′ in the

following period is q(t′|a). Thus, conditional on the macro belief Φ, the Bellman equation

determining the player’s value function in the infinite horizon game is

v(t, τ ; Φ) = max
a∈Ã(t,τ)

{
(1− β)r(t, a, τ, θ) + β

∫
v
(
t′,Φ(τ); Φ

)
q(dt′|a)

}
.

41 We also refer the reader to recent results of approximation of large static games by Carmona and

Podczeck (2012, 2020) and related results in Qiao and Yu (2014); Qiao et al. (2016).
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It is straightforward to verify this game satisfies Assumptions 1–4. Correspondence

Ã is measurable, continuous, compact valued, and increasing (both in the sense of set

inclusion and strong set order). Given that functions m and w are continuous, increasing,

and concave, function r is continuous over T × A, increasing over T , and has increasing

differences in
(
a, (t, µ)

)
and (t, µ). The function is also (trivially) supermodular in a and

continuous in µ. As long as the distribution q is continuous in a, the requirements of

Theorem 2 for existence of the greatest MSDE are satisfied.

As it was pointed out in the main body of the text, the equilibrium pair (µ∗,Φ∗)

generates the entire equilibrium path of distributions {µ∗n}, where µ∗0 = µ∗ and µn+1 =

Φ∗(µn), which allows us to investigate the dynamics of the model. Moreover, the sequence

converges to an invariant distribution, allowing for the study of steady states.

Apart from existence and approximation of equilibria, Theorem 3 allows us to say more

about its equilibrium comparative dynamics. In particular, the equilibrium (µ∗,Φ∗) and

the corresponding sequence {µ∗n} increase as the initial distribution of types τ0 increases

in the first order stochastic sense. That is, along the equilibrium path to a stationary

equilibrium, players invest more and have higher capital levels (stochastically). In addi-

tion, the equilibrium changes monotonically with respect to the parameter θ. One can

easily verify that the return function r has increasing differences in (a, θ) and (t, θ). Given

that the correspondence Ã and transition kernel q are independent of θ, this suffices for

the equilibrium and its path to be increasing in θ. Thus, the higher the weight of the

wealth-driven status, the higher (stochastically) are investments in the population.

The above results would hold under a more elaborate transition kernel q(·|t, a, µ), that

would depend on the investment of a player, their type, and the distribution of wealth-

investments in the population. However, this would require for Assumption 3 to hold.

5.2 Dynamics of social distance

We next analyze a dynamic model of social distance, described originally in Akerlof

(1997).42 Consider a measure space of agents. Let T = [0, 1] be the set of all possi-

42 The model is related to multiple strands of the social economics literature, including models of

identity and economic choice as in Akerlof and Kranton (2000), or models with endogenous social reference
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ble social positions in the population. Each period an individual is characterized by an

identity t ∈ T (type), which determines the social position to which the agent aspires.

In every period an agent has to choose their own social position (action) a ∈ A := [0, 1].

The set of social positions feasible to agent with identity t is Ã(t, τ) :=
[
a(t), a(t)

]
, where

a, a : T → A are increasing functions that satisfy a(t) ≤ t ≤ a(t), for all t ∈ T .

When choosing social position, there is a trade-off between idealism and conformism.

On one hand, the individual wants the social status a to be as close as possible to their

identity t. Specifically, given some continuous, decreasing, and concave function m :

[0, 1]→ R, the agent wants to maximize m
(
|a− t|

)
, that captures idealism. On the other

hand, the player experiences discomfort when interacting with agents that have different

social position from theirs. Whenever an agent of social position a encounters an agent

of social position a′, they receive utility w
(
|a− a′|

)
, for some continuous, decreasing, and

concave function w : [0, 1]→ R. This summarizes conformism.

