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Abstract

We consider feasible Heath-Jarrow-Morton framework specifications that are easily imple-
mentable in XVA engines when pricing linear and non-linear interest rate derivatives in multi-
curve environment. Our particular focus is on relatively less liquid markets (Polish PLN) and
the calibration problems arising from that fact. We first develop necessary tool-kit for multi-
curve construction and XVA integration and then show and discuss various specifications of
HJM model with regard to their practical usage. We demonstrate the importance of Cheyette
subclass and derive dynamics of instantaneous forward rates in generic form. We performed
calibrations of several one-factor models of that form and found out that even with relatively
simple specification i.e. Hull-White with two summands we may achieve satisfactory results in
terms of calibration’s quality and calculation time.

JEL: G12, G13, E43
Keywords: instantaneous forward rate models, multi-curve valuation, valuation adjustments,
XVA, Heath-Jarrow-Morton, volatility surface calibration, HJM framework, Monte Carlo simu-
lation, Cheyette model, Gaussian models

1 Introduction

Heath-Jarrow-Morton interest rate framework builds on the concept of instantaneous forward rates,

allowing movements of the whole yield curve in a non-arbitrage manner. In this article, we will be

looking for some simple yet reach enough specification of the HJM class models that could be used

in pricing engines for calculation of miscellaneous valuation adjustments of interest rate derivatives.

These add-ons (XVA) constitute the common approach to expressing additional risk factors involved

in the valuation of derivative instruments. As every project of high complexity, also XVA calculation

is predominantly IT hardware task, but here we will concentrate on particular algorithms, models’

characteristics and conditions necessary in subsequent phases of XVA development for the whole
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framework to be consistent, calibrable and potent of producing results within reasonable computa-

tional time. Because of the problem’s high dimensionality and at least weak path dependence, the

only suitable toolbox in practice is Monte Carlo simulation. A full deployment and implementation

of XVA in a financial institution require high-performance simulations therefore we concentrate on

a subclass of HJM models with Markovian characteristics. The financial crisis of 2007-8 (here and

after: FC) changed entirely the way all financial instruments are valued, especially in the interest

rate world by separating discounting and forwarding curves, adding even more to the complexity of

the task described so far.

There is a scarcity of recent (after-crisis) research on multi-curve HJM variants’ implementation for

XVA engines and the latter topic has become very important in the industry. The article is organ-

ised as follows. First we set up the scene and outline general recipes for multi-curves construction

and as well as show after crisis changes in plain vanilla interest rate derivatives’ valuation.Then we

introduce all the definitions necessary to accurately characterise XVA integral and list the desired

features and requirements of an interest rate model to be used as a workhorse in XVA engine. The

major contribution of this article is a concise presentation, discussion and practical implementation

of one of the HJM’s subclasses with a special focus on calibration in a multicurve environment. We

demonstrate importance of Cheyette subclass and derive general dynamics of instantaneous forward

rates in generic form. In search for a tractable model and at least semi-analytical pricing formulae to

exist at every state of the world of our simulations, we start with propositions of Brace and Musiela

and modify the results to multicurve environment via multiplicative spreads.1

The FC was the turning point in many aspects of financial instruments valuation methodology

and risk management. Particularly, in the interest rate products domain, it has triggered a revolution

caused by the breaking of no-arbitrage assumption as a foundation of single curve valuation of these

products. During the crisis there were observed dramatic changes in levels, volatilities and liquidity

of interbank money market products (uncollateralised deposits, short-term repo, fx swaps, OIS2) and

interest rate derivatives (FRA, IRS, basis swaps, caps, floors, swaptions) which may be summarised

as follows (cf. [9], [10], [7]):

• Explosion of spreads between money market deposit (xIBOR based3) and OIS (xONIA based4)
1We would like to express my gratitude to Thomson Reuters (and Tullett Prebon) for their co-operation in making

financial market data for an extensive list of instruments available for my research. This database included daily
observations of prices and volatilities of all OTC quoted interest rate derivatives in PLN, EUR and USD from the
period of 2014-2017. The opportunity to work with real market prices is always a good basis for developing practical
and implementable solutions.

2OIS stands for Overnight Index Swap in which counterparts exchange fixed rate for a compound rolling overnight
xONIA rate in an agreed period of time

3xIBOR is a trimmed average reference rate for OTC money market unsecured deposits in currency x, usually
calculated at 11:00 AM local time or different maturities (from O/N to 12 months, depending on the currency) on
the basis of a questionnaire amongst the highest credit rated market participants (panelists). It is not based on real
transactions

4xONIA is a weighted average overnight rate in currency x usually calculated by the relevant for that currency
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rates. The spreads abruptly increased from a long-term plateau of several basis points before

FC to more than 200 bps at some point after FC, still hovering around several tens of basis

points now.

• Divergence between FRA par rates and the corresponding forward rates implied by relevant

unsecured deposits of far and near leg’s maturity, as a consequence of ceased arbitrage possi-

bilities mainly due to liquidity and capital constraints.

• Re-emergence of basis swap spreads risks (differences between different tenor xIBOR rates).

The sheer existence of non-zero spreads (i.e. 3m-6m) meant that no-arbitrage relationship in

classical terms stopped to hold.

• Outburst of credit spreads (measured by CDS spreads) especially of the biggest banks in the

world - including xIBOR panellists - from near-zero levels to 80-300 bps range after FC.

• Evaporation of credibility and trust, which lead to dramatic squeeze of liquidity in many

market segments in almost all instruments but the ones traded with central banks or highly

collateralised.

• Shift towards CSA5 discounting for collateralized cash flows and a strong market division into

funded and unfunded products followed.

As a result of a diffusion of collateral agreements reducing credit risk between counterparts of OTC

derivatives, these instruments’ quotes in the market may now be regarded as risk-free. Since almost

all exposures have to be collateralised now, the market cannot use the same discount curve to calcu-

late net present values and to forecast forward rates. Hence the market moved to the best available

proxy of risk-free discounting, namely OIS discounting6. Another important consequence of FC is

that every tenor of a reference rate (i.e 3M or 6M) may now be treated as a separate underlying

asset which leads to multi-curve environment’s challenges. Some authors [30] suggest that a good

approach is to see different curves as if they were different currencies and refrain from trying to model

why the curves differ but rather describe how to incorporate multi-curve reality into one model. This

proves to be a difficult task mainly because of proper no-arbitrage conditions formulation and con-

sistency in risk neutral measures used in pricing. What is making this task even more cumbersome is

the fact that the market actively and reliably prices only a few tenors and derivatives based on them7.

central bank from real O/N deposits settled between banks
5CSA denotes Credit Support Annex of standard bilateral ISDA agreement regulating the rules of collateral posting

against negative mark-to-market valuation of derivatives portfolios dealt between these counterparts
6in the literature also referred to as CSA discounting
7i.e. interest rate options are usually based on 6M tenors only, with some exception to 3M tenor being used in

shorter maturity products

3



2 Construction of yield curves

Lets define key concepts and yield curves which we will use throughout this dissertation by merging

and simplifying the nomenclature used by [1], [8], [9], [15] [26]. Denote a discount curve based on

instruments with an underlying tenor of j as

Cj
P (t) = {T 7→ P j(t, T )} (1)

where P j(t, T ) is a discount factor for the period between today t and a certain date T in the future.

Assuming j = {ON, 1M, 3M, 6M, 12M} and defining F j(t, T ) as a forward rate implied by j-tenor

curve observed at time t and "working" between date T − δj and T , where δj is a year fraction equal

to the tenor length, we may specify the forward curve of j-tenor rates: Cj
F (t) = {T 7→ F j(t, T )}.

We may also define continuously compounded zero-coupon rates Zj(t, T ) = − logP j(t,T )
(T−t) and therefore

the zero-coupon curve as Cj
Z(t) = {T 7→ Zj(t, T )}. It is crucial for our HJM framework later in this

paper to propose an instantaneous forward rate concept f j(t, T ):

P j(t, T ) = exp

(
−
∫ T

t

f j(t, u)du

)
⇒ f j(t, T ) = −∂ logP j(t, T )

∂T
(2)

⇒ f j(t, T ) = Zj(t, T ) + (T − t)
∂Zj(t, T )

∂T
(3)

The instantaneous forward rate curve of tenor-j is then Cj
f (t) = {T 7→ f j(t, T ) }. We have to

establish some intra-tenor connection between different curves by setting a forward basis (assuming

that the day count conventions on the two curves are the same and hence the year fractions):

βj,d
F (t, T ) =

F j(t, T )

F d(t, T )
=

P d(t, T )
(
P j(t, T − δj)− P j(t, T )

)
P j(t, T )

(
P d(t, T − δj)− P d(t, T )

) (4)

and the forward basis curve would be: Bj,d
F (t) = {T 7→ βj,d

F (t, T )}.

For instance, if we take overnight OIS curve as a discount curve and would like to price some

instruments based on xIBOR3M and xIBOR6M we would need to construct a collection of curves:

C = {Cd
P (t), C3M

F (t), C6M
F (t)} and two basis curves will result from this construction as well: B =

{B3M,d
F (t),B6M,d

F (t)}.

Having the new multi-curve set-up defined above, we may outline a general pricing algorithm in this

environment and compare with single-cure where appropriate. The are many simple, macro-level

algorithms presented in the literature after FC ([2], [7], [10], [22]), from which the below recipe

originates:

• Construct a single discounting curve Cd
P (t) using liquid vanilla interest rate instruments traded

in the market, with increasing maturities (mainly OIS swaps) and a chosen bootstrapping

scheme. Choose an interpolation method. In single curve world, we do construct one curve

which serves both as a discounting and forwarding curve, and we do not use OIS swaps to

construct it but rather a mix of most liquid xIBOR-based derivatives.
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• Construct multiple forwarding curves i.e.: C1M
F (t), C3M

F (t), C6M
F (t), C12M

F (t), depending on needs

and market data availability. Each curve is constructed using simple linear interest rate instru-

ments homogeneous in rate tenor i.e.: for C3M
F (t) we would take: xIBOR3M, FRA3x6, FRA6x9,

..., FRA18x24, IRS2Y3M, IRS3Y3M, ..., IRS10Y3M. Decide on interpolation method. In the

single curve case - we skipped this step of construction.

• For each variable cash flow ck of a derivative to be priced compute an estimate of the relevant

forward rate, F j(t, T ), from the relevant forwarding curve Cj
F (t).

• Compute the expected cash flows as the time-t expectation of the interest rate related payoff

forward measure QTk associated to a corresponding discount factor P d(t, Tk). Compute the

relevant discount factors P d(t, Tk) as well.

• Value of the derivative is just a sum of the discounted expected cashflows.

