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Abstract

This paper provides a theoretical investigation of possible sources of long-run

economic growth in the future. Historically, in the industrial era and during

the ongoing digital revolution (which began approximately in the 1980s) the

main engine of global economic growth has been R&D, translating into sys-

tematic labor-augmenting technological progress and trend growth in labor

productivity. If in the future all essential production or R&D tasks will even-

tually be subject to automation, though, the engine of growth will be shifted

to the accumulation of programmable hardware (capital), and R&D will lose

its prominence. Economic growth will then accelerate, no longer constrained

by the scarce human input. By contrast, if some essential production and

R&D tasks will never be fully automatable, then R&D may forever remain

the main growth engine, and the human input may forever remain the scarce,

limiting factor of global growth. Additional studied mechanisms include the

accumulation of R&D capital (particularly important under partial or no au-

tomation), and hardware-augmenting technical change.
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1 Introduction

Expansion in the digital sphere is now an order of magnitude faster than growth

in the global capital stock and gross domestic product (GDP): data volume, pro-

cessing power and bandwidth double every 2–3 years, whereas global GDP doubles

every 20–30 years. Since the 1980s “general-purpose computing capacity grew at

an annual rate of 58%. The world’s capacity for bidirectional telecommunication

grew at 28% per year, closely followed by the increase in globally stored information

(23%)” (Hilbert and López, 2011). The costs of a standard computation have been

declining by 53% per year on average since 1940 (Nordhaus, 2017). The process-

ing, storage, and communication of information has decoupled from the cognitive

capacities of the human brain: “less than one percent of information was in digital

format in the mid-1980s, growing to more than 99% today” (Gillings, Hilbert, and

Kemp, 2016). Preliminary evidence also suggests that since the 1980s the efficiency

of computer algorithms has been improving at a pace that is of the same order of

magnitude as accumulation of digital hardware (Grace, 2013; Hernandez and Brown,

2020). Corroborating this finding, in the recent decade we have witnessed a surge in

artificial intelligence (AI) breakthroughs based on the methodology of deep neural

networks (Tegmark, 2017), from autonomous vehicles and simultaneous language

interpretation to self-taught superhuman performance at chess and Go (Silver, Hu-

bert, Schrittwieser, et al., 2018).

However, the jury is still out on how (if at all) these tendencies will affect global

long-run economic growth in the coming decades. Some economists such as Jones

(2002); Gordon (2016) have documented that the trend growth rate of labor pro-

ductivity and total factor productivity (TFP) has been in fact slowing down since

the 1980s and formulated a hypothesis that the global economy is therefore heading

towards secular stagnation. Other economists, such as Brynjolfsson and McAfee

(2014); Brynjolfsson, Rock, and Syverson (2019), put forward an alternative hy-

pothesis that the recent slowdown in productivity growth is only temporary and

represents a transition phase between the industrial and the digital era, which – not

quite coincidentally – just took off in the 1980s. Once the transition phase is over,

the trend growth rate in productivity, fueled by the rapidly increasing capacity of

digital technologies, will rebound and perhaps even surpass the one observed in the

1950s–1980s. Beyond economics, futurists and AI researchers have pointed out the

likelihood of an upcoming technological singularity (Kurzweil, 2005; Hanson and

Yudkowsky, 2013) – which would imply even greater growth acceleration.

In an attempt to formally structure this discussion, in my recent paper (Growiec,

2019) I have presented the synthetic hardware–software model. My key proposition

there is to replace capital and labor as key macroeconomic factors of production with

two alternative aggregates: hardware (“brawn”) and software (“brains”), orthogonal

to the traditional distinction (see Figure 1). I start off from the basic observation
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that output is generated through purposefully initiated physical action. Generating

output requires both some physical action involving energy – carried out by hard-

ware – and some information describing the action – provided by software.1 This

underscores that physical capital and human physical labor are fundamentally sub-

stitutable inputs, contributing to hardware; analogously, human cognitive work and

pre-programmed digital software are also substitutes, contributing to software. In

turn, both hardware and software are complementary and essential2 in the process.

Furthermore, programmable hardware, such as computers, smartphones or robots,

similarly to the human body has double duty: as means of performing physical ac-

tion and as a container for software – stored information and working algorithms. In

such a framework, technological progress represents increases the stock of available

codes and is thus generally viewed as software-augmenting.

Figure 1: Factors of production in the hardware–software model.

In the current paper I study the prospective sources of global economic growth

in the long-run future. Based on the hardware–software model I formulate a range

of predictions conditional on certain key assumptions regarding automatability of

production and R&D tasks and structure of the R&D process. Each studied scenario

places our global future somewhere along the axis: secular stagnation – continued

growth at the current pace – growth acceleration – technological singularity. Specif-

ically I consider the following research questions.

• Full vs. Partial Automation. How are long-run growth predictions affected

whether or not all essential tasks can be automated? (Growiec, 2021)

1This approach is well grounded in physics. As a frank summary, Michio Kaku said: “I’m a

physicist. We rank things by two parameters: energy and information.”
2An essential input is such an input that if it is not used in production, output is zero.
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I find that when all essential production and R&D tasks are subject to au-

tomation, the long-run growth engine, determining the GDP growth rate in the

long-run limit, is the accumulation of programmable hardware. This scenario

is consistent with a (potentially massive) growth acceleration in the future.

If some essential tasks cannot be automated, though, both in production and

R&D, a dual long-run growth engine emerges, consisting of R&D (generat-

ing labor-augmenting developments) and the accumulation of programmable

hardware (used as R&D capital). Then the GDP growth rate in the long-run

limit is constrained by the rate of R&D which uses the essential and scarce

human input.

• Automation of Production vs. R&D. How are long-run growth predic-

tions affected if only production, but not R&D tasks can be automated? And

conversely, what if only R&D, but not production tasks can be automated?