Suppose that ν(t′|t) is a cumulative probability distribution determining the likelihood

of an agent with identity t meeting someone with identity t′. We assume it is continuous

and first-order stochastically increasing in t. It captures the idea that similar minds think

alike and players with similar identity are more likely to meet. Given the distribution of

types-actions µ, the one-period payoff of an agent of identity t, social position a is

r(t, a, µ) := m(|a− t|) +

∫
T

∫
A

w(|a− a′|)dµ(a′|t′)dν(t′|t),

where µ(·|t′) is the distribution of actions of other players in the population conditional

on t′. Therefore, payoff of an agent in a single period is the sum of their idealistic utility

and expected payoff to conformity relative to their interactions with other agents. In

particular, our specification implies that the social position can not be contingent on the

social statuses of other agents. It is chosen before any interaction occurs.

Following the rule you become whom you pretend to be, we assume that the social

position in a current period has a direct impact on the identity in the following period.

Formally, the transition is governed by cumulative probability distribution q(t′|a), that

points, including Bernheim (1994), Brock and Durlauf (2001), Bisin et al. (2011), and Blume et al. (2015).

The model in this example is a dynamic extension of the static model formalized in Balbus et al. (2019).
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determines the likelihood of the agent acquiring identity t′ in the next period, following

their choice of a at the current date. Specifically, we assume that function a → q(·|a) is

continuous and first order stochastically increasing in a.

It is straightforward to verify that the above game admits the greatest (and the least)

MSDE. Indeed, function r satisfies conditions (i), (ii) and (iv), (v) from Assumption 2.

Moreover, since the transition kernel q depends only on a, it satisfies Assumption 3.

Finally, as long as functions a, a are continuous, in addition to the previously stated

assumptions, correspondence Ã(t, τ) =
[
a(t), a(t)

]
is continuous, compact-valued, and

satisfy strong complementarity. Clearly, Assumption 1 holds as well.

In this example, it is crucial that the transition function q depends only on action a.

Following Remark 2, this allows to dispense the assumption that function r and corre-

spondence Ã are increasing in t, which is critical for this application.

Apart from equilibrium existence, one can determine equilibrium comparative transi-

tional dynamics in the model. It is clear that as the initial distribution of identities τ0

shifts in the first order stochastic sense, the equilibrium pair (µ∗,Φ∗) increases as well.

This implies an increase in the entire equilibrium transition path {µ∗n}.

5.3 Parenting and endogenous preferences for consumption

We now show how our tools can be applied to dynamic games with short-lived agents,

where individuals make decisions in one period only, but their actions propel dynamics for

future generations. This dynastic choice example is inspired by the literature on paternal-

istic bequests, keeping-up-with-the-Joneses, and growth with endogenous preferences.43

Consider a society populated with a measure space of single-parent single-child fami-

lies. Each individual (a parent) lives for a single period and a parent-child sequence forms

a dynasty. The type of a parent is determined by their lifetime income y ∈ [0, 1] and a

parameter i ∈ [0, 1] that summarizes preferences of the individual toward consumption.

So in this setting, the space of types will be t = (y, i) is given by T = [0, 1]2.

Each period, the income can be devoted to consumption c and investment (savings) s.

43 See Cole et al. (1992), Doepke and Zilibotti (2017) and Genicot and Ray (2017).
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Thus, the constraint y = c + s for each dynasty. Consumption yields immediate utility

u(c, g), where parameter g represents propensity to consume. Formally, we assume the

function u is continuous and concave in c, and has increasing differences in (c, g). That

is, higher g increases the marginal utility of consumption for the current generation.

We assume paternalistic preferences, where a parent evaluates the well-being of their

child with a function w(t′, τ ′), where t′ = (y′, i′) is the the future type of the child and τ ′

is a distribution of types in the next period. We assume w is increasing in t, thus, the

parent values high income and high propensity to consume of the child. Since the parent

cares only about her immediate descendant, they want the child to consume as much as

possible. Moreover, let w have increasing differences in (t′, τ ′), i.e., the higher is the future

distribution of types the higher is the parent’s incremental benefit of the child’s type.44

Each parent devotes (e.g., educational) effort e ∈ E = [0, 1] to shape preferences of

their child (i.e., raise their aspiration level). The cost of effort is given by C(e, µE), where

µE denotes the distribution of efforts in the population. We assume that the cost function

is continuous and increasing with e, and has decreasing differences in (e, µE) — the higher

effort in the population, the easier it is for an individual to influence their child.