The last three bullets are the same in classical and modern approach but the discounting curve is,

obviously, different. For the sake of proper calibration and practical use we need to specify also:

• the choice between bootstrap and root-finding Jacobian procedure

• the interpolation scheme

• the methods of dealing with gaps or lack of data in certain segments of a curve(s)

For the reasons of space and the fact that we will be pricing relatively simple instruments, we will

stick to bootstrapping as a method of extracting curves from market data, rather than a global

root-finding procedure (as proposed in [22]), which may be more relevant if one faces a problem

of more intertwined curves and instruments. Detailed recursive algorithms for bootstrapping the

discount and forwarding curves will follow in the subsequent sections.

With regard to the interpolation method choice, we will follow the recommendations of [19], who

found out, that based on the following criteria:

• continuity and positivity of forward rates

• minimisation of little spill-over effect (locality of interpolation)

• stability of forwards (bumping does not change much in the shape of the curve)

• locality of hedges (delta risk of hedge concentrates near the underlying with no filtering to

other areas of the curve)

the best results, although for distinct purposes, were achieved using a linear interpolation on the

logarithms of discount factors8 and a monotone convex interpolation on the logarithms of discount
8which Hagan and West call originally: raw
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factors (which is much more demanding numerically, hence usually implemented directly in a software

package9). The raw linear method of interpolation between two points Ti and Ti+1 at T may be

summarized as follows:

P (t, T ) = P (t, Ti+1)
T−Ti

Ti+1−Ti P (t, Ti)
Ti+1−T

Ti+1−Ti (5)

This method, despite being very helpful in a sensitivity analysis, results in piecewise constant instan-

taneous forward rates, which in turn is not a desirable feature, especially in Heath-Jarrow-Morton

framework. On the other hand, monotone cubic splines class has a very tempting characteristics

of smoothness and produces visually "round" forward curves, however one should be very careful

to use it for hedging and sensitivity analysis as the method suffers from such problems as (cf. [2]):

spurious inflection points, excessive convexity and lack of locality (when curve bumping). These

drawbacks are mitigated in tension splines method as proposed by [19].

In practice the maximum tenors of the instruments used to construct discounting and forwarding

curves differ. In case of Polish PLN interest rate derivatives it is very well pronounced since OIS

swaps are quoted up to 2 years and IRS swaps up to 20. Henrard [22] suggests to use spread-over-

existing method which means freezing the longest available basis from market data (2 years in PLN

case) and applying it to calculate the rest of discounting and forwarding curves. The bootstrapping

algorithms of these two curves are therefore entangled and have to be adjusted accordingly.

2.1 Discounting curve

It is general market practice nowadays that one uses OIS swaps market rates and xONIA to build the

best proxy of risk-free rates - OIS discounting curve Cd
P (t). Every curve (discounting and forwarding)

has to start somewhere so the following nearest point on the curve should be selected [2]:

P x(t, T ) =
1

1 +Rx
depo(t, T )δx

(6)

where Rx
depo(t, T ) is a normal unsecured deposit rate (for x = d we have Rx

depo = Rd
depo = xONIA)

and δx is a year fraction for the period of (t, T ) with proper day count convention (i.e. 360 for EUR

and 365 for PLN). Lets denote different rate schedules in any interest rate swap as {T0, T1, ..., Tn} -

floating leg and {S0, S1, ..., Sm} - fixed leg, with additional conditions T0 = S0 and Tn = Sm. Define

an auxiliary variable - a swap annuity as:

Ad(t, S) =

m∑
j=1

P d(t, Sj)δSj−1,Sj (7)

9i.e. there are classes: scipy.interpolate.PchipInterpolator and scipy.interpolate.UnivariateSpline in Python which
handles monotonic cubic splines (piecewise cubic hermite interpolating polynomial) and tension splines (via smoothing
parameter k)
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Setting the schedules of floating and fixed leg to be the same we may obtain from the par OIS rate

formula:

P d(t, Ti) =

1−Rd
OIS(t, Ti)

swap annuity︷ ︸︸ ︷
i−1∑
j=1

P d(t, Tj)δTj−1,T j

1 +Rd
OIS(t, Ti)δTi−1,T i

(8)

where Rd
OIS(t, Ti) being the fixed rate of OIS swap with Ti maturity. In such a way, consecutive,

longer in each step i, discount factors of Cd
P (t) we may obtained recursively.

2.2 Forwarding curves

To calculate forwarding curves we start with the shortest discount factors10 as in the discounting

curve case but this time using for example xIBOR3M:

P 3M (t, T ) =
1

1 +R3M
depo(t, T )δ3M

(9)

The we may use consecutively adjacent FRA contracts i.e. 3x6, 6x9, 9x12,..., 18x24 to get discount

factors for C3M
P (t) curve from a recursive formula:

P 3M (t, Ti) =
P 3M (t, Ti−1)

1 +R3M
FRA(t, Ti)δTi−1,T i

(10)

where R3M
FRA(t, Ti) is a market FRA par rate for a xIBOR3M to be fixed at Ti−1 and δTi−1,T i ≈ 3M

depending on the precise day count convention. The liquidity of FRA contracts usually dries up

above 2 year mark, therefore we should use longer contracts to continue building our curve. In

case of IRS swaps where fixed and floating rates are exchanged periodically we will have to use

OIS discount curve from the previous section. This is the key difference to other instruments so far

discussed. Again from par rate equivalence in IRS contract at curve’s time pillars where Ti = Sj we

have:

P 3M (t, Ti) =
P d(t, Ti)P

3M (t, Ti−1)

R3M
IRS(t, Ti)Ad(t, Sj)−

∑i−1
j=1 P

d(t, Tj)F 3M (t, Tj)δTj−1,T j + P d(t, Ti)
(11)

which in fact is recursive as F 3M (t, Tj)δTj−1,T j =
P 3M (t,Tj−1)
P 3M (t,Tj)

− 1 is evaluated in evaluated above

in the sum up to i − 1 term. The problem of not equal frequency of interest periods on fixed and

floating legs which leads to necessity of interpolation during bootstrapping, may be easily overcome

by introducing intermediate synthetic instruments that are interpolated first from the market data.

For example if we are constructing C3M
P (t) and have market prices of IRS6Y3M and IRS7Y3M we

simply add 3 synthetic IRS swaps with maturities 6.25Y, 6.5Y and 6.75Y with interpolated prices

using chosen interpolation method. Only then we follow the recursive formula (11).
10Henrard [22] calls it pseudo discount factors as it is not used in real discounting any more
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In case of spread-over-existing method to cope with no OIS data for longer periods (as for example

in Polish zloty’s case) we assume constant multiplicative spread β for some i > i∗ where i∗ is the

time index of the longest maturity OIS, or in other words:

β =
P d(t, Ti)

(
P 3M (t, Ti−1)− P 3M (t, Ti)

)
P 3M (t, Ti)

(
P d(t, Ti−1)− P d(t, Ti)

) (12)

It is easily obtainable that:

P 3M (t, Ti) =
P d(t, Ti)P

3M (t, Ti−1)

P d(t, Ti)(1− β) + βP d(t, Ti−1)
(13)

Plugging this result into (11) and solving for P d(t, Ti) while noticing that Ad(t, Sj) = Ad(t, Sj−1)+

P d(t, Tj)δTj−1,Tj
we get:

P d(t, Ti) =

∑i−1
j=1 P

d(t, Tj)F
3M (t, Tj)δTj−1,T j + βP d(t, Ti−1)−R3M

IRS(t, Ti)Ad(t, Ti−1)

R3M
IRS(t, Ti)δTi−1,T i + β

(14)

Knowing P d(t, Ti) we may retrieve P 3M (t, Ti) from (13). Having C3M
P (t) and Cd

P (t) it is trivial

to get C3M
F (t) or C3M

Z (t) in the time points which are a multiple of a tenor (i.e 0.25), but it is not

so in the whole domain of T or in the cases of instantaneous forwards Cd
f (t) or C3M

f (t). As indicated

in the previous subsection we have to decide on interpolation first. For comparison, we use two

interpolation methods (raw and monotone cubic spline) on the logarithms of discount factors of

C3M
P (t) and Cd

P (t) and then we are able to calculate forwarding curves for all T :

F 3M (t, T ) =
1

δ3M

(
P 3M (t, T − δ3M )

P 3M (t, T )
− 1

)
(15)

fd(t, T ) = −∂ logP d(t, T )

∂T
≈ −

(
logP d(t, T + h)− logP d(t, T )

h

)
(16)

letting h to be a small year fraction (i.e. 1/365) used in the first derivative of log discount function’s

approximation.

3 Valuation adjustments (XVA)

In the broadest sense, XVA is an adjustment of a risk-free financial instrument’s valuation for some

types of risks the primary valuation does not account for. The most popular valuation adjustments

(XVA) are: Credit (CVA) - to account for counterparty risk, Debit (DVA) - to account for bank’s

own credit risk11, Funding (FVA) - to account for funding risk, including cost of liquidity buffers,

Collateral (ColVA) - to measure the impact of collateral effects, Margin (MVA) - to account for

funding risk of initial margin, Capital (KVA) - to measure the impact of regulatory capital, Tax

(TVA) - to model the influence of tax on the valuation.

The economic value V̂ (including XVAs) of a financial instrument is equal to the sum of risk-free
11there was a widespread critique of DVA, questioning the possibility of monetisation of one’s own default risk, for

more details see: [17]
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valuation (usually based on OIS discounting) and all of the adjustments a bank should or would like

to include:

V̂ = V +

n∑
i=1

XV Ai (17)

where n is a number of adjustments used in a particular case. This approach and practice may

be treated as violations of the law of one price in the market, since a valuation of every derivative

instrument is somehow "localised" to the particular counterparty, bank and collateral arrangement

and it would be very hard to imagine that everybody agrees on the way a certain deal is evaluated.

We propose a detailed set of XVA definitions below which is a result of combining the best parts

from Brigo, Morini and Pallavicini [13], Green [17], Gregory [18], Kienitz and Caspers [27] and Lu

[29].

Lets call V (t, T ) a position of cash-flows at t0 ≤ t ≤ T with final maturity T. Then the mark-to-

market valuation at time t in risk-neutral measure Q would be EQ
t [V (t, T )]. Exposure at time t is

then a positive part of that valuation:

ε(t)+ =
(
EQ
t [V (t, T )]

)+ (18)

Obviously, if we are at time t0 the term ε(t0)
+ can be called a current exposure. Exposure at default

(τC) of counterparty C is:

ε(τC)
+ =

(
EQ
τC [V (τC , T )]

)+ (19)

Expected (at time t0) exposure EE that we would have at time t is then:

EEt0(t) = EP
t0 [ε(t)

+] = EP
t0

[(
EQ
t [V (t, T )]

)+] (20)

Note that the external expectation is taken with respect to physical measure P. It is common to

visualise expected exposures via a mapping t 7→ EEt0(t) for t0 ≤ t ≤ T and call it an expected

exposure profile.12

In valuation adjustment world would like to know not only the expected exposures but also to have

some idea about their distributions, hence we introduce:

PFEq(t) = αq(ε(t)
+) potential future exposure (21)

MPFEq(t) = sup
s∈[t0,t]

αq(ε(s)
+) maximum PFE in [t0, t]interval (22)

where αq(·) is a quantile function (or inverse cumulative distribution function) and q is a confidence

level required. A mapping t 7→ PFEq(t) is called potential future exposure profile.