I find that if all essential production tasks are subject to automation, the long-

run growth engine, determining the GDP growth rate in the long-run limit,

is the accumulation of programmable hardware. Whether or not R&D tasks

can be automated as well, is irrelevant for long-run growth. Analogously, if

all essential R&D tasks can be automated, automation of R&D has the po-

tential of accelerating and sustaining long-run growth by creating a positive

feedback loop in the R&D sector. Then the long-run growth engine, deter-

mining the GDP growth rate in the long-run limit, is again the accumulation

of programmable hardware, and whether some essential production tasks may

not be automated, becomes irrelevant for the long-run growth rate. All these

scenarios are consistent with a substantial growth acceleration in the future.

• R&D Capital. How are long-run growth predictions affected whether or not

machines (physical capital) can be used in the R&D process?

I find that when all essential production tasks are subject to automation, pres-

ence or absence of R&D capital in the R&D process is irrelevant for the GDP

growth rate in the long-run limit, which is determined by the pace of accumu-

lation of programmable hardware. If some essential production tasks cannot

be automated, though, accumulation of R&D capital has the potential of ac-

celerating and sustaining long-run growth by creating an additional positive

feedback loop in the R&D sector. A dual long-run growth engine emerges

then, consisting of R&D (generating labor-augmenting developments) and the

accumulation of programmable hardware (used as R&D capital). In turn, if

neither production nor R&D tasks can be fully automated and R&D capital

is not used in the R&D process, the GDP growth rate in the long-run limit is

driven exclusively by the R&D sector producing labor-augmenting technical

change. With R&D output being critically constrained by the supply of the
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scarce human input, this is the only scenario consistent with declining GDP

growth rates over the long run (secular stagnation).

• Hardware-Augmenting Technical Change. How are long-run growth

predictions affected whether or not technical change can be (at least partly)

hardware-augmenting?

I find that when all essential production or R&D tasks are subject to automa-

tion, hardware-augmenting technical change leads to explosive growth with

unboundedly increasing GDP growth rates (technological singularity). This

occurs due to the creation of a self-reinforcing positive feedback loop between

hardware accumulation and hardware-augmenting technical change. If some

essential tasks both in production and R&D cannot be automated, though,

hardware-augmenting technical change matters only insofar as it accelerates

the R&D process itself.

These results are intuitive. The key variable to observe is the relatively scarce

factor of production in the long-run limit. Is it hardware or software? In the pre-

1980 industrial economy, where production processes were increasingly mechanized

but not automated (capital was gradually replacing human physical labor in per-

forming physical actions, i.e. in hardware, but instructions for the actions were

provided exclusively by people), the scarce factor was human cognitive work, which

is not accumulable per capita. Then the key source of long-run growth was labor-

augmenting technological progress, provided by R&D (Romer, 1990; Jones, 1995;

Acemoglu, 2009).

In the post-1980 economy, though, following the dawn of the digital era pro-

duction processes increasingly get automated (instructions for physical actions are

increasingly stored and run on programmable hardware). Labor is replaced with

capital in software. By increasing the supply of the scarce software factor, automa-

tion contributes to economic growth alongside labor-augmenting R&D. As of 2021,

R&D remains the key growth engine among the two because there is a wide range of

tasks which – with today’s technology – cannot be automated. However, if eventu-

ally all essential tasks will be automated, labor (specifically, human cognitive work)

will be replaced and thus give way to capital (specifically, programmable hardware)

as the scarce factor of production. Then the key source of growth will be the ac-

cumulation of programmable hardware (Jones and Manuelli, 1990; Growiec, 2019).

Such a scenario is associated with a potentially massive acceleration in the GDP

growth rate: following the digital revolution, growth in data volume, processing

power and bandwidth is an order of magnitude faster than growth in global GDP

(Hilbert and López, 2011).

If, in contrast, some essential production and R&D tasks will never be auto-

mated, human labor employed in these tasks will remain the scarce factor of produc-

5



tion, and labor-augmenting technological progress which improves its productivity

will remain the key engine of long-run growth. The pace of GDP growth will then

remain tied to the dynamics of R&D output, which may be temporarily affected by

the accumulation of R&D capital but ultimately will remain constrained by the ef-

fective supply of R&D labor, most likely subject to a secular slowdown or stagnation

in the coming decades (Bloom, Jones, Van Reenen, and Webb, 2020).

On top of that, the hypothetical force of hardware-augmenting technical change

– understood e.g. as increases in energy efficiency of computers and other pro-

grammable machines – can alleviate the scarcity of programmable hardware. Its

effects will therefore be particularly notable in the scenarios where hardware re-

ally is relatively scarce, i.e., in the scenarios where production and/or R&D can be

fully automated.3 This possibility lends some justification for the hypothesis of an

upcoming technological singularity.

The paper is related more broadly to studies focusing on automation and its im-

pacts on productivity, employment, wages and factor shares (Acemoglu and Autor,

2011; Autor and Dorn, 2013; Graetz and Michaels, 2018; Acemoglu and Restrepo,

2018; Andrews, Criscuolo, and Gal, 2016; Arntz, Gregory, and Zierahn, 2016; Frey

and Osborne, 2017; Barkai, 2020; Autor, Dorn, Katz, Patterson, and Van Reenen,

2020; Jones and Kim, 2018; Hemous and Olsen, 2018). It also touches the nascent lit-

erature on macroeconomic implications of development of “digital/robotic/machine

labor”, AI and autonomous robots (Yudkowsky, 2013; Graetz and Michaels, 2018;

Sachs, Benzell, and LaGarda, 2015; Benzell, Kotlikoff, LaGarda, and Sachs, 2015;

DeCanio, 2016; Acemoglu and Restrepo, 2018; Aghion, Jones, and Jones, 2019; Berg,

Buffie, and Zanna, 2018; Caselli and Manning, 2019; Benzell and Brynjolfsson, 2019).