Given our description, the action of an individual is a = (s, e) and the action space is

A = [0, 1]2. Savings s and effort e affect both the future income and preferences of the

child. Let the cumulative distribution q(t′|s, e) determine the probability of the future

type of the child being t′ = (y′, i′), where q is stochastically increasing in both arguments

and supermodular. Thus, investment s and effort e are complements. Indeed, from the

parent’s perspective higher effort (that skews preference of the child towards consumption)

makes marginal investment/bequest more valuable. The higher amounts of child’s income

are devoted to consumption, the more it pleases the paternalistic parent.

Finally, the marginal propensity to consume g is generated endogenously for each

individual via keeping-up-with-the-Joneses effect. Formally, let g = θΓ(t, µC), for some

positive parameter θ and an increasing function Γ, that depends both on the type of the

44 This model is broadly related to issues raised in Echenique and Komunjer (2009) and Doepke et al.

(2019) concerning endogenous transmission of preferences in dynastic models of household choice. Ours

is a version of the model with quantile aspiration preferences and paternalism. This could be extended

to altruistic dynastic choice, peer effects, or locational concerns as in Agostinelli et al. (2020).
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player and the distribution of consumption levels across population. For example,

Γ(t, µC) := inf
{
c ∈ [0, 1] : i ≤ µC(c′′ ≤ c

)}
,

where t = (y, i). That is, Γ is equal to the i’th quantile of consumption in the population.

Given our description, the objective of a parent of type t = (y, i) is to maximize

u
(
y − s, θΓ(t, µC)

)
+

∫
[0,1]

w
(
t′,ΦT (µ)

)
q(dt′|s, e)− C(e, µE),

with respect to (s, e) ∈ Ã(t, τ) = [0, y]× [0, 1]. Here, the mapping ΦT (µ) is the projected

next-period distribution of types in the population. Note that, w is not a value func-

tion in the sense discussed Section 2; rather, a paternalistic evaluation of child’s welfare.

Specifically, preferences of a parent may be misaligned with future preferences of the child.

To verify whether assumptions of our theorems are satisfied, consider an increasing

Markov strategy: σ : T → A, with σs and σe being its projections on both coordinates.

Then for some measurable set Z, we have µC(Z) = τ
(
{t ∈ T : [y − σs(t)] ∈ Z}

)
,

µE(Z) = τ
(
{t : σe(t) ∈ Z}

)
, and ΦT (µ)(Z) =

∫
T
q
(
Z|σs(t), σe(t)

)
τ(dt). Then, higher

σ implies first order stochastic dominance increase of µE and ΦT (µ), but the first order

stochastic dominance decrease in µC .45 Increasing differences of u(c, g), w(t′, τ ′), and

−C(e, µE), together with assumptions on q suffice to show that there exist the greatest

MSDE (µ∗,Φ∗), that can be computed using successive approximations.

When considering ordered changes in the deep parameters of the model, we can ap-

ply our equilibrium comparative transitional dynamics and equilibrium approximation to

these types of models. In particular, one can show the greatest (and the least) MSDE are

decreasing with respect to the parameter θ.

The above observations are true even though the payoff function is not necessarily

increasing in t, nor it has increasing differences in (t, µ). In fact, whenever function

Γ is specified as above, the latter never holds. In our main argument the additional

assumptions are crucial to show particular properties of the value function in the infinite

horizon problem. In a game with short-lived agents, we may dispense such assumptions.