The ultimate possible loss that one may suffer from a default of a counterparty C is equal to

the multiplication of exposure at default ε(τC)
+ and a loss-given-default usually defined as LGD =

12sometimes also called: credit equivalent exposure curve or loan equivalent exposure curve
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1−RC , where RC stands for a deterministic assumed recovery rate after C defaults. Hence unilateral

credit valuation adjustment (CVA) is defined as:

CV At0 = EQ
t0

[
(1−RC)P (t0, τC)1{τC<T}ε(τC)

+
]

(23)

= Φ(τC < T )EQ
t0

[
(1−RC)P (t0, τC)ε(τC)

+
∣∣τC < T

]
(24)

where T is a maximum time of scheduled occurrence of any of the cash-flows in a position13 under

valuation, and Φ(·) is a cumulative default probability. Then unilateral CVA is essentially a product

of a cumulative probability of default of a counterpart and expected discounted loss given that

default.

In practice, there are some assumptions usually made for the sake of a balance between model

complexity and availability of data [17], [13], [18], which may be relaxed at some point:

• discretisation of the default timeline in the form of a partition πt0,T

πt0,T = {(0 = t0, t1], (t1, t2], ..., (tn−2, tn−1], (tn−1, tn = T ]} (25)

• approximation that whenever a default happens within a period (ti−1, ti] we assume that it

occurs at the precise end of that segment: τ = ti

• credit risk is independent of any other market risks, which means that for any i a default τ

within a period (ti−1, ti] is independent of a current exposure ε(ti)
+

• default times of a bank τB that is evaluating its positions and the counterparts τC are inde-

pendent

Under these assumptions we have the following bucketed approximation of CVA:

CV At0 = (1−RC)

n∑
i=1

EQ
t0

[
P (t0, ti)1{τC∈(ti−1,ti]}ε(ti)

+
]

= (1−RC)

n∑
i=1

Φ(ti−1 < τC ≤ ti)EQ
t0

[
P (t0, ti)ε(ti)

+|τC ∈ (ti−1, ti]
]

= (1−RC)

n∑
i=1

Φ(ti−1 < τC ≤ ti)EQ
t0

[
P (t0, ti)ε(ti)

+
]

(26)

Changing risk-neutral expectations to physical ones and taking out the discount factors from under

the expectation is yet another approximation very common in the literature and practice. In such

a case, unilateral CVA is a weighted (by the probability of default in different buckets) sum of

discounted expected exposures.

Also for the sake of simplicity, we assume that the counterpart and bank’s hazard rates and therefore

cumulative probabilities are given or bootstrapped from market data.
13or portfolio as rarely CVA is calculated on single trade level
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Table 1: Variety of other than CVA/DVA value adjustments’ forms

XVA α(·) β(·) Meaning
FVA SF ε(u) derivatives funding costs

ColV AX SX X(u) collateral cost or benefit
KVA γK − rBφ K(u) capital charge costs
MVA SF − SIB IB(u) initial margin impact
TV AE γE E(u) tax effects

where: SF is a funding spread defined as a difference between bank’s bond yield and risk-free rate,
SX is a collateral spread - a difference between a yield on collateral account and risk-free,

SIB
is an initial margin spread - a difference between a yield on initial margin and risk-free,
γK is a cost of capital, φ is a fraction of capital available for derivative funding,

K(u) is a capital requirement at time u, X(u) is a collateral at time u,
E(u) is a cash-flow liable to tax at time u, IB(u) is margin account value at u.

After FC the role and usage of collateralisation in derivative trading both in the form of daily

margining and, so-called, initial margin under CSA credit annexes to ISDA frame agreement spreaded

extensively resulting in the current situation in which vast majority of trades are dealt within

collateral frameworks (bilateral or CCP).

Posting collateral against mark-to-market value yields in some additional financial costs to the

counterparty for which the deal generates negative exposure and may potentially bring some funding

benefits otherwise, mainly due to the global unification of the rates paid on the collateral accounts

(xONIA based14) which are much lower that the bank’s funding costs. It is quintessential to have

an effective model that generates future states of the world, whereas consequential calculations of

XVAs are model-dependent but not require any further simulations.

Green [17] summarises other than CVA and DVA common XVA formulae in a stylised manner

assuming that every adjustment is in a form of:

XV A(α, β) =

∫ T

t

α(u)e
∫ u
t

r(u)+λC(u)+λB(u)dsEt[β(u)]du (27)

where r(·) is a risk-free rate, λC(·) is a hazard rate of a counterparty, λB(·) is a hazard rate of a

bank and the α(·) and β(·) are different functions depending on a type of adjustment we would like

to calculate. Table 1 displays examples of such functions and their meanings.

4 Requirements for interest rate model in XVA calculations

It is essential that a proposed interest rate model framework is able to generate an object sometimes

called CVA cube [27] which is three-dimensional matrix:

� = {(Vi, Sj , tk) : R× N× R+; i = 1, .., I; j = 1, ..., J ; k = 1, ...,K} (28)

14also referred to as: OIS collateralisation
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where Vi is the valuation of i-th instrument in a portfolio in a certain scenario and time-step , Sj

is a j-th simulation and tk is k-th time-step. Having calculated � it is easy to perform all sort of

XVA related calculations involving expected exposures as well as quantile potential exposures.

In designing of HJM or any other interest rate model framework to be used in XVA engine consid-

erable attention must be paid to the following (based on [17], [22], [27]):

• the requirement for high-performance Monte Carlo (as the majority of time would be spent on

valuations in each time step rather than on path building per se)

• the necessity of the model to be Markovian, that means a need of all model quantities to be

state-dependent, but not path-dependent

• the existence of analytical or semi-analytical pricing formulae for the derivatives instruments

of our interest

• the ability of the framework to produce fast discount factor curve at each node of simulation

• the ease of multi-curve extension (i.e. via multiplicative spread)

• the possibility of replicating relatively reach shapes of curves

• the ability to incorporate negative rates reasonably 15

In the ideal world we would also like that our model incorporates all of the following characteristics

in the calibration phase:

• allowing for different currencies (with scarce liquidity/data availability)

• fast calibration time 16

• stable calibration (i.e. bootstrap wherever possible) that produces vega sensitivities

5 HJM framework in multi-curve environment

5.1 Classic proposition of Heath-Jarrow-Morton

The backbone of Heath, Jarrow and Morton [20] approach is an instantaneous forward rate process

which allows modelling the whole yield curve movements. The instantaneous forward rate f(t, T ) is

defined as follows:

f(t, T ) = −∂ lnP (t, T )

∂T
⇒ P (t, T ) = e−

∫ T
t

f(t,u)du (29)

15hence Gaussian models would be preferred
16although it may be set as a background process and cache the results every, say 10-15 minutes
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where P (t, T ) is a zero-coupon bond price at time t with T maturity. The dynamics of instantaneous

forward rate in Q-measure is given by:

f(t, T ) = f(0, T ) +

∫ t

0

µ(s, T )ds+

∫ t

0

σ(s, T )dW (s) (30)

where dW (t) is an one dimensional P-Brownian motion and µ(t, T ) and σ(t, T ) are one dimensional

stochastic processes of drift and volatility of the forward rate respectively. There are several condi-

tions on regularity of these two functions µ and σ, which are not very restrictive as they only allow

for an intergral equation (30) to be sensible, namely (after [6]):∫ T

0

|µ(s, T )|ds < ∞ P− a.s. ∀0 ≤ T ≤ T ∗ (31)∫ T

0

σ2(s, T )ds < ∞ P− a.s. ∀0 ≤ T ≤ T ∗, j = 1, ...,m (32)∫ T∗

0

|f(t0, s)|ds < ∞ P− a.s. (33)∫ T∗

0

(∫ u

0

|µ(s, u)|ds
)
du < ∞ P− a.s. (34)

where T ∗ ≥ T is the maximum time horizon. Short interest rate process for t ≤ T then is given by:

r(t) = f(t, t) = f(0, t) +

∫ t

0

µ(s, t)ds+

∫ t

0

σ(s, t)dW (s) (35)

The last term above (stochastic integral) suggests that short rate process is non-Markovian since

t appears both as an upper limit of integration and inside the integrand. Using the definitons of

P (t, T ) from (29) and of r(t) above (35), the Fubini’s theorem for stochastic integrals and finally Itô

lemma on lnP (t, T ) yields in:17

P (t, T ) = P (0, T ) +

∫ t

0

P (s, T )
(
r(s)−

∫ T

s

µ(s, u)du+ 1
2 ||ν(s, T )||

2
)
ds+∫ t

0

P (s, T )ν(s, T )dW (s) (36)

where ν(s, T ) = −
∫ T

s
σ(s, u)du. Under the assumption of no arbitrage and complete market (the

existence of a unique martingale measure is guaranteed) the discounted bond price process P (t,T )
B(t) is

a Q-local martingale. Q is an equivalent martingale measure if and only if:

µ(t, T ) = σ(t, T )

∫ T

t

σ(t, s)ds (37)

This result is commonly referred to as the HJM drift condition. Incorporating it into forward rate

dynamics and extending the results to m-dimensional Brownian motion we get under risk-neutral
17for full derivation see [16]
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measure Q 18:

f(t, T ) = f(0, T ) +

m∑
i=1

∫ t

0

(
σi(u, T )

∫ T

u

σi(u, s)ds

)
du+

m∑
i=1

∫ t

0

σi(s, T )dW
Q
i (s) (38)

r(t) = f(0, t) +

m∑
i=1

∫ t

0

(
σi(u, t)

∫ t

u

σi(u, s)ds

)
du+

m∑
i=1

∫ t

0

σi(s, t)dW
Q
i (s) (39)

which are the key results of HJM framework.

Key characteristics of the general form HJM framework may be summarised as follows:

• infinite dimensionality of the state space of volatility functions σ(t, T )

• instantaneous forwards are not observed on the market

• no need for initial curve calibration as current term structure is by construction an input to

the model since instantaneous forward is calculated from the initial curve of zero coupon bonds

• the term structure of volatility determines the forward rate at all times by that the dynamics

of the forward rate is determined by the short rate and the cumulative quadratic variation

• non-Markovianity of the framework (as r(t) is path dependent)

• f(t, T ) and r(t) are Gaussian 19

These properties make general HJM framework very challenging if not useless to some applications.