The remainder of the paper is structured as follows. Section 2 presents the key

assumptions of the hardware–software model. Section 3 deals with the role of partial

vs. full automation. Section 4 covers the mixed cases where full automation is possi-

ble only in production or only in R&D. Section 5 discusses the role of R&D capital.

Section 6 covers hardware-augmenting technical change. Section 7 summarizes the

results and concludes.

2 The Hardware–Software Model

The hardware–software model (Growiec, 2019) begins with the observation that

all output is generated through purposefully initiated physical action. In other

words, producing output requires both some physical action and some code, a set of

instructions describing and purposefully initiating the action. Based on this premise

3One could also consider positive R&D spillovers which multiplicatively augment the entire

R&D output (Jones, 1995), and thus indirectly augment also accumulable R&D capital. In this

roundabout way, R&D spillovers can give rise to hardware-augmenting technical change.

6



I posit a general production function (for whatever output) featuring some physical

hardware X, able to perform the action, and some disembodied software S, providing

the information:

Output = F(X,S). (1)

I assume furthermore that F : R2
+ → R+ is increasing and concave in both factors

and such that hardware X and software S are essential (i.e., F(0, S) = F(X, 0) = 0)

and mutually complementary in production (the elasticity of substitution between

X and S is below unity). One natural way to instantiate this assumption is to take a

CES specification with an elasticity of substitution σ ∈ (0, 1), cf. Klump, McAdam,

and Willman (2007, 2012). The particular CES form of the F function is however

not necessary for the results.

Hardware X (“brawn”) includes physical actions performed by both humans

and machines. Hence, X encompasses both the services of physical capital K and

human physical labor L, where the latter variable excludes any know-how or skill of

the worker.

Software S (“brains”), in turn, encompasses all useful instructions which stem

from the available information, in particular the practical implementation of state-

of-the-art technologies. Hence, it includes the skills and technological knowledge em-

ployed in human cognitive work, H, as well as pre-programmed software Ψ, which is

essentially a task-specific list of instructions to be performed by the associated pro-

grammable hardware (e.g., computers, robots, smartphones, etc.). Pre-programmed

software Ψ may in particular include artificial intelligence (AI) algorithms, able to

learn from data as well as potentially self-improve and self-replicate.

Within hardware X, capital and labor are inessential and substitutable as agents

of physical action (elasticity of substitution above unity). This reflects the idea

that whatever performs a given set of actions, if the actions are the same then the

outcome should be the same, too. The same logic applies to software S: regardless of

whether a set of instructions comes from a human brain or a mechanical information

processing unit, if the actual information content of instructions is the same, then

the outcome should be the same, too. An important caveat for the case of software,

though, is that we don’t know yet if all types of instructions can be provided by both

people and machines, that is whether all essential tasks can be potentially automated

in the future. As it turns out, if certain essential cognitive tasks will never be

automated, then the reduced form production function will feature complementarity

of human cognitive work and pre-programmed software within software S (elasticity

of substitution below unity, see the derivation and detailed discussion in Growiec,

2021).

Formally, I represent these assumptions as:

X = G1(L,K), S = G2(H,Ψ), (2)
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where the elasticity of substitution in G1 is above one, and in G2 – above one in the

full automation scenario, and below one in the partial automation scenario. The

functions G1 : R2
+ → R+ and G2 : R2

+ → R+ are assumed increasing and concave in

both inputs. The replacement of L with K within hardware X will be referred to

as mechanization, whereas the replacement of H with Ψ within software S will be

called automation.

Each of the four factors of production has its unique properties.

• Human physical labor L is rivalrous and given in fixed supply per worker and

unit of time, L = ζN where ζ ∈ [0, ζ̄] denotes the supply of physical labor per

worker in a unit of time, expressed in physical capital units, and N is the total

number of workers.

• Physical capital K is rivalrous but can be unboundedly accumulated in per-

capita terms. Physical capital K may be non-programmable or programmable.

The share of programmable hardware in total physical capital is denoted by

χ (so that χ ∈ [0, 1]).

• Human cognitive work H consists of three components, technological knowl-

edge A, the average skill level h, and the number of workers N , as in H = AhN .

Technological knowledge A, also interpreted as the size of the repository of

task-specific codes, is non-rivalrous (Romer, 1986, 1990) and accumulable.

Per-capita skill levels h are rivalrous and bounded above.

• Pre-programmed software Ψ also consists of three components, technological

knowledge A, algorithmic skill level ψ which captures the degree to which pre-

programmed software is able to perform the tasks collected in A, and the stock

of programmable hardware χK on which the software is run, as in Ψ = AψχK.

Technological knowledge A is the same as above.4 The algorithmic skill level

ψ is assumed to be bounded above by the optimal code for performing a given

task (i.e., perfect accuracy), though there may be in fact a much lower upper

bound ψ̄ (Hanson and Yudkowsky, 2013). Because digital software can be

virtually costlessly copied, it is assumed that it can scale up to the level of all

available programmable hardware χK.

All in all, the general production function takes the form:

Output = F(G1(ζN,K), G2(AhN,AψχK)). (3)

Finally, following Romer (1986, 1990), the synthetic hardware–software model

envisages technological progress (growth in A) as expansion of the “repository of

4If in reality the sets of codes available to humans and digital algorithms are different, the

discrepancy between the measures of both sets can be captured by the ratio ψ/h.
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codes”, i.e., as the development of new, better instructions allowing to produce

higher output with given hardware. Whether these new instructions take the form

of new abstract ideas, scientific theories, systematically catalogued facts, codes spec-

ifying certain actions, or blueprints of physical items, they are all information and

not actual objects or actions, and it is precisely this informational character that

makes technologies non-rivalrous and a source of increasing returns to scale (Romer,

1990). In contrast to Paul Romer’s seminal contributions, though, here these in-

structions can be applied to the tasks at hand both by humans and machines. Thus

all technological progress is naturally modeled as software-augmenting.