45 Indeed, we have
∫
C
f(c)µ′C(dc) =

∫
T
f(y − σ′s(t))τ(dt) ≤

∫
T
f(y − σs(t))τ(dt) =

∫
C
f(c)µC(dc), for

any measurable and increasing function f : [0, 1]→ R, where σ′s pointwise dominates σs.
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5.4 Legal norms and public enforcement

Here we discuss a version of the model of social/legal norms an public enforcement as in

Acemoglu and Jackson (2017). Suppose there is a continuum of agents, each endowed

with a private type t ∈ [0, 1]. Let the threshold L ∈ [0, 1] be the social/legal norm in

the society. In each period, an individual randomly interacts with other members of the

population. Before any interaction takes place, the individual of type t must choose an

action a ∈ [0, t]. We say that action a is legal if a ≤ L. Otherwise, it is illegal.

Whenever an agent of type t playing action a encounters an agent playing action ã,

the bilateral public enforcement takes place. If both actions a, ã are legal, the players

are allowed to play the selected actions. If action a is illegal, while ã is legal, the latter

agent forces the former to abide the law, i.e., the former has to change their action to L.

Analogously, if a ≤ L but ã > L, the latter agent has to change their action to L. Finally,

if both a, ã are illegal, the agents play their chosen actions, since none of the agents has

the moral ground to enforce the legal action.46

In this game individuals agent care about two things. On one hand, they want their

actual action (the one after a potential enforcement) to be as close to their type as possible,

since it yields u
(
|t− a+ 1a>L1ã≤L(a−L)|

)
for some continuous, decreasing, and concave

function u, where 1ã≤L is the indicator function. Moreover, the agent wants their action

to be as close as possible to the (potentially enforced) action of the other players, which

yields utility v
(
|a− ã+ 1a≤L1ã>L(a−L)|

)
, for some continuous, concave, and decreasing

v. The one-period payoff of an agent of type t choosing action a is then given by

r(t, a, µ) :=

∫
[0,1]

[
u
(
|t− a+ 1a>L1ã≤L(a− L)|

)
+ v

(
|a− ã+ 1a≤L1ã>L(ã− L)|

)
− θ1a>L1ã≤L

]
µA(dã),

where µA is the probability distributions over actions in the population, and θ is a fine that

the individual has to pay when caught. The set of constraints is given by Ã(t, τ) := [0, t],

and the type t′ of each player is drawn stochastically each period from q(t′|a), that depends

and stochastically increases in the action a of the agent in the preceding period.

46 It is straightforward to extend the above model in order to incorporate imperfect and/or exogenous

(police) enforcement. In order to simplify notation, we discuss only the most basic form of the game.
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One can easily check that the assumptions necessary for existence of (the greatest)

MSDE are satisfied.47 In particular, the equilibrium generates a transitional path of dis-

tributions of types and actions. Appealing to our monotone equilibrium comparative

dynamics results (and approximation results), we can show that both the equilibria, tran-

sitional paths, and corresponding stationary equilibria decrease in the fine θ.

5.5 Dynamics of large contests with coordination failures and learning

Consider a prototypical coordination game based on Angeletos and Lian (2016), with

applications to beauty contests, bank runs, riot games, or currency attacks.48 Here focus

on a simple dynamic beauty contest. In this large dynamic game, each player receives a

private signal t and chooses an action a every period. Action is costly and the cost depends

on the type t, which is summarized in the utility function u(t, a). Moreover, we assume u

is increasing in t and has increasing differences in (t, a). In addition to the utility u, the

player’s payoff depends on actions taken by other players, say
∫
A
g(a, ã)µA(dã), where g

also has increasing differences between a, ã.