The PDE, Markov functional or trees methods are based on conditional expectations hence it is

crucial to work with Markov processes to use them. In Monte Carlo domain there is no need

for Markovianity but since we are looking for a framework and algorithm enabling us to produce

valuations at each time-step of MC routine simulating yield curves for expected exposure calculations,

the problem would grow in dimensionality multiplicatively each period, making the whole idea

infeasible.

Nonetheless, there is a vast catalogue of research proposing solutions to these drawbacks. The

main aim is to restrict the generic form of volatility function to some class (parametrisation) that

breaks down the general high-dimensional HJM framework to a structure of low-dimensional Markov

processes with relatively small number of state variables to keep track of. Having the special volatility

function which guarantees the processes involved to be Markovian one can try to develop pricing

formulae (analytic or semi-analytic) for plain vanilla non-linear interest rate derivatives (swaptions,

caplets and floorlets as the building blocks of caps/floors) and calibrate volatility surface parameters

to market quotes.

In the multi-curve world there has been two major group of strategies as to how to cope with

the IBOR-OIS spreads in HJM framework. The first one may be summarised as the usage of the
18as we will deal with risk neutral environment from this point on we drop the Q upper-script
19if only volatility function is deterministic
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single curve set-up (old) to simulate risk-free rates followed by modification of pricing formulae of

derivative instruments by the basis spread (usually deterministic multiplicative spread). Whereas

the other strategy is to model and simulate all relevant (for market valuation) curves (discounting

and forecasting) within the original model and develop new pricing formulae for them.

5.2 Cheyette class of HJM models

In search of Markovianity of short interest rate process in HJM framework Ritchen and Sankarasub-

ramanian in their work [32] proved the following lemma:

Lemma 5.1 (Ritchen-Sankarasubramanian). In a one-factor HJM model with volatility function

σ(t, T ) (being differentiable w.r.t T ), a necessary and sufficient condition for the price of interest

rate derivative to be completely determined by a two-state Markov process χ(·) = (r(·), φ(·)) is that

the volatility function is of the following form: σ(t, T ) = β(t)e−
∫ T
t

κ(u)du where β is an adapted

process and κ is a deterministic function. Then the second component of the Markov process is

φ(t) =
∫ T

t
σ2(s, t)ds and, in fact, β is the instantaneous short-rate volatility process.

One can argue that this formulation is a special case of the work and proposal of Cheyette [14],

which may be summarised as follows:

Lemma 5.2 (Cheyette20). In M -factor HJM model with volatility function of a form:

σk(t, T ) =

Nk∑
i=1

αk
i (T )

αk
i (t)

βk
i (t), k = 1, ...,M (40)

where Nk denotes the number of volatility summands of each factor k, the dynamics of a forward

rate is determined by n =
∑M

k=1 Nk state variables which are Markov processes and consequently the

short rate is given as a sum of the initial forward rate and all state variables, hence the SDE for

short interest rate is Markovian.

Due to great interconnection of those two lemmas the class of the HJM models that stem from

them sometimes is referred to as Cheyette-Ritchen-Sankarasubramanian class (in short: Cheyette).

The other names: quasi-Gaussian [3] [25] or pseudo-Gaussian21 are used for the models in with we

allow β(·) - a function of time-t (current time) - to be stochastic. It may be treated as a partial re-

laxation of a Gaussian requirement on volatility function of the general HJM model to be Gaussian.

Admittedly, there is a trade-off between accuracy driven by the number of summands in each factor

and the speed of calibration to market volatility surface or derivatives pricing. The accuracy and

speed is also influenced by the number of parameters in each of the elementary functions used αi(·)

and βi(·).

20based on [4]
21we will use either; Cheyette or quasi-Gaussian
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5.2.1 General Cheyette model dynamics

By simply plugging the Cheyette separable volatility structure (40) into the forward rate dynamics

of each factor from general HJM derivation (39) we obtain (cf. [4]):

f(t, T ) = f(0, T ) +

M∑
k=1

( Nk∑
j=1

αk
j (T )

αk
j (t)

(
Xk

j (t) +

Nk∑
i=1

Ak
i (T )−Ak

i (t)

αk
i (t)

V k
ij(t)

))
(41)

Where Xk
i (t), A

k
i (t), V

k
ij(t) are defined as follows:

Xk
i (t) =

∫ t

0

αk
i (t)

αk
i (s)

βk
i (s)dWk(s) +

∫ t

0

αk
i (t)

αk
i (s)

βk
i (s)

( Nk∑
j=1

Ak
j (t)−Ak

j (s)

αk
i (s)

βk
j (s)

)
ds (42)

Ak
i (t) =

∫ t

0

αk
i (s)ds (43)

V k
ij(t) =

∫ t

0

αk
i (t)α

k
j (t)

αk
i (s)α

k
j (t)

βk
i (s)β

k
j (s)ds = V k

ji(t) (44)

where: k = 1, ...,m and i, j = 1, ..., Nk. Note that since we used multi-factor model the volatility

function is a column vector22 of Cheyette form volatility function for each factor:

σ(t, T ) = (σ1(t, T ), σ2(t, T ), ..., σM (t, T ))T (45)

The first state variable Xk
i (t) is stochastic as there is a vector of Brownian motions in the first term

and in fact it describes short interest rate movement because r(t) is a sum of initial instantaneous

rate f(0, t) and sum of all Xk
i (t) (for all summands and all factors)23.

The second state variable V k
ij(t) corresponds to the cumulative quadratic variation of a forward

process , but it is deterministic for any t ≤ T as soon as we know the deterministic volatility surface

of the form proposed by Cheyette at time t. Ak
i (t) is just a technical integral used by the authors

for lucid presentation.

It is easy to differentiate (42) and (44) to get the differential equations describing general dynamics

of X and V :

dXk
i (t) =

(
Xk

i (t)
∂

∂t
(logαk

i (t)) +

Nk∑
j=1

V k
ij(t)

)
dt+ βk

i (t)dWk(t) (46)

dV k
ij(t) =

(
βk
i (t)β

k
j (t) + V k

ij(t)
∂

∂t

(
log(αk

i (t)α
k
j (t)

))
dt (47)

It particular cases of assumed functional forms of σ(t, T ) it is easier to represent the state variables

first and then to differentiate these special cases’ equations.

22where (·)T is an operator of matrix transposition
23it suffices to plug r(t) = f(t, t) into the forward rate dynamics equation to see that majority of terms other than

Xk
i reduces
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5.2.2 Gaussian HJM pricing formulae

The fundations of Gaussian HJM model pricing of European contingent claims were laid by Brace,

Musiela and Rutkowski [11], [12], [31]. For the purposes of this article we would need an explicit

or semi-explicit formula for swaptions (to which calibrate our volatility surface) and additionally

a formula for caps/floors - for the sake of speed and efficiency tests in MC simulations of xVA in

different HJM models.

Recall dynamics of f(t, T ) and P (t, T ) under P from previous section. Defining the forward price

evaluated at time t of a zero coupon bond starting at T and maturing at T1 to be FT (t, T1) =
P (t,T1)
P (t,T )

and introducing a T -maturity forward measure of PT = E(MT (·))(T )P where E(·) is a stochastic

exponential operator and the martingale inside is MT (t) =
∫ t

0

∫ T

s
σ(s, u)dudW (s). Under this

forward measure we will have that:

FT (T, T1) = FT (t, T1) exp

(∫ T

t

∫ T1

T

σ(s, u)dudWT (s) (48)

− 1
2

∫ T

t

∣∣∣∣ ∫ T1

T

σ(s, u)du

∣∣∣∣2ds) (49)

Let ξ = g(Z1
T , Z

2
T , ..., Z

n
T ) be a European contingent claim at time T, where Zi are asset prices which

under P-measure follow a log-normal processes dZi
t = Zt

t (rtdt+ ηit · dWt). Define the forward price

as FZi
(t) = Zi(t)

P (t,T ) and by the same arguments as above we get:

Zi(T ) = FZi(T, T ) = FZi(t, T ) exp

(∫ T

t

(∫ T

s

σ(s, u)du+ ηi(s)

)
dWT (s) (50)

− 1
2

∫ T

t

∣∣∣∣ ∫ T

s

σ(s, u)du+ ηi(s)

∣∣∣∣2ds) (51)

As Brace and Musiela pointed out, the vector of random variables
∫ T

t

( ∫ T

s
σ(s, u)du+ ηi(s)

)
dWT (s)

is normally distributed with zero mean and variance matrix ∆ij = Cov(logZi(T ), logZj(T )) at t

filtration, and therefore we have as follows.

Proposition 5.3 (Brace-Musiela24). In M -factor HJM model with deterministic volatility function

σi for i = 1, ..., n the arbitrage price at time t of a European contingent claim ξ = g(Z1
T , Z

2
T , ..., Z

n
T )

at maturity date T (where g(·) is a pay-off function and Zi
t are the price processes of zero coupon

bonds) equals:

π(t) = P (t, T )

∫
Rk

g

(
Z1
t N k(x+ θ1)

P (t, T )N k(x)
, ...,

Zn
t N k(x+ θn)

P (t, T )N k(x)

)
N k(x)dx (52)

where N k denotes the standard k-dimensional normal density N k(x) = ( 1
2π )

k/2e−|x|2/2 and the scalar

product of every pair of vectors θi and θj is given by:

θi · θj =
∫ T

t

σi(u, T ) · σj(u, T )du (53)

24based on [31] and adjusted for notation coherent with this disseration
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Suppose now that we have to price a swaption with maturity T and cash flow equivalents25

ci = Kδi for i = 1, .., n−1 and cn = 1+Kδn, where K is a strike of the swaption and δi = Ti−Ti−1 is

a year fraction of a particular interest period i. Since the cash flows have different times of scheduled

appearance after maturity, the option has to be adjusted to swap annuity measure. Payout function

from receiver swaption is therefore g(Z1
T , Z

2
T , ..., Z

n
T ) =

(∑n
i=1 ciZi − 1

)+. It may be treated as

a basket option of all the cash-flows executed as one set. The fixed leg is prepresented by Kδi

for i = 1, .., n, whereas the floating leg is replaced by the equivalent in single curve environment -

notional paid at the beginning and returned at the end of the underlying swap schedule.