In the following sections I derive long-run growth predictions from the baseline

hardware–software model and its several variations. I represent the baseline case

as the following reduced-form two-sector economic growth model with a production

and R&D sector:

Y = F (G1(ζN,K), G2(AhN,AψχK)), (4)

Ȧ = AφΦ(G1(ζN,K), G2(AhN,AψχK)), (5)

K̇ = sY − δK, (6)

where the term Aφ (with φ ∈ [0, 1]) captures the potentially positive “standing

on shoulders” effects in R&D (Jones, 1995). The aggregate production function

F : R2
+ → R+ and the idea production function Φ : R2

+ → R+ are assumed to have

the properties of the general production function F discussed above.5 I additionally

assume that F,G1, G2 and Φ are characterized by constant returns to scale. Finally,

I posit that bounded variables (s, h, ψ, χ) will eventually stabilize, and so will global

human population N . Thus I concentrate solely on the dynamics of two state

variables of the model, K and A, in the long-run limit, treating s, h, ψ, χ and N

as given constants (Solow, 1956; Jones, 2005).

In the following analysis I will use the following approximations as K/N →∞:

X ≈ αK where α = G1(0, 1) = lim
x→0

G1(x, 1), (7)

S ≈ βAψχK where β = G2(0, 1) = lim
x→0

G2(x, 1), full automation, (8)

S ≈ γAhN where γ = G2(1,∞) = lim
y→∞

G2(1, y), partial automation. (9)

These approximations are valid thanks to the assumption of constant returns to

scale as well as above unitary elasticity of substitution in G1 (equation (7)) and in

G2 (equation (8)), and alternatively, below unitary elasticity of substitution in G2

(equation (9)).

5Using a CES ideas production function specification, Mućk, McAdam, and Growiec (2021)

demonstrate empirically for the US that R&D capital and R&D labor are gross complements also

in R&D (σR&D < 1).
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I will also use the following asymptotic notation:

aK = F (1,∞) = limy→∞ F (1, y), bK = Φ(1,∞) = lim
y→∞

Φ(1, y), (10)

aN = F (∞, 1) = limx→∞ F (x, 1), bN = Φ(∞, 1) = lim
x→∞

Φ(x, 1). (11)

By the assumptions of constant returns to scale and less than unitary elasticity of

substitution in F and Φ, limits in (10)–(11) exist and are finite.

3 Full vs. Partial Automation

I am now in the position to study the prospective sources of global economic growth

in the digital age. I first observe that the answer depends crucially on whether

all essential tasks can be potentially automated in the future (the full automation

case), or some of them will always have to be performed by humans (the partial

automation case).

Full Automation of Production and R&D. In the long-run limit, K/N → ∞
as all tasks eventually get mechanized and automated in this scenario. Then for

computing the long-run dynamics we may approximate X = G1(ζN,K) ≈ αK and

S = G2(AhN,AψχK) ≈ βAψχK. As K →∞ and A→∞, asymptotically

Y = F (αK, βAψχK) = αKF (1, Aψχ · β/α)→ αaKK, (12)

Ȧ = AφΦ(αK, βAψχK) = AφαKΦ(1, Aψχ · β/α)→ αbKA
φK, (13)

K̇ ≈ (sαaK − δ)K. (14)

This means that when all essential tasks are subject to automation, the GDP

growth rate will converge to g = gK = sαaK − δ, and the long-run growth engine

will be the accumulation of programmable hardware (Jones and Manuelli, 1990).

Because hardware is accumulated in proportion to K, whereas software – in pro-

portion to AK, the stock of software will grow systematically faster than hardware,

and therefore (programmable) hardware will eventually become the scarce factor of

production. The pace of technical change (growth in A), while important over the

transition, will eventually become irrelevant for growth.

Partial or No Automation of Production and R&D. In the long-run limit,

all tasks will eventually get mechanized in this scenario while a fraction of essen-

tial production and R&D tasks will forever remain immune to automation, mak-

ing human cognitive work and pre-programmed software complementary (elasticity

of substitution below one in G2, cf. Growiec, 2021). As K/N → ∞, for com-

puting the long-run dynamics we may approximate X = G1(ζN,K) ≈ αK and

S = G2(AhN,AψχK) ≈ γAhN .

10



There are two sub-cases to consider here, either φ = 0 or φ ∈ (0, 1]. If φ = 0

then an asymptotical balanced growth path is attained as K → ∞ and A → ∞,

with K/A approaching a constant and

g = gK = gA = Φ

(
α
K

A
, γhN

)
= sF

(
α, γ

A

K
hN

)
− δ. (15)

In this case, the long-run GDP growth rate is determined by the pace of R&D,

which is in turn sustained by the accumulation of R&D capital. This is a dual

growth engine, and both hardware and software grow asymptotically at the same

rate g, limited and determined by the scarce supply of human cognitive work hN .