As is standard in global games and dynamic coordination games with complementar-

ities, we study symmetric monotone in type equilibria, where each player is using some

increasing strategy σ : T → A. The one-period payoff of an agent playing a is

r(t, a, µ) := u(t, a) +

∫
T

g
(
a, σ(t̃)

)
µT (dt̃),

Such payoff satisfies assumptions of Theorem 2, and so there exists the greatest MSDE,

where each player is using an increasing strategy σ.49

Similarly, the framework can applied to riot games with private types, where

r(t, a, µ) := a

[∫
S

(t1 + L)1{R(µ)≥s̃}ν(ds̃)− L
]
− c(a, t2),

47 Note that, function r is upper semi-continuous in action a, rather that continuous. However, this

can be show to be sufficient for our results to hold in this class of games.
48 See Morris and Shin (2002) for an extensive discussion of this literature. See also Carmona et al.

(2017) for an interesting recent application of mean-field methods to a related class of games.
49 We may dispense monotonicity of u with respect to t as long as the transition function q depends

only on one-dimensional action a.
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for some player type by t = (t1, t2) and a compact interval S ⊆ R. Thus, taking the risky

action a = 1 allows the player to“win” t1 if a sufficient number R(µ) := µ
(
{(t, a) : a = 1}

)
of players takes a risky (and costly) action, or loose L otherwise. The strength s of the

police is distributed according to measure ν. Whenever the cost function is decreasing

in t2 and c(0, t2) = 0 (normalization), the dynamic game can be solved for a general

transition functions q(·|t, a, µ), allowing to model inertia, habit formation, or dynamic

social externalities. See also Morris and Yildiz (2016) applications.

5.6 Idiosyncratic risk under multidimensional production externalities

and technological dynamics

Finally, our model can be applied to analyze dynamics of technological progress in large

economies where agents face uninsurable private productivity risk. This includes the

model of Romer (1986) in a Bewley-Huggett-Aiyagari type setting with ex-ante identical

agents and ex-post heterogeneity in production and no borrowing.50

The economy is populated with a measure space of producers, each endowed with

capital t ∈ T = [0, 1], one unit of time, and a private technology f . The technology

transforms private inputs into finished outputs. Moreover, its productivity depends on

economy-wide externality summarized by the distribution of capital and labor in the

economy. Specifically, each agent with t units of capital and expending l ∈ L = [0, 1]

units of time is able to produce y = f(t, l, µT×L) units of a a finished output, where µT×L

is the distribution of capital-labor levels in the population. We assume the production

function f is continuous, increasing with respect to all arguments, and possess increasing

differences in (t, l), in (t, µ) and (l, µ).51 In particular, the private technologies endowed

to each agent need not be convex. In addition, our reduced form of technology allows for

nontrivial interactions with market leaders, closely related companies, or a competitive

fringe in both capital and labor dimensions.

The output can be devoted to consumption c or investment i, hence, c + i = y.

50 See also Angeletos and Calvet (2005) for a related study.
51 For example, function f(t, l, µT×L) :=

∫
T×L g(t, l, t̃, l̃)µT×L(dt̃× dl̃) would satisfy such conditions as

long as g is supermodular in all arguments jointly.
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When c units of the output are consumed and labor supply is l, the agent receives utility

U(c, l) = u(c) + v(1− l), where u, v : R→ R are smooth, concave and strictly increasing.

Whenever i ∈ I := [0, 1] units of the good are invested, the capital in the next period is

determined stochastically with probability measure q(·|i).52

To preserve complementarity structure to the value functions, we require some known

complementarity conditions for joint monotone controls (see Hopenhayn and Prescott,

1992 and Mirman et al., 2008). Along those lines, we assume the standard condition

−u′′/u′ ≤ f ′′12/(f
′
1f
′
2). It requires that degree of complementarity between private capital

and labour is high relatively to the curvature of the utility function. This suffices for pay-

offs to have increasing differences in (t, l). To guarantee increasing differences in (t, µT×L),

we require that u′
(
f(t, l, µT×L)− c

)
f ′1(t, l, µT×L) is increasing in µT×L.53 Analogous con-

ditions guarantee increasing differences in (l, µT×L).54

One can easily verify that the above conditions are sufficient for Theorem 2 to hold.