Direct application of the proposition 5.3 on this pay-off of receiver swaption (RS) yields in the

following arbitrage price (payment dates of the underlying swap are T0, T1, ..., Tn and the option

expires at T0):

RSHJMg
(t) =

∫
Rk

( n∑
i=1

ciP (t, Ti)N k(x+ θi)− P (t, T0)N k(x)

)+

dx (54)

As Henrard showed [21] for one factor model, in the consequence of the above mentioned relation

and the evaluation of signs of the components of the integral, we have:

RSHJMg
(t) =

n∑
i=1

ciP (t, Ti)N (x+ θi)− P (t, T0)N (x+ θ0) (55)

where vector of θi is taken from the rank one ∆ matrix of covariance:

θ2i =

∫ T0

t

∣∣∣∣ ∫ Ti

T0

σ(s, u)du

∣∣∣∣2ds (56)

and x is the unique solution of:
n∑

i=1

ciP (t, Ti)e
− 1

2 θ
2
i−θix = P (t, T0)e

− 1
2 θ

2
0−θ0x (57)

Analogously, for a payer swaption (PS) we would have the same conditions for x and θ2i but the

signs are changed in the pay-off function and inside the cumulative standard normal distributions,

so we have:

PSHJMg (t) = P (t, T0)N (−x− θ0)−
n∑

i=1

ciP (t, Ti)N (−x− θi) (58)

The idea of cash-flow equivalent of the swap is very useful and it will allow to adopt this single curve

results to the desired in this dissertation multi-curve framework.

Henrard suggests [22] to use deterministic multiplicative coupon spread βj of forward rate F j (where

j is tenor of j-IBOR) over risk-free rate and its representation in the form of discounting factors,

defined as follows:

βj
t (u, v) = (1 + δtv−tuF

j(u, v))
P (t, v)

P (t, u)
(59)

25cf. [22]
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Table 2: Cash-flow equivalents of an underlying IRS in a 3-year maturity 3-year tenor swaption in
single and multi-curve variants

T
Single curve Floating leg Fixed leg Total multi-curve

i δi ci j δj cj k δk ck ī δx dī

3 0 -1 0 −β0 0 0 −β0

3.5 1 0.5 1− β1 1 1− β1

4 1 1 Kδ1 2 0.5 1− β2 1 1 Kδ1 2 1 1− β2 +Kδ2

4.5 3 0.5 1− β3 3 1− β3

5 2 1 Kδ2 4 0.5 1− β4 2 1 Kδ2 4 1 1− β4 +Kδ4

5.5 5 0.5 1− β5 5 1− β5

6 3 1 1 +Kδ3 6 0.5 1 3 1 Kδ3 6 1 1 +Kδ6

Hence present value of j-IBOR payment is given by:

P (t, v)δtv−tuF
j(u, v) = P (t, v)

(
βj
t (u, v)

P (t, u)

P (t, v)
− 1

)
= βj

t (u, v)P (t, u)− P (t, v) (60)

This leads to cash-flow representation of j-IBOR in multiplicative spread world because the fair

value is a sum of discounted positive flow of βj
t (u, v) at u-time and negative cash-flow of −1 at

time v. The logic is easily expendable to a stream of floating rates in the IRS as an underlying

of a swaption in multi-curve set-up. One should be very careful when aggregating the cash-flow

equivalents though. The example of cash flow schedule di for a receiver swaption with maturity 3

years with underlying swap being 3 year IRS annual fixed (strike =K) for 6 month floating rate in

single curve and multi-curve multiplicative spread environments is shown in Table 2.

Therefore we may implement multi-curve approach to the cap/floor formulae via modification on

cash-flow schedule di:

RSHJMg,m(t) =

n̄∑
ī=0

dīP (t, T̄i)N (x+ θī) (61)

PSHJMg,m(t) =

n̄∑
ī=0

dīP (t, T̄i)N (−x− θī) (62)

where x is the unique solution of: (63)
n̄∑

ī=0

dīP (t, T̄i)e
− 1

2 θ
2
ī−θīx = 0 (64)

Brace and Musiela [12] developed semi analytic formulae for caps and floors (in single curve world).

Fair value of a cap at time-t, with start at T = T0, strike K for IBORs L(Ti−1) paid in at times

T0, T1, ...Ti−1, Ti, ..., Tn for i = 1, ..., n is (cf. [4]):

CAPHJMg
(t) =

n−1∑
i=0

(
P (t, Ti)N (xi)− (1 +Kδ)P (t, Ti+1)N (xi − ϑi)

)
(65)
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where:

ϑ2
i =

∫ Ti

t

∣∣∣∣ ∫ Ti+1

Ti

σ(s, u)du

∣∣∣∣2ds (66)

xi = − 1

ϑi
log

P (t, Ti)

(1 +Kδ)P (t, Ti+1)
+ 1

2ϑi (67)

The following floor price stems from a put-call parity (with the same definitions of the auxiliary

variables ϑi and x):

FLRHJMg
(t) =

n−1∑
i=0

(
(1 +Kδ)P (t, Ti+1)N (−xi + ϑi)− P (t, Ti)N (−xi)

)
(68)

Note that a cap price is a sum of caplets or calls for a particular IBORs with a common strike for

all the options involved. Also it is important to notice that an IBOR’s cash flow equivalence here is

1 paid at Ti and (1 +Kδ) received at Ti+1. Following the same logic as with cash-flow equivalents

of swaptions, in multi-curve case of cap/floor it would suffice to change only the initial payment 1

to βj
t,i(Ti−1, Ti) to get the proper pricing formulae in this environment:

CAPHJMg,m(t) =

n−1∑
i=0

(
βj
t,i(Ti−1, Ti)P (t, Ti)N (xi)− (1 +Kδ)P (t, Ti+1)N (xi − ϑi)

)
(69)

FLRHJMg,m(t) =

n−1∑
i=0

(
(1 +Kδ)P (t, Ti+1)N (−xi + ϑi)− βj

t,i(Ti−1, Ti)P (t, Ti)N (−xi)

)
(70)

We have cited and developed semi-analytic (for swaptions) and analytic (for caps and floors) pricing

formulae in single and multi-curve versions which are reactively easy to evaluate in every step of

Monte Carlo simulation should one knows the Cheyette form of volatility surface and finds fast

method of solving for x in swaptions’ pricing.26

5.2.3 Volatility structure parametrisations

Recall from (40) that volatility function in M-factor HJM Cheyette model with Nk summands in

each factor k for k = 1, ...,M and i = 1, ..., N is of a form:

σ(t, T ) =



σ1(t, T )

σ2(t, T )
...

σk(t, T )
...

σM (t, T )


=



∑N1

i=1
α1

i (T )

α1
i (t)

β1
i (t)∑N2

i=1
α2

i (T )

α2
i (t)

β2
i (t)

...∑Nk

i=1
αk

i (T )

αk
i (t)

βk
i (t)

...∑NM

i=1
αM

i (T )

αM
i (t)

βM
i (t)


(71)

The volatility function at each summand’s level is separable into time and lifetime of the option

dependent factors. Generally speaking function α(·) is responsible for handling the remaining lifetime
26for the particular volatility function implementation we would have to evaluate double integrals of θ2i and ϑ2

i

analytically
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Table 3: Common volatility function’s forms within the Cheyette class

Volatility function form M N Name/Author(s)
σ1(t, T ) = c 1 N1 = 1 Ho-Lee

σ1
i (t, T ) = β1

i (t) exp
(
−

∫ T

t
κi(u)du

)
1 N1 ∈ N General exponential Cheyette

σ1
i (t, T ) = β1

i exp
(
− (T − t)κi

)
1 N1 ∈ N General Hull-White

σ1
1(t, T ) = c exp

(
− (T − t)a

)
1 N1 = 1 Hull-White

σ1
1(t, T ) = c

1 N1 = 2 HW Beyna
σ1
2(t, T ) = Poly1(t; 1) exp

(
−

∫ T

t
κ1,node
2 (u)du

)
σ1(t, T ) = c+ Poly1(t; p) exp

(
− (T − t)κ1

2

)
3

N1 = 2

3-factor exponentialσ2(t, T ) = Poly2(t; p) exp
(
− (T − t)κ2

1

)
N2 = 1

σ3(t, T ) = Poly3(t; p) exp
(
− (T − t)κ3

1

)
N3 = 1

where: σj
i (t, T ) is a volatility function i-th summand for the j-th factor

Polyj(t; p) stands for a polynomial function of degree p for the j-th factor
κj,node
i is a parameter of piecewise constant function κ(·) for for a certain node.

(current maturity T − t of the option at time t) impact on volatility, whereas β(·) is strictly time-

dependent function.

Table 3 summarises the most frequent choices of σ(t, T ) components in this class. Its quite striking

that β(·) is usually in a form of polynomial of different degrees27 whereas α(·) is an exponential

function with constant or piecewise constant parameters in the exponents. If the latter is used,

as for example in Beyna and Wystup [6], the number of nodes taken into account varies from 1-5,

contributing to 2-6 different κ parameters per a summand. It has been tested there that the more

nodes the better the calibration fit to the market reality but, of course, the bigger the computational

time of this part of valuation and simulation. In the following subsections, we discuss different

versions of this class in the context of their particular dynamics (specialising the general formulae

from section (41)) and developing special analytical formulae for the quantities needed in pricing

swaptions and caps/floors, namely θ2i and ϑ2
i .

Ho-Lee. The simplest way of coping with volatility is assuming flat surface at constant level.

Using σ1
1(t, T ) = c (hence α1

1(t) = 1, α1
1(T ) = 1 and β1

1(t) = c) in the general formulae in Cheyette

model we get:

A1
1(x) =

∫ x

0

1ds = x and V 1
11 =

∫ t

0

c2ds = c2t (72)

X1
1 (t) =

∫ t

0

c2(t− s)ds+

∫ t

0

dW (s) =

∫ t

0

dW (s) + 1
2c

2t2 (73)

f(t, T ) = f(0, T ) +

∫ t

0

dW (s) + 1
2c

2t2 + (T − t)c2t (74)

and the dynamics of the one state variable is:

dX1
1 (t) = c2tdt+ cdW (t) (75)

27usually p = {1, 2}, but in the Ho-Lee model we have p = 0
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And our auxiliary variables for pricing:

θ2i =

∫ T0

0

∣∣∣∣ ∫ Ti

T0

σ(s, u)du

∣∣∣∣2ds = ∫ T0

0

c2(Ti − T0)
2ds = c2(Ti − T0)

2T0 (76)

ϑ2
i =

∫ Ti

0

∣∣∣∣ ∫ Ti+1

Ti

σ(s, u)du

∣∣∣∣2ds = c2(Ti+1 − Ti)
2Ti (77)

These results may be directly use in the derivatives formulae from previous section.