In contrast, with positive R&D spillovers (“standing on shoulders”, Jones, 1995),

asymptotically A will grow faster than K. When φ ∈ (0, 1], in the long-run limit

Y = F (αK, γAhN) = αKF

(
1,
γA

αK
hN

)
→ αaKK, (16)

Ȧ = AφΦ(αK, γAhN) = AφαKΦ

(
1,
γA

αK
hN

)
→ αbKA

φK, (17)

K̇ ≈ (sαaK − δ)K. (18)

Hence, in the presence of R&D capital accumulation, positive R&D spillovers

reinstate the Jones and Manuelli (1990) dynamic even if production and R&D tasks

are only partially automatable or not at all. This is because positive R&D spillovers

are a multiplicative factor in the R&D equation and thus also partially augment the

hardware factor employed in this sector, including accumulable R&D capital. The

long-run growth engine is then again the accumulation of programmable hardware,

setting the GDP growth rate in the long-run limit as g = gK = sαaK − δ, i.e., in

particular de-coupling it from the supply of the scarce human input.

4 Full Automation Only in Production or R&D

Existing literature suggests that routine tasks, both manual and cognitive, are rel-

atively easiest to automate, while automation gets harder for tasks which are more

complex and carried out in a less structured environment. Among all tasks, cutting-

edge R&D tasks requiring sophisticated reasoning and out-of-the-box thinking are

probably among the least susceptible to automation (Acemoglu and Autor, 2011;

Autor and Dorn, 2013; Frey and Osborne, 2017). It is therefore natural to expect

that production tasks may – if at all – become fully automatable earlier than R&D

tasks.6 In order not to miss any viable scenario of the future, however, in the follow-

ing paragraphs I discuss both the scenario in which production eventually becomes

6This said, we also see that AI algorithms are already entering research tasks, such as scan-

ning astronomical photographs, sequencing genomes, or predicting patterns of protein folding (Al-

phaFold), while some seemingly easy motor tasks remain notoriously difficult to automate – so

perhaps we should be cautious with such “natural” predictions.
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fully automatable, whereas R&D does not (in line with the implicit assumptions

made by, among many others, Acemoglu and Restrepo, 2018), and the opposite sce-

nario where eventually R&D becomes fully automatable, whereas production does

not.

Full Automation Only in Production. In the long-run limit, as all produc-

tion tasks eventually get mechanized and automated, while human cognitive work

remains essential for R&D, asymptotically (with K →∞ and A→∞) I obtain:

Y ≈ F (αK, βAψχK) = αKF (1, Aψχ · β/α)→ αaKK, (19)

Ȧ ≈ AφΦ(αK, γAhN), (20)

K̇ ≈ (sαaK − δ)K. (21)

Hence, once all essential production tasks are automated, the long-run GDP

growth rate will converge to g = gK = sαaK − δ, and the long-run growth engine

will be the accumulation of programmable hardware (Jones and Manuelli, 1990).

Because hardware is accumulated in proportion to K, whereas pre-programmed

software used in production – in proportion to AK, the stock of production soft-

ware will grow systematically faster than hardware, and therefore (programmable)

hardware will eventually become the scarce factor of production.7

Full Automation Only in R&D. In the long-run limit, as all R&D tasks will

eventually get mechanized and automated, while human cognitive work will remain

essential for production, asymptotically A will be growing faster than K, implying

(as A→∞ and K →∞):

Y ≈ F (αK, γAhN) = αKF

(
1,
γA

αK
hN

)
→ aKK, (22)

Ȧ ≈ AφΦ(αK, βAψχK) = AφαKΦ (1, Aψχ · β/α)→ αbKA
φK, (23)

K̇ = (sαaK − δ)K. (24)

It turns out that full automation of R&D tasks is sufficient for generating the

Jones and Manuelli (1990) dynamic with a long-run GDP growth rate g = gK =

sαaK − δ even if production tasks are only partially automatable or not at all. The

long-run growth engine is then again the accumulation of programmable hardware.

Compared to the scenario where neither production nor R&D tasks are fully au-

tomatable, full automation of R&D creates an additional positive feedback loop,

accelerating and sustaining long-run growth. Compared to the scenario with full

automation in production and R&D, though, the GDP growth rate is probably

7Comparing equations (13) and (20), one can infer that along the transition, the pace of technical

change (growth in A) will be probably markedly lower than in the scenario where R&D tasks are

automated as well. This should drag also on GDP growth. In the long-run limit, though, the role

of R&D will vanish and its pace will eventually become irrelevant for the pace of GDP growth.
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markedly lower over the transition and only converges to the same rate in the long-

run limit.

5 R&D Capital

Nowadays R&D processes increasingly use sophisticated machinery. 21st century

science would not be possible without sophisticated lab equipment, not to mention

the personal computers on researchers’ laps. Economic growth theory thus far has

however rarely acknowledged this fact, focusing almost exclusively on the other

crucial R&D input – researchers’ skilled work. Hence, to bring the current paper

closer to the established R&D-based growth literature (Romer, 1990; Jones, 1995;

Barro and Sala-i-Martin, 2003; Acemoglu, 2009), I will now ask the question if the

long-run predictions of the hardware–software model would be affected if the role

of R&D capital were disregarded. Therefore in the following paragraphs I consider

a version of the hardware–software model without R&D capital, i.e., without ever

allowing R&D processes to be mechanized. To this end I fix X = ζN in the R&D

sector. I separately discuss the cases of partial vs. full automation in production

and R&D.

No R&D Capital, Full Automation in Production. In the long-run limit,

as all production tasks eventually get mechanized and automated in this scenario

(X ≈ αK, S ≈ βAψχK) while human physical work remains essential for R&D

tasks (X = ζN, S ≈ βAψχK), asymptotically I obtain as A→∞ and K →∞:

Y = F (αK, βAψχK) = αKF (1, Aψχ · β/α)→ αaKK, (25)

Ȧ = AφΦ(ζN, βAψχK) = AφζNΦ

(
1, A

βψχK

ζN

)
→ bKA

φζN, (26)

K̇ ≈ (sαaK − δ)K. (27)

Alternatively, with partial or no automation of R&D tasks (S ≈ γAhN in R&D),

the R&D equation becomes Ȧ = AφΦ(ζN, γAhN) = AφζNΦ
(

1, Aγh
ζ

)
→ bKA

φζN,

with exactly the same asymptotic result for the GDP growth rate.