Therefore, there exist extremal MSDE for this large dynamic nonmarket economy (inter-

preted as a large anonymous game). Moreover, the extremal equilibria can be approxi-

mated using iterative methods. This example highlights the difference between our results

and those in the existing literature. Specifically, we consider Markov stationary transi-

tional dynamics and comparative dynamics results (in additional to stationary equilib-

rium comparative statics). For example, Acemoglu and Jensen (2015) discuss stationary

equilibria and comparative statics given single dimensional aggregates that summarize

production externalities.55 Our conditions on the primitives that guarantee each player’s

value function has increasing differences in (t, µ) are not crucial for their results.

52 Our methods allow to analyze two sector economies. A consumption good sector with technology

f and investment good sector with stochastic technology q(·|t, i, l, µT×L). In the example we consider a

simple version of q depending on investment i only.
53 Whenever the externality can be summarized with some increasing aggregate G(µT×L) ∈ R, where

y = f
(
t, l, G(µT×L)

)
, the condition can be reduced to −u′′/u′ ≤ f ′′13/(f

′
1f
′
3).

54 Notice, in our setting, the correspondence A(t, l, µT×L) =
[
0, f(t, l, µT×L)

]
× L does not have strict

complementarities. To assure that the value function v∗ in (4) preserves increasing differences in (t, µ)

we need to use constructions of Mirman et al. (2008) (Lemmas 11, 12 and Theorems 3, 4). They show

that under assumptions stated on u, v, and f the value function posses increasing differences in t and µ.
55 In Acemoglu and Jensen (2015), to identify positive shocks one would require additional structure

on primitives to preserve increasing differences between individual states and shock parameters. Thus,

more assumptions are needed than noted in their Lemma 1.
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6 Related literature

This paper contributes to several strands of economics literature. First, our results are

related to large anonymous sequential games that date back to Jovanovic and Rosenthal

(1988), Bergin and Bernhardt (1992), and Karatzas et al. (1994). Relative to these, we

prove existence of minimal state space stationary Markovian distributional equilibrium.

Further, of independent interest, we also contribute to an important literature on the

existence and characterization of dynamic exact law of large numbers (D-ELLN). Not only

does such a result underpin all large anonymous stochastic games, but also is the founda-

tion for many results in large dynamic economics (e.g., Bewley models). What is shared

in all of these settings is that each from a measure space of agents draws private state each

period, and hence the model’s state variable must include a measure-valued sequence that

summarize the distribution of states across players. To keep the environment tractable,

this measure-valued process must be deterministic. Relative to this literature, we intro-

duce a new characterization of a D-ELLN which provides a conditional independence of

player types (relative to histories of the game), and a deterministic transition of aggre-

gate distribution on types using rich Fubini extensions in saturated or super-atomless

measure spaces of players. This is not a mere technical detail; rather, in our setting,

given the strategic interaction between players, our equilibrium construction cannot even

proceed without an appropriate D-ELLN. Our construction builds upon the important

contributions of Sun (2006), Keisler and Sun (2009) and Podczeck (2010).

Additionally, our paper extends the class of games of strategic complementarities

(GSC) to a dynamic setting with a measure space of players. Following the important

work of Van Zandt (2010), in few recent papers including Balbus et al. (2015a, 2019,

2015b) and Bilancini and Boncinelli (2016), the class of supermodular games and GSC

has been extended to situations of normal-form games with complete and incomplete in-

formation. Simultaneously, a number of papers studied dynamic GSC with complete and

incomplete information.56 This paper directly relates to this literature in many ways.

First, the tools used in the current paper heavily extend that developed by Balbus et al.