Hull-White. It is easy to notice that a choice of α1
1(t) = e−at, α1

1(T ) = e−aT and β1
1(t) = c in

Cheyette class would lead to σ1
1(t, T ) = ce−(T−t)a, which is well known in the literature from the

Hull-White model. Analogously to the Ho-Lee model, we have the following:

A1
1(x) =

∫ x

0

e−asds =
1

a
(1− e−ax)) (78)

V 1
11(t) = c2

∫ t

0

e−2a(t−s)ds =
c2

2a
(1− e−2at) (79)

X1
1 (t) =

c2

2a

∫ t

0

e−a(t−s) 1− e−at − 1 + e−as

e−as
ds+ c

∫ t

0

e−a(t−s)dW (s)

=
c2

2a
e−2at(eat − 1) + c

∫ t

0

e−a(t−s)dW (s) (80)

f(t, T ) = f(0, T ) + e−a(T−t)
(
X1

1 (t)− c2

2a2 (e
−a(T−t) − 1)(e−2at − 1)

)
(81)

The variables for pricing are:

θ2i =

∫ T0

0

∣∣∣∣ ∫ Ti

T0

σ(s, u)du

∣∣∣∣2ds = c2

a2

∫ T0

0

(
ea(s−Ti) − ea(s−T0)

)2
ds

= c2

2a3

(
e2a(T0−Ti) − e−2aTi − e−2aT0 − 2ea(T0−Ti) + 2e−a(Ti+T0) + 1

)
(82)

To calculate ϑ2
i we can use formula for θ2i but change Ti for Ti+1 and T0 for Ti. Having two free

parameters to calibrate though is not reach enough to replicate market shapes of volatility surface

in this model. Therefore some authors posit an extension within broadly defined general Hull-White

model.

Extended Hull-White (two summands). For better fit in a general Hull-White environment we

can use two summands of similar form i.e: σ(t, T ) = σ1
1(t, T )+σ1

2(t, T ) = σ1e
−κ1(T−t)+σ2e

−κ2(T−t),

with σ1, σ2 > 0. Then we would have α1
i (x) = e−κix, β1

i (x) = σi, for i = 1, 2 and still one-factor

model: M = 1. This model yields in a bit more complicated closed formulae but still is very
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tractable28:

Ai(x) =

∫ x

0

e−κisds = 1
κi
(1− e−κix)) (83)

Vij(t) =
σiσj

κi + κj

(
1− e(κi+κj)t

)
(84)

dXi(t) =

(
− κiXi(t) +

2∑
j=1

Vij(t)

)
dt+ σidW (t) (85)

f(t, T ) = f(0, T ) +

2∑
i=1

eκi(T−t)

(
Xi(t) +

2∑
j=1

1− e−κj(T−t)

κj
Vij(t)

)
(86)

The term used in pricing of swaptions is then (for ϑ2
i we follow the same logic as in the previous

section):

θ2i =

2∑
x=1

(
σ2
x

2κ3
x

(
e2κx(T0−Ti) − e−2κxTi − 2eκx(T0−Ti) + 2e−κx(T0+Ti) + 1− e−2κxT0

))
+

2σ1σ2

κ1κ2(κ1 + κ2)

(
e(κ1+κ2)(T0−Ti) − e−(κ1+κ2)Ti − eκ1(T0−Ti) + e−κ1Ti−κ2T0

−eκ2(T0−Ti) + e−κ1T0−κ2Ti + 1− e−(κ1+κ2)T0
)

(87)

Beyna and Wystup. One of the other possibilities is to use two summands of volatility (constant

part from Ho-Lee and general exponential Cheyette) allowing a function in integral in the exponent

of one of them to be piecewise constant, instead of a constant as in pure Hull-White version. Addi-

tionally we can experiment with the polynomial forms of β1
2 and take β1

2 = at+ b. Key challenge for

implementation and optimisation is to choose optimal number of nodes on the maturity time-scale

(hence, to determine the number of constant segments of κ(·).

Beyna and Wystup proposed σ(t, T ) = c+ (at+ b) exp
(
−
∫ T

t
κnode(u)du

)
where κ(x) for is defined

as follows: 29

κnode(x) =

node+1∑
i=1

κi

(
H(x− ni−1)−H(x− ni)

)
(88)

where node represents the number of internal nodes or maturities splitting the (0, T ) segment into

node+1 segments, ni is an i-th point on this segment s.t. n0 = 0 and nnode+1 = T . H(·) stands for

a Heaviside function. Partition π = {n0 = 0, n1, ..., nnode, nnode+1 = T} should depend on market

data and liquidity of different segments of tenors. The authors proposed node = 1 and node = 5 for

different fit qualities.
28we skip upper-script as we have only one factor model here
29each summand in the κ’s definition is a boxcar function defined by the difference in Heaviside functions multiplied

by κi corresponding to a particular sub-segment ni−1 − ni.
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In general form of this piecewise function the integral in the exponent of β is:∫ T

t

κnode(u)du =

node+1∑
i=1

∫ T

t

κi

(
H(x− ni−1)−H(x− ni)

)
ds (89)

=

node+1∑
i=1

κi

(
(T − ni−1)H(T − ni−1)− (t− ni−1)H(t− ni−1)−

−(T − ni)H(T − ni) + (t− ni)H(t− ni)

)
(90)

From that representation it is easier to see the form of α(·):

α(x) = exp

(
−

node+1∑
i=1

κi

(
(x− ni−1)H(x− ni−1)− (x− ni)H(x− ni)

))
(91)

It is clear that analytical integration with such exponents as above involved may be very cumbersome

and tedious. Therefore numerical integration is the only sensible solution, which means also that

the analytical forms of θ2i and ϑ2
i are not available as well, hence the calibration and pricing would

be more demanding.

Three factor exponential. Beyna, Chiarella and Kang [5] proposed three-factor model within

Cheyette class which they used as a benchmark for the comparative performance of other models.

They suggest using polynomials of degree 1 (after some empirical tests), so as indicated in Table 3

their three factor exponential model has the volatility function vector of the form30:

σ(t, T ) =

σ1(t, T )

σ2(t, T )

σ3(t, T )

 =

c+ (a1t+ b1) exp
(
− (T − t)κ1

)
(a2t+ b2) exp

(
− (T − t)κ2

)
(a3t+ b3) exp

(
− (T − t)κ3

)
 (92)

Since the first factor is a sum of constant c and another, common in form with all three factors,

extended Hull-White term with linear function β, we have here four state variables, two for the first

factor (X1
1 and X1

2 ), one for the second factor (X2
1 ) and one for the third (X3

1 ). Hence for the first

factor (as in the case of extended Hull-White with two summands) we will have four cumulative

quadratic terms: {V 1
11, V

1
12, V

1
21, V

1
22}.

V 1
11(t) = c2t (93)

V 1
12(t) = V 1

21(t) =
c

(κ1)2

(
− a1 + b1κ1 + e−κ1t(a1 − b1κ1t) + a1κ1t

)
(94)

V 1
22(t) =

1

4(κ1)3

(
2(b1κ1)2 + 2b1a1κ1(2κ1t− 1)

−e−2κ1t
(
(a1)2 − 2b1a1κ1 + 2(b1κ1)2

)
+ (a1)2(1 + 2κ1t(κ1t− 1))

)
(95)

V
x={2,3}
11 (t) =

1

4(κx)3

(
2(bxκx)2 + 2bxaxκx(2κxt− 1)

−e−2κxt
(
(ax)2 − 2bxaxκx + 2(bxκx)2

)
+ (ax)2(1 + 2κxt(κxt− 1))

)
(96)

30all of the upper-scripts represent factor numbering, not: powers
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Therefore the dynamics of Xj
i are:

dX1
1 (t) =

( 2∑
k=1

V 1
1k(t)

)
dt+ cdW 1(t) (97)

dX1
2 (t) =

(
− κ1X1

2 (t) +

2∑
k=1

V 1
2k(t)

)
dt+ (a1t+ b1)dW 1(t) (98)

dX2
1 (t) =

(
− κ2X2

1 (t) + V 2
11(t)

)
dt+ (a2t+ b2)dW 2(t) (99)

dX3
1 (t) =

(
− κ3X3

1 (t) + V 3
11(t)

)
dt+ (a3t+ b3)dW 3(t) (100)

The abovementioned authors [5] developed the price formula of a European caplet in M-factor HJM

model basing on previous works of Brace and Musiela [11], which is basically similar to the one-factor

version but the volatility function:

ϑ2
i =

M∑
k=1

∫ Ti

t

∣∣∣∣ ∫ Ti+1

s

σk(s, u)du−
∫ Ti

s

σk(s, u)du

∣∣∣∣2ds (101)

has to incorporate its multifactorial structure. Extending this result to caps as in (65) we have the

following arbitrage-free price of a cap:

CAPHJMg,M (t) =

n−1∑
i=0

(
P (t, Ti)N (xi)− (1 +Kδ)P (t, Ti+1)N (xi − ϑi)

)
(102)

where:

ϑ2
i =

M∑
k=1

∫ Ti

t

∣∣∣∣ ∫ Ti+1

Ti

σk(s, u)du

∣∣∣∣2ds (103)

xi = − 1

ϑi
log

P (t, Ti)

(1 +Kδ)P (t, Ti+1)
+ 1

2ϑi (104)

Similarly, we may develop the formula for a floor and extend these into multi-curve environment via

the same arguments as previously, although analytic calculation of ϑ2
i for even three-factor model is

very arduous and it may not give any sensible calculation time advantage over numerical integration

of ϑ2
i . Unfortunately for our purpose - XVA calculation - and to best of our knowledge there is no

closed formula for swaptions pricing in more than one factor HJM model [17].

6 Monte Carlo implementation

6.1 Calibration of volatility surface

The importance of volatility function’s calibration in Markov quasi-Gaussian models cannot be

underestimated because it is a key ingredient of the future behaviour of instantaneous forward rates

- a cornerstone of HJM. Thanks to the courtesy of Thomson Reuters (and Tullet Prebon) we have

been been given access to the price data of a wide list of interest rate instruments (daily closing prices)
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in PLN and EUR in period of 2014-2017, which make the multiple-curves construction and volatility

surface calibration possible. From the non-linear derivatives domain the list includes at-the-money-

forward straddle swaptions for different lifetimes of options (up to 10Y) and different underlying

IRS tenors (up to 10Y as well)31. It is worth noting that swaptions are still quoted in Black76

log-normal implied volatilities, not Bachelier normal volatilities which are in the same order as the

volatility surface resultant from HJM calibration. Many authors [4] [6] [23] [27] suggest to perform

calibration with relation to market volatilities (log-normal) rather than derivatives prices, which

route we follow but our optimization’s quality checks will be performed both in Black’s volatilities

and in nominal prices per 1 unit of notional. It is also worth underlying that some market data for

swaptions volatilities maybe somehow distorted by the dichotomy of negative rates being possible

in reality and not possible in log-normal world. The closer to negative strikes the higher Black’s

volatilities are, to the point where market ceases to quote any volatility on a certain swaption with

ATMF’s strike being negative. This distortion, producing odd volatility surface shapes (hard to

calibrate to) may present a challenge in developed markets where interest rates were, are or can be

in the nearest future - negative32.