Hence, I observe that with full automation of production tasks, the accumulation

of programmable hardware is the key growth engine over the long run, and the GDP

growth rate converges to g = gK = sαaK − δ in the limit. While important over

the transition, under full automation of production the presence or absence of R&D

capital in the R&D process is irrelevant for the asymptotic results.

No R&D Capital, Full Automation Only in R&D. In the long-run limit, as all

production tasks eventually get mechanized but not automated in this scenario (X ≈
αK, S ≈ γAhN) while human physical but not cognitive work remains essential for

13



R&D tasks (X = ζN, S ≈ βAψχK), asymptotically (A→∞, K →∞) technology

A grows at a faster rate than K, implying:

Y = F (αK, γAhN) = αKF

(
1,
γA

αK
hN

)
→ αaKK, (28)

Ȧ = AφΦ(ζN, βAψχK) = AφζNΦ

(
1, A

βψχK

ζN

)
→ bKA

φζN, (29)

K̇ ≈ (sαaK − δ)K. (30)

It turns out that full automation of R&D tasks suffices to make accumulation of

programmable hardware the key growth engine over the long run. Asymptotically,

the economy follows the Jones and Manuelli (1990) dynamic and the GDP growth

rate converges to g = gK = sαaK − δ. In the short to medium run, though, the

failure to fully automate production processes most probably provides a major drag

on the pace of growth.

No R&D Capital, Partial or No Automation. In the long-run limit, as all tasks

eventually get mechanized in this scenario but a fraction of essential production and

R&D tasks is immune to automation (Growiec, 2021), for computing the long-run

dynamics (where K/N → ∞) we may approximate X ≈ αK in production and

S ≈ γAhN in production and R&D. For the latter sector we consequently obtain

as A→∞ and K →∞:

Ȧ = AφΦ(ζN, γAhN) = AφζNΦ

(
1, A

γh

ζ

)
→ bKA

φζN. (31)

Hence, with constant population N technology progresses sub-exponentially if φ ∈
[0, 1) (Jones, 1995; Groth, Koch, and Steger, 2010), or exponentially if φ = 1 (Romer,

1990). In the absence of R&D capital and automation, the hardware–software model

reproduces the well known scenarios of R&D based growth in the industrial era: ei-

ther semi-endogenous (φ < 1, Jones) or fully endogenous growth (φ = 1, Romer).

The ultimate source of growth, determining the long-run GDP growth rate, is R&D.

In the absence of automation, software (in this case synonymous with human cog-

nitive work) forever remains the scarce factor of production, limiting the pace of

economic growth.

Specifically in the linear case of φ = 1, the GDP growth rate converges asymp-

totically to:

g = gA = gK = bKζN, (32)

and thus is proportional to the “weakest link” in the economy, unaugmentable phys-

ical labor employed in R&D. If φ < 1, without population growth the rate of tech-

nological progress gA, and consequently the GDP growth rate g, is bound to sys-

tematically slow down over time (Jones, 1995), in line with the secular stagnation

hypothesis.
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6 Hardware-Augmenting Technical Change

In Growiec (2019) I have argued, grounding my points in Romer’s seminal contri-

butions, that technical change should be generally modeled as software-augmenting.

After all, technological progress (growth in A) represents expansions of the “reposi-

tory of codes”, i.e., the development of new, better instructions allowing to produce

higher output with given hardware. These instructions are information and not

actual objects or actions, and it is precisely this informational character that makes

technologies non-rivalrous and a source of increasing returns to scale (Romer, 1986,

1990).

Hardware, by contrast, performs physical actions which require expediting en-

ergy. With this in mind, against the spirit of Romer’s theory one could tenta-

tively conjecture that certain improvements in energy efficiency of physical actions

could potentially count as hardware-augmenting technical change. In the follow-

ing paragraphs I will entertain this possibility. In so doing, I must emphasize that

hardware-augmenting technical change has the potential to resolve the scarcity of

programmable hardware in production over the long run limit, thereby accelerat-

ing growth beyond the limits set by the constant-returns-to-scale, asymptotically

linear character of the aggregate production function. When accumulation of pro-

grammable hardware is accompanied with R&D which is at least partly hardware-

augmenting, these two forces have the potential of mutual reinforcement, creating

self-reinforcing feedback loops that may lead to explosive, super-exponential growth.

Technically, the key modification of the framework is that the hardware fac-

tor in production and R&D is now technologically augmented: X = G1(A
κ(ζN +

K), A(hN + ψχK)), with κ ∈ (0, 1) representing the assumption that technolog-

ical progress is partly hardware-augmenting but nevertheless remains biased to-

wards software. Furthermore, to make an even stronger case for the importance of

hardware-augmenting technical change, I will ignore possible positive R&D spillovers

(“standing on shoulders” effects) by setting φ = 0. The remaining assumptions re-

main in place. The results are as follows.

Hardware-Augmenting Technical Change with Full Automation. In the

long-run limit, as all tasks will eventually get mechanized and automated in this

scenario, for computing the long-run dynamics we may approximate X ≈ AκαK

and S ≈ βAψχK. As A→∞ and K →∞, asymptotically:

Y = F (AκαK, βAψχK) = AκαKF (1, A1−κψχ · β/α)→ αaKA
κK, (33)

Ȧ = Φ(AκαK, βAψχK) = AκαKΦ(1, A1−κψχ · β/α)→ αbKA
κK, (34)

K̇ ≈ (sαaKA
κ − δ)K. (35)

Hence, when all essential production tasks are subject to automation and tech-

nical change is partly hardware-augmenting, the long-run GDP growth rate g =
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sαaKA
κ − δ is ever increasing over time. The self-reinforcing dual long-run growth

engine – the accumulation of programmable hardware plus hardware-augmenting

technical change – generates explosive growth with an unbounded growth rate.