56 See the seminal papers of Curtat (1996), Amir (2005), or more recently Mensch (2020).
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(2013, 2014) to study Markovian equilibria in the finite number of players games. In doing

so, we provide sufficient conditions for preserving dynamic complementarities between the

periods to player’s value functions. The conditions allow one to avoid many of the issues

related to the notion of extensive-form supermodular games as discussed in Vives (2009),

Amir (2002), Echenique (2004), and Mensch (2020). Our new conditions imply that value

functions have increasing differences between private types and the aggregate distribution

summarizing agents types and actions. Very importantly, with our sufficient structure

in place, our large stochastic supermodular games remains extensive-form supermodu-

lar over the infinite horizon. This fact is critical for all of our equilibrium comparative

dynamic/statics results. In this sense, our work also relates to a recent literature on

characterizing single-crossing differences over distributions studied in the recent papers of

Quah and Strulovici (2012), Kartik et al. (2019), and Mensch (2020).

Given the distributional game specification, and the structural properties implied by

our D-ELLN, we are able to avoid many of problems in characterizing dynamic comple-

mentarities in actions between periods and beliefs reported recently in Mensch (2020)

for dynamic Bayesian games with a finite number of players. Finally, as in the work of

Balbus et al. (2014), all our proofs are constructive and computable via simple successive

approximations. In this sense, we are able to provide the applied researchers with tools

allowing to approximate the equilibrium distributions.

Importantly, our paper also contributes to the recent literature on characterizing the

equilibrium comparative statics and dynamics for large dynamic economies and games.

The literature is extensive and we refer the reader to Acemoglu and Jensen (2015) and

Light and Weintraub (2019) for an excellent discussion and citations. In particular, our

results provide a foundation for a theory of equilibrium monotone comparative transitional

dynamics relative to ordered perturbations of the space of games/economies.57 Specifi-

cally, we provide sufficient conditions on payoffs and transition probabilities such that the

sequence of equilibrium distributions, as well as the aggregate law of motion (specifying

transition dynamics but also rational beliefs is our game), evolve monotonically in type

for any positive shock to the game. Interestingly, our methods extend therefore equi-

57 Our work complements the approach to transitional dynamics in large economies of Huggett (1997).
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librium comparative statics results of Adlakha and Johari (2013), Acemoglu and Jensen

(2015, 2018), and Light and Weintraub (2019), applied to comparative statics of invariant

distributions or “stochastic steady states”.

Further, in many papers on equilibrium comparative statics, the results only apply

to equilibrium aggregates. Our approach contains this as a special case. Moreover, we

are able to perform multidimensional equilibrium comparative static/dynamics relative

to a (infinite dimensional) set of equilibrium distributions. Indeed, recall we compare

distributions over Rn. Set of such objects is (in general) not a lattice, hence the need to

apply our new equilibrium comparative statics based upon Proposition 4 in the paper.

It also bears mentioning the assumptions of Acemoglu and Jensen (2015, 2018), and

Light and Weintraub (2019) are not sufficient to obtain results of our paper. The key

central difference between our work and these papers is that when studying stationary

equilibrium (or mean-field equilibrium) comparative statics, one does not need conditions

on the game that imply single crossing in distribution between private actions and ag-

gregates.58 This is because one is only characterizing the “steady state” structure of the

sequential or Markovian equilibrium. For the results in the present paper on MSDE, one

must deal with the influence of perturbations of dynamic interactions between players

and their distributional counterparts via the value function that is needed to recursively

define each player’s stage game payoffs. In additional, one must study the equilibrium

structure away from the fixed points of the equilibrium law of motion.

Finally, our monotone comparative statics/dynamics results are also shown to be com-

putable, as we characterize the chain of parameterized equilibria converging to the one of

interest for a particular parameter. This is of utmost importance for applied economists

that calibrate the equilibrium invariant distributions’ moments, or attempt to develop

econometric methods for estimating equilibrium comparative statics/dynamics in data

(e.g., via the quantile methods of Echenique and Komunjer, 2009, 2013).