Suppose O is the space of all possible parameter sets Θ for a certain form (model) of volatility

surface σ(t, T ). Let VBS
mkt be the market quoted log-normal volatility of a swaption and VBS

imp,Θ be

implied log-normal volatility calculated from a price of swaption indicated by the model from set

of given particular parameters Θ. We assume equal weight of all instruments in the calibration,

although we choose to take the most liquid time pairs of: life time of option t = {1, 2, 5, 8, 10}

vs. tenor of an underlying IRS T − t = {1, 2, 5, 8, 10}, namely 25 swaptions per one optimization

date33. As a measure of distance we propose to take square of differences in volatilities, hence our

optimisation problem may be defined as:

inf
Θ∈O

25∑
i=1

(
VBS

mkt,i − VBS
imp,Θ,i

)2
︸ ︷︷ ︸

objective function

(105)

s.t. ∀iVBS
imp,Θ,i ≥ 0

where i stands for a particular instrument with expiry and tenor of the underlying from 5× 5 grid.

The literature on numerical tractability and practical challenges involved in optimisation of Cheyette

class models especially with the necessary condition for at least semi-analytical pricing formulae for

swaptions to be known, is rather scarce [4], [22], [3]. The objective function as defined in (105) is
31unfortunately Caps and Floors market data especially for PLN are erratic and not-reliable, therefore we haven’t

used them in any calibration
32compare shapes and levels of Black-Scholes and Bachelier volatility surfaces implied by the market in Appendix

Figures: ?? and ??
33one may also consider taking more instruments, as formally there are 160 swaptions quoted on the market. This

approach multiplies calibration time, whereas not giving better qualitative results.
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non-linear, highly complex, and far from convex nor concave, which implies that there are many

possible local minima. The sensible solution is therefore (cf. [23]) to try several different Θ sets for

a particular minimization procedure as starting points. Beyna and Wystup in their works [6] [4]

showed that in the case of Cheyette class a simple Newton algorithm is not converging despite step

adjustments 34, the Brent (or Powell) algorithm, which require no derivatives calculation, is also

not suitable because of increasing computational requirements for high dimensions and length of the

process. The Nelder-Mead algorithm seems to give good result if the initial set Θ happens to be

chosen close to global minimum. The generalisation of this algorithm (via a synthetic temperature

optimisation parameter), which is called simulated annealing is also effective but calibrating the

procedure as such may be lengthy as well.

We have implemented here an extended version of Nelder-Mead algorithm in the sense that we

will start the procedure by brute force and calculate objective function values on a hyper-cube

of predefined parameter sets (i.e. for 5 parameters and 4 ranges in each of the parameters we will

calculate 625 objective function values). The set which would give the lowest objective function value

is then used for further polishing by Nelder-Mead algorithm. For a given date’s market data of

swaption volatilities we have to have also proper multi-curves bootstrapped previously Cd
P (t), C6M

F (t)

and corresponding multiplicative spreads β6M
t (as defined in (59)). Moreover we have to implement

calculation routine to get θ2i s given by θ2i =
∫ T0

0

∣∣ ∫ Ti

T0
σ(s, u)du

∣∣2ds. For some simple models it can

be done analytically but generally we have to integrate it numerically35. Then in order to calculate

objective function’s value for a certain set of parameters Θ follow the routine:

1. For all instruments calculate (a)-(e):

(a) ATMF forward rate K

(b) Create schedule of payments dī including spread β as in (Table 2)

(c) Solve numerically36 for x the equation (64):

n̄∑
ī=0

dīP (t, T̄i)e
− 1

2 θ
2
ī−θīx = 0

(d) Calculate payer swaption value using (62):

PSHJMg,m(t) =

n̄∑
ī=0

dīP (t, T̄i)N (−x− θī)

(e) Using the price obtained in (d) solve for implied log-normal volatility VBS
imp,Θ and compare

with corresponding market volatility to calculate squared difference between the two.
34a particular difficulty with Newton algorithm is a necessity of calculation first and second order derivatives in the

form of Jacobi and Hessian matrices, which is not available in analytical form for swaptions
35note that this is not a simple double integral as we have to acknowledge the squared inner integral. For simple

models the advantage of analytical integration over numerical is of a factor 1.5, as empirical author’s tests shown
36it is a nice, monotone function (cf. [22]) so we may use fsolve cheaply
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2. Sum all of the squared differences calculated in 1.

This is quite time-consuming and depending on a particular form of Cheyette model, the number of

instruments used and hardware, one objective function evaluation may take some 0.2-0.8 sec.

In calibration results’ evaluation, we used quite common measures given in pricing software and

cited below after [4]. In order to calculate the value of the measures and evaluate we need residuals

in prices and volatilities distributions and their basic statistics (means and standard deviations:

σPx, σV ol). The list of measures includes:

M1 price bias - the percentage of the absolute relative price differences exceeding 30%

M2 volatility bias - the percentage of the absolute relative volatility differences exceeding 30%

M3 mean of all price residuals

M4 mean of all volatility residuals

M5 all volatility residuals’ bound

M6 all price residuals’ bound

M7 percentile of the volatility residuals within 2σV ol

M8 percentile of the price residuals within 2σPx

where M1-M4 constitute measures used in core conditions and M5-M8 - in secondary conditions.

Core conditions are: M1 ≤ 30%, M2 ≤ 30% ,M3 ≤ σPx and M4 ≤ σV ol. Secondary conditions are:

M5 ≤ 3σV ol, M6 ≤ 3σPx, M7 ≥ 0.9 and M8 ≥ 0.9. A particular calibration will be considered

Good if all core and secondary conditions are met, Passed if all core conditions are met and at most

one of the secondary is breached, and Failed - in all other cases. Examples of quality checks for 20

calibrations for a Beyna and Wystup and Hull-White two summands models are given in Tables 4

and 5 in Appendix. We have chosen several Cheyette class models for testing:

• Mod1: (c+ bt) exp(−a(T − t)) - version of general HW with Poly(1) of β(·)

• Mod2: c exp(−a(T − t)) - classic Hull-White (HW)

• Mod3: c1 exp(−a1(T − t)) + c2 exp(−a2(T − t)) - two summands of classic HW

• Mod4: (c+ bt) exp
(
−
∫ T

t
κ(u)du

)
- version of general HW with Poly(1) of β(·) and piecewise

constant function κ(·) with one inner node n1 = 4

• Mod5: d+ (c+ bt) exp
(
−
∫ T

t
κ(u)du

)
- same as Mod5 but with additional constant summand

d

Table 6 in Appendix exhibits some results of the calibration with satisfactory quality for a selected

three dates in 2014-17 period. General quality of the calibrations for 20 selected dates measured

by average objective function value at the termination of calibration procedure and its standard

deviation may be found in Table 7.
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6.2 Calculating exposures and CVA

Calculations of expected exposures may be divided into five technical parts:

1. Generation of instantaneous forward rates in J paths and K time steps in each path using a

discretised version of a particular model

2. Reconstruction of discounting curves, forward curves and spread curves37 i.e.: B3M,d
F (t), B6M,d

F (t)

for each path and each time step in the path.

3. Valuation of a certain list of I instruments under each state resulting in ’CVA cube’ � =

{(Vi, Sj , tk)}

4. Application of netting, collaterlisation or other rules that may govern exposure calculation for

a certain counterparty

5. Calculation of expected exposure and quantile potential future exposure profiles

In subsequent sections, we present details from the implementation of Hull-White with two sum-

mands (also referred to as: HW2) model. General mechanisms and results prove to be the same for

all other models considered here.

6.2.1 Discretisation and necessary adjustments of HW2

The detailed description of the HW2 model is allowing for almost straightforward MC implementa-

tion. As inputs we need initial curve f(0, T ), which we obtain using techniques described earlier and

calibrated model parameters we attained in Table 6 in Appendix. We should explicitly add that all

state variables: X1, X2, V11, V12, V21, V22 start at t = 0 with zero values. Since our simulated at time

t instantaneous forward rate f(t, T ) is given by:

f(t, T ) = f(0, T ) +

2∑
i=1

eκi(T−t)

(
Xi(t) +

2∑
j=1

1− e−κj(T−t)

κj
Vij(t)

)
(106)

we have to decide on how many pillars (T ) in the curve we would like to have, which is a trade-off

between accuracy of subsequent integration (when retrieving discounting factors from instantaneous

forward rates) and time spent on a single forward curve simulation38. Yet another consideration is

the time step of the whole MC scheme, which is naturally more dependent on the desired granularity

of expected exposure calculations39. For the Xi state variables we use standard Euler scheme (where

∆ - time step):

dXi(t) =

(
− κiXi(t−∆) +

2∑
j=1

Vij(t−∆)

)
dt+ σi

√
∆Zi(t) (107)

37as defined in 2
38we have taken 40 pillars spanning from 0.5 to 20 years
39we have used monthly time steps in the MC schemes
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Since we consider deterministic volatility only we have to modify the procedure for calculating θ2i

because the lower outside integration limit now has to move with horizon steps rather than being

constant at zero:

θ2i =

∫ T0

k∆

∣∣ ∫ Ti

T0

σ(s, u)du
∣∣2ds (108)

where k is a number of horizon steps from the simulation date. Second important technical adjust-

ment is for IRS valuation at each horizon step in every path, which is a clear example how XVA is

mildly path-depenedent40. Every path generated should be used to imply current floating coupons

of an IRS we are pricing, therefore certain valuation depends not only on current states of the world

but a bit of history along the path as well.

6.2.2 Results for HW2

Figure 5 in Appendix depicts expected exposures and potential 95% quantile future exposures of

different IRS contracts: starting deeply in-the-money, forward starting with fixed rate close to related

ATMF and out-of-the-money generated using methods described and developed in this dissertation.

It suffice to generate 2000 paths to produce results that are in line with those encountered in the

literature [17], [18],[28] or [29]. Time to generate these profiles is a function of number of horizon’s

time steps ∆, number of paths J , number of instruments in a portfolio, but also a complexity of

instruments priced (i.e. schedule of cash flows) and binary flag if we need quantile exposures or

not41. Reference times achieved in practical simulations are exhibited in Table 8. The exposure

profiles may be generated on a counterparty portfolio level with different sets of netting rules as well

which is not adding much to execution time42.