Quick algebra proves that this result remains intact also when automation hap-

pens only in production or only in R&D, or if there is no R&D capital.

Hardware-Augmenting Technical Change with Partial or No Automation.

In the long-run limit for this scenario, as all tasks will eventually get mechanized

but a fraction of essential production and R&D tasks will forever remain immune

to automation (Growiec, 2021), we may approximate X ≈ AκαK and S ≈ γAhN .

I find that as A → ∞ and K → ∞, asymptotically K grows faster than A1−κ.

It follows that:

Y = F (AκαK, γAhN) = γAhNF

(
αK

A1−κγhN
, 1

)
→ γaNAhN, (36)

Ȧ = Φ(AκαK, γAhN) = γAhNΦ

(
αK

A1−κγhN
, 1

)
→ γbNAhN, (37)

K̇ ≈ sγaNAhN − δK. (38)

The economy converges to a balanced growth path where the long-run GDP growth

rate is determined by the pace of technical change:

g = gA = gK = γbNhN. (39)

Comparing this result to the corresponding case without hardware-augmenting

technical change (equation (15)), I find that now we do not have a dual growth

engine anymore. This is because hardware-augmenting technical change, coupled

with the accumulation of R&D capital, resolves the scarcity of hardware, and thus

the only remaining scarce factor of production is software (human cognitive work).

In such circumstances, the pace of hardware-augmenting technical change, as long

as it is positive, is not relevant for the long-run GDP growth rate, which remains

constrained by the scarce supply of human cognitive work hN . The fundamental

engine of growth is then R&D, generating labor-augmenting technical developments.

If there were also positive R&D spillovers (“standing on shoulders” effects) on

top of hardware-augmenting technical change, though (φ ∈ (0, 1]), then the R&D

equation would have been explosive again. To see this, take

Ȧ = AφΦ(AκαK, γAhN) = A1+φγhNΦ

(
αK

A1−κγhN
, 1

)
→ γbNA

1+φhN. (40)

This equation implies an ever increasing growth rate of technology, gA = AφγbNhN ,

which – given that output Y is proportional to A – implies explosive, super-exponen-

tial economic growth.
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Hardware-Augmenting Technical Change with Partial or No Automation

and No R&D Capital. Let us now check how potent hardware-augmenting tech-

nical change is for generating long-run growth under the relatively most adverse

circumstance: when there is partial or no automation and no R&D capital. In this

scenario, in the long-run limit there will be full mechanization but no automation

in production (X ≈ αK, S ≈ γAhN). With K → ∞ and A → ∞ I obtain that K

grows faster than A1−κ and thus:

Y ≈ F (AκαK, γAhN) = γAhNF

(
αK

A1−κγhN
, 1

)
→ γaNAhN, (41)

Ȧ ≈ Φ(AκζN, γAhN) = AκζNΦ

(
1,
γhA1−κ

ζ

)
→ bKA

κζN, (42)

K̇ ≈ sγaNAhN − δK. (43)

In this scenario, due to κ < 1 technology A grows sub-exponentially (Jones, 1995;

Groth, Koch, and Steger, 2010), and so does capital and output. The pace of

hardware-augmenting technical change, while important over the transition, be-

comes irrelevant for the GDP growth rate in the long-run limit.

If there were also sufficiently strong R&D spillovers (“standing on shoulders”

effects) on top of hardware-augmenting technical change, though (φ > 1− κ), then

the R&D equation would have been explosive again. To see this, take

Ȧ = AφΦ(AκζN, γAhN) = Aφ+κζNΦ

(
1, A1−κγh

ζ
, 1

)
→ bKA

φ+κζN. (44)

This implies an ever increasing growth rate of technology, gA = Aφ+κ−1bKζN , which

– given that output Y is proportional to A – implies super-exponential, explosive

economic growth.

In the case of positive but weak R&D spillovers (φ ∈ (0, 1 − κ)), the aforemen-

tioned sub-exponential growth result remains intact.

In the intermediate knife-edge case φ = 1−κ, economic growth becomes exactly

exponential in the limit, and the GDP growth rate converges to g = bKζN , deter-

mined by the pace of R&D, and in turn set by the supply of human physical labor

in the R&D sector, ζN .

7 Summary and Concluding Remarks

In the current paper I have provided a theoretical investigation of the prospective

sources of long-run economic growth in the future. I have formulated a range of

predictions conditional on certain key assumptions regarding automatability of pro-

duction and R&D tasks and structure of the R&D process. The results follow from

observing the dynamics of the relatively scarce factor of production in the long-run

limit. When the scarce factor is human cognitive work, which is not accumulable per
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capita, then the key source of growth is labor-augmenting technological progress,

provided by R&D. However, when all essential tasks production or R&D tasks are

subject to automation, then labor (human cognitive work) will eventually give way

to capital (programmable hardware) as the scarce factor of production. Then the

key source of growth will be the accumulation of capital (Jones and Manuelli, 1990;

Growiec, 2019). If, in contrast, some essential production and R&D tasks would

never be automated, and if there would be no accumulation of R&D capital con-

stantly feeding into R&D productivity, human labor employed in these tasks will

remain the scarce factor of production, and R&D driven labor-augmenting techno-

logical progress will remain the key engine of long-run growth. Each of the considered

scenarios places our global future somewhere along the axis spanning from secular

stagnation to technological singularity. The results are summarized in Table 1.