Our paper is also related to the recent work on oblivious (or stationary) equilibrium

(OE) and mean-field games (MFGs). This is a large and important growing literature

58 Characterizing sufficient single crossing conditions with respect to beliefs in static large, Bayesian

games with strategic complementarities is a challenge. See Balbus et al. (2015a); Liu and Pei (2017).
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that includes papers by Ifrach and Weintraub (2016); Weintraub et al. (2008), Adlakha

and Johari (2013), Adlakha et al. (2015), Doncel et al. (2016), Lacker (2018), and Light

and Weintraub (2019), among many others.59 This work in OE and MFGs is motivated

primarily by computability and complexity considerations, and many of these papers

build methods for games in continuous time, with finitely many states, finite actions sets,

symmetric equilibrium in mixed strategies, where games externalities are characterized by

distributions or aggregates on states only (so not on actions). Equilibrium of such games

are stationary distributions on players states. Such mean field equilibrium implies a best

response oblivious strategy, i.e. distribution on action sets, where each players’ action is

optimal taking the invariant mean field distribution as given. For some recent progress

on this line of literature we refer the reader to e.g. Adlakha et al. (2015).

In a related context, we also extend a very interesting result of Kalai and Shmaya

(2018) on foundations of epsilon Bayesian Nash equilibrium of a finite number of players

game via imagined-continuum equilibrium. An imagined-continuum is a powerful, and

tractable, tool that as itself is a behavioral concept of equilibrium in a Bayesian game,

where although the players are playing a game with a finite number of players, they

view the equilibrium interaction and learning (and in particular, their belief formation)

as in a game with a continuum of players. For this setting, we show that the equilib-

rium of the imagine-continuum version of the Bayesian game converges to the stationary

Markovian equilibrium of the actual game. Our paper extends Kalai-Shmaya setting to

non-stationary equilibria without imposing the aggregative structure.

A Auxiliary fixed point results

Here we present two theorems that are critical in proving Theorems 2 and 3 in Section 3.

Recall that a chain is a completely ordered set. A poset X is (countably) lower chain

59 For related work on large dynamic supermodular games see Wiecek (2017), who analyses a supermod-

ular game in continuous time, where each player moves in a discrete but different period of time. Moreover,

Adlakha and Johari (2013), study a mean-field version on our large dynamic supermodular game with

one-dimensional actions and strategic interaction via distribution on types. For such environment they

show existence of a mean-field equilibrium, i.e., an oblivious strategy and invariant distribution.
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complete if any (countable) chain A ⊆ X has its infimum in X. The poset is (countably)

upper chain complete if any such chain has its supremum in X. Given posets X and Y ,

function f : X → Y is increasing if x′ ≥X x implies f(x′) ≥Y f(x). Below is a useful

generalization of Theorem 9 in Markowsky (1976).

Proposition A.1. Let (X,≥X) be a lower chain complete poset with the greatest element.

The set of fixed points of an increasing function f : X → X is a nonempty lower chain

complete poset. Moreover, its greatest fixed point is given by
∨{

x ∈ X : f(x) ≥X x
}

.60

We prove it in the online appendix.

Given posets X and Y , function f : X → Y is monotone sup-preserving if, for any

increasing sequence {xk}k∈N, we have f
(∨
{xk}k∈N

)
=
∨{

f(xk)
}
k∈N. It is monotone

inf-preserving if f
(∧
{xk}k∈N

)
=
∧{

f(xk)
}
k∈N, for any decreasing sequence {xk}k∈N.

The second theorem extends the classic fixed point comparative statics results of Veinott

(1992) and Topkis (1998) to countably chain complete posets. It is based on the Tarski-

Kantorovich theorem. See Balbus et al. (2015c) for a proof.61

Proposition 4. Let X be a lower countably chain complete poset with the greatest element,

and Θ be a poset. For any function f : X × Θ → X and θ ∈ Θ such that fθ is in-

creasing and monotone inf-preserving over X, the greatest fixed point of fθ is given by∧{
fnθ (
∨
X)
}
n∈N.62 In addition, if f is increasing in the product order and fθ is monotone

inf-preserving, for all θ ∈ Θ, then the greatest fixed point is increasing over Θ.
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