Table 1: Summary of results

Scenario Growth engine Growth rate

Baseline (With R&D Capital)

Full Automation in Production and R&D K acc g = sαaK − δ
Full Automation in Production K acc g = sαaK − δ
Full Automation in R&D K acc g = sαaK − δ
Partial or No Automation, φ = 0 K acc + LATC equation (15)

Partial or No Automation, φ ∈ (0, 1] K acc g = sαaK − δ
Without R&D Capital

Full Automation in Production and R&D K acc g = sαaK − δ
Full Automation in Production K acc g = sαaK − δ
Full Automation in R&D K acc g = sαaK − δ
Partial or No Automation, φ ∈ [0, 1) LATC∗ secular stagnation

Partial or No Automation, φ = 1 LATC∗∗ g = bKζN

With Hardware-Augmenting Technical Change

Full Automation in Production and R&D K acc + KATC explosive growth

Full Automation in Production K acc + KATC explosive growth

Full Automation in R&D K acc + KATC explosive growth

... With R&D Capital ...

Partial or No Automation, φ = 0 LATC g = γbNhN

Partial or No Automation, φ ∈ (0, 1] K acc + LATC explosive growth

... Without R&D Capital ...

Partial or No Automation, φ ∈ [0, 1− κ) LATC secular stagnation

Partial or No Automation, φ = 1− κ LATC g = bKζN

Partial or No Automation, φ ∈ (1− κ, 1] LATC explosive growth

Notes: LATC – labor-augmenting technical change; KATC – capital-augmenting technical

change; ∗ semi-endogenous R&D-based growth; ∗∗ fully endogenous R&D-based growth.
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The big remaining question is, which of these scenarios is most likely to happen

in reality? Let me try to cautiously answer this question by ruling out – or, to phrase

it in the Bayesian spirit, by reducing the prior probability of – the scenarios which

appear least probable given their theoretical underpinnings and historical evidence.

First, in my opinion the scenarios with hardware-augmenting technical change are

dubious because of their shaky theoretical foundations. I do admit, however, that

something akin to hardware-augmenting technical change may occur in the event of a

new technological revolution in hardware, amounting to the emergence of new, much

more efficient ways of performing physical action (and in particular, computation)

compared to the ones we know today (e.g., nanotechnology, quantum computing,

etc.). For this reason I would not entirely dismiss these scenarios but rather treat

them with due caution, paying attention particularly to the ones involving also

full automation, which would make the hardware factor scarce in production, thus

making a potential technological breakthrough in hardware exceptionally rewarding.

Second, I also think that both anecdotal and systematic econometric evidence speaks

in favor of presence of capital (in particular, programmable hardware) in the R&D

process. This narrows down the set of most likely scenarios to the five baseline cases.

To further discriminate among these five scenarios, one needs to assess whether

full automation of all essential tasks is technologically feasible (and economically

viable). This is a deep question related to the possibility of creating a range of AI

algorithms covering all essential domains in which the human brain is used, and in-

deed possibly unifying their functions in an overarching superhuman artificial general

intelligence (Bostrom, 2014). Discussions on these issues are ongoing and stretch far

beyond the domain of economics. If the answer to this question turns out to be pos-

itive (which, as Bostrom documents, is commonly expected by AI researchers), we

will be realizing the top-most scenario in Table 1, discussed also in Growiec (2019).

On the one hand, this scenario expects a (potentially massive, order of magnitude)

acceleration in GDP growth. On the other hand, though, this growth acceleration

is achieved only as the human contribution to overall production and R&D output

falls towards zero in percentage terms, marginalized or outright replaced by the

productive contribution of programmable machines and their software. The human

labor share of output tends to zero, opening the door to broad-based technological

unemployment.8

And if furthermore the global R&D sector, run either by people or the superhu-

man AI, finds a way to ease the growing scarcity of programmable hardware by the

means of hardware-augmenting technical change, we may well be heading towards

8However, the final outcome regarding technological unemployment will be shaped also by the

wage elasticity of labor supply and the institutional setup. For example, it may be possible for

most people to stay employed despite all the progress in automation and even observe growing

wages over time, only that growth in wages would be systematically slower than growth in output

(Growiec, 2021).
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technological singularity.

If full automation of all essential tasks turns to be impossible, though, then the

most likely scenario will be the one in lines 4-5 in Table 1. In this scenario an

acceleration in global GDP growth is also possible, but only provided that there are

lasting “standing-on-shoulders” effects in R&D (φ > 0). Otherwise, output growth

will be always constrained by the pace of labor-augmenting technical change, the

only force able to systematically increase the effective supply of the scarce factor

of production: human cognitive work. In this scenario, GDP growth rates will

probably remain in the same ballpark as the ones observed currently (with doubling

times of the order of 20–30 years). The declining supply of human R&D labor

will be then counteracted by the accumulation of programmable R&D capital and

its software, creating a dual growth engine (i.e., labor-augmenting technical change

plus R&D capital accumulation). Factor shares (including the human labor share)

will eventually stabilize and there will be no threat of broad-based technological

unemployment.

In sum, this study has drawn the span of potential long-run growth outcomes

in a digital economy where production and R&D processes can be potentially auto-

mated, pointing to a likely growth acceleration as more and more processes become

fully automated in the future. What remains for further research is a quantitative,

numerical assessment of relative importance of the considered mechanisms over the

coming decades – which must necessarily involve a fair amount of speculation. How

long is the long run? How long is the transition period going to be? At which point

will we realize that human cognitive work and pre-programmed software, previously

complementary because many tasks required the human input, have already become

broadly substitutable? When will – if at all – the accumulation of programmable

hardware overtake labor-augmenting technical change as the key engine of growth?

As Niels Bohr used to say, “it is difficult to predict, especially the future”. And es-

pecially the future that may feature ground-breaking technological breakthroughs,

I would add, conveniently leaving this task for future research.
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