Within the framework it is easily possible to generate exposures of such instruments as swaptions

(both cash equivalent and physically settled), of which example is depicted in Figure 4. We may

use the generated profiles and some survival cumulative probability function (implied from market

data or otherwise assumed) to calculate proper valuation adjustments (CVA). Discretisation of XVA

integral should rather be done with not finer time grid than the horizon’s simulation steps.

7 Conclusions

It has been shown that the choice of a particular HJM’s specification for XVA calculation in the multi-

curve environment highly depends on the availability of reliable market data of non-linear derivatives

on a specific market to which one can calibrate the model. In the availability of swaptions volatilities

only (without active caps and floors market) we cannot calibrate three-factor exponential model for
40cf. [17]
41producing quantile exposures proves to take much longer than generic expected exposures
42cf. Figure 3 in Appendix
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example. Another limiting situation is when there are no quotes for different market derivatives

based on various xIBOR tenors (i.e. 3M, 6M).

Nevertheless, we performed calibrations of several one-factor models of Cheyette class of HJM and

found out that even with relativity simple specification i.e. Hull-White with two summands we

may achieve satisfactory results in terms of calibration’s quality and calculation time. This process

may be easily scheduled before more complicated states of the world’s generations and simulated

valuation for XVA purposes.

Efficacy of the whole system of XVA calculation depends however on many other degrees of freedom

rather than the one resulting form model choice. Overall performance relies on dozens of decisions

regarding among others: a granularity of time-scales for XVA integral and for horizon steps, in-

terpolation methods used at all stages, a method of minimization used in calibration, a degree of

complexity of the instruments under simulation, complexity of the rules to calculate final exposure,

a possibility of analytical vs numerical integration of volatility surface function.
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A Appendix

Figure 1: Objective function values for different models calibrated

Mod1 Mod2 Mod3 Mod4 Mod5

2017-10-09
2017-07-21
2017-05-05
2017-02-21
2016-12-06
2016-09-30
2016-07-27
2016-05-20
2016-03-15
2015-12-24
2015-10-20
2015-08-11
2015-05-28
2015-03-12
2014-12-24
2014-10-13
2014-08-06
2014-06-03
2014-03-12
2014-01-06

0.017 0.017 0.017 0.016 0.0046
0.087 0.087 0.087 0.086 0.041
0.078 0.069 0.078 0.061 0.014
0.051 0.042 0.026 0.037 0.033
0.057 0.045 0.057 0.04 0.059
0.14 0.14 0.14 0.14 0.025
0.17 0.16 0.17 0.16 0.019
0.13 0.13 0.13 0.13 0.022
0.093 0.093 0.093 0.091 0.016
0.035 0.028 0.034 0.028 0.026
0.04 0.02 0.04 0.018 0.028
0.064 0.022 0.05 0.014 0.045
0.057 0.02 0.057 0.013 0.034
0.044 0.027 0.039 0.025 0.035
0.045 0.031 0.038 0.029 0.038
0.063 0.056 0.063 0.055 0.065
0.02 0.015 0.02 0.015 0.016
0.019 0.014 0.019 0.014 0.015
0.012 0.0057 0.012 0.0056 0.0058
0.023 0.011 0.023 0.0085 0.014

0.03

0.06

0.09

0.12

0.15

own calculations using Thomson Reuters and Tullett Prebon through Thomson Reuters data with Python
scipy.optimize package. Models used: Mod1: Simple Hull-White (2 parameters), Mod2: Hull-White with
β(t) of Poly(1) form, Mod3: 2 summands of a simple Hull-White (2x2 parameters), Mod4: Beyna-Wystup

with β(t) of Poly(1) form and piecewise constant κ(·) function with one internal node n1 = 4 (5
parameters), Mod5: same as Mod4 but with another summand - constant d (6 parameters).
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Table 4: Results of quality checks of Beyna Wystup (Mod5) volatility surface calibration: σ(t, T ) =

c + (at + b) exp
(
−

∫ T

t
κnode(u)du

)
with one inner node at n1 = 4 to Polish swaptions market on

selected dates of 2014-17 period.

Date
Cost

Function
Value

M1 M2 M3 M4 M5 M6 M7 M8 Outcome

2017-10-09 0.0046 0 0 0 0 0 0 0.96 0.92 Good
2017-07-21 0.0414 0 0 0 0 0 0 0.96 0.92 Good
2017-05-05 0.0137 0 0 0 0 0 0 0.92 0.92 Good
2017-02-21 0.0334 0.13 0.13 0 0 0 1 0.96 0.96 Passed
2016-12-06 0.0588 0.27 0.27 0 0 0 0 0.92 0.92 Good
2016-09-30 0.0254 0 0 0 0 1 0 0.92 0.92 Passed
2016-07-27 0.0191 0 0 0 0 0 0 1 0.96 Good
2016-05-20 0.0221 0 0 0 0 1 0 0.92 0.92 Passed
2016-03-15 0.0164 0 0 0 0 0 1 0.96 0.92 Passed
2015-12-24 0.0257 0 0 0 0 0 0 0.92 0.88 Passed
2015-10-20 0.028 0 0 0 0 0 0 0.96 0.88 Passed
2015-08-11 0.0447 0.13 0.13 0 0 0 0 0.96 0.88 Passed
2015-05-28 0.0341 0.13 0.13 0 0 1 0 0.96 0.92 Passed
2015-03-12 0.0346 0.13 0.13 0 0 1 0 0.96 0.92 Passed
2014-12-24 0.0378 0.13 0.13 0 0 1 0 0.96 0.92 Passed
2014-10-13 0.0654 0.13 0.13 0 0 1 0 0.96 0.92 Passed
2014-08-06 0.0165 0 0 0 0 0 0 0.96 0.92 Good
2014-06-03 0.0152 0.13 0.13 0 0 0 0 0.96 0.92 Good
2014-03-12 0.0058 0 0 0 0 0 0 0.92 0.92 Good
2014-01-06 0.0143 0 0 0 0 1 0 0.96 0.88 Failed

Market data thanks to Reuters Thomson and Tullett Prebon through Thomson Reuters. Optimization method: Brute force
with Nelder and Mead finish implemented in scipy.optimize, M1-M4: core conditions, M5-8 secondary conditions.
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Table 5: Results of quality checks of Hull-White with two summands (Mod3) volatility surface
calibration: σ(t, T ) = c1 exp

(
− a1(T − t)

)
+ c2 exp

(
− a2(T − t)

)
to Polish swaptions market on

selected dates of 2014-17 period.

Date
Cost

Function
Value

M1 M2 M3 M4 M5 M6 M7 M8 Outcome

2017-10-09 0.017389879 0.13 0.13 0 0 0 0 0.92 0.96 Good
2017-07-21 0.087350276 0.13 0.13 0 0 0 0 0.96 0.96 Good
2017-05-05 0.07836386 0.13 0.27 0 0 0 0 0.96 0.92 Good
2017-02-21 0.026364114 0 0 0 0 0 0 0.96 0.92 Good
2016-12-06 0.056664465 0.13 0.13 0 0 0 0 0.96 0.96 Good
2016-09-30 0.137922479 0.27 0.27 0 0 0 0 0.96 0.92 Good
2016-07-27 0.165262659 0.27 0.27 0 0 0 0 0.96 0.92 Good
2016-05-20 0.130544034 0.13 0.13 0 0 0 0 0.96 0.96 Good
2016-03-15 0.092947296 0.13 0.13 0 0 0 0 0.96 0.88 Passed
2015-12-24 0.033947198 0 0 0 0 0 0 0.96 0.96 Good
2015-10-20 0.040125248 0 0 0 0 0 0 0.92 0.96 Good
2015-08-11 0.049816333 0 0 0 0 0 0 0.96 0.92 Good
2015-05-28 0.057149841 0 0 0 0 0 0 0.92 0.92 Good
2015-03-12 0.03858575 0 0 0 0 0 0 0.96 0.96 Good
2014-12-24 0.037683165 0 0 0 0 0 0 0.96 0.92 Good
2014-10-13 0.06301622 0.13 0.13 0 0 0 0 0.96 0.92 Good
2014-08-06 0.020307428 0 0 0 0 0 0 0.96 0.96 Good
2014-06-03 0.019179645 0 0 0 0 0 0 0.96 0.96 Good
2014-03-12 0.011737015 0 0 0 0 0 0 0.96 0.96 Good
2014-01-06 0.02282191 0 0 0 0 0 0 0.96 0.92 Good
Market data thanks to Thomson Reuters and Tullett Prebon through Thomson Reuters . Optimization method: Brute
force with Nelder and Mead finish implemented in scipy.optimize, M1-M4: core conditions, M5-8 secondary conditions.
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Table 6: Some optimisation results for three arbitrary dates for selected models

Mod1 c b a
2017-10-09 0.006704 (0.000114) (0.038693)
2015-12-24 0.009073 (0.000336) (0.013276)
2014-03-12 0.010737 (0.000570) (0.004178)

Mod2 c a
2017-10-09 0.006699 (0.031548)
2015-12-24 0.009323 0.010996
2014-03-12 0.010822 0.025863

Mod3 c1 a1 c2 a2

2017-10-09 0.000096 (0.030811) 0.006606 (0.031492)
2015-12-24 0.000185 0.005430 0.008914 0.005438
2014-03-12 0.002216 (0.017683) 0.008686 0.041846

Mod4 a c κ1 κ2

2017-10-09 (0.000220) 0.006789 (0.064704) (0.026300)
2015-12-24 (0.000298) 0.009018 (0.001196) (0.020264)
2014-03-12 (0.000547) 0.010698 0.005905 (0.010461)

Mod5 d a c κ1 κ2

2017-10-09 (0.008419) (0.004761) 0.009447 11.528936 0.843829
2015-12-24 0.008341 (0.000095) 0.000481 (0.418278) 0.002055
2014-03-12 0.004894 (0.000535) 0.005970 0.000071 0.000462

Table 7: Mean and standard deviation of objective function values and quality check final results
for 20 selected dates in 2014-2017 for Polish swaptions, using different models

Mod1 Mod2 Mod3 Mod4 Mod5
Avg OF 0.0517 0.0620 0.0594 0.0493 0.0279
SD OF 0.0458 0.0416 0.0426 0.0463 0.0158
Good 70% 90% 95% 50% 40%
Passed 25% 10% 5% 45% 55%
Failed 5% 0% 0% 5% 5%

Table 8: Simulation times [in sec] for expected exposures of different portfolios

Number of contracts
Paths 1 10 50

10 2.07 2.89 9.24
100 19.03 31.86 89.67
1000 182.95 310.72 913.47
10000 1926.66 3232.00 9327.12
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Figure 2: Market (BS) and calibrated implied volatility in Hull-White with two summands as of
20th Nov 2017
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Figure 3: Expected exposure and quantile potential future exposure profiles with and without netting
rules applied for a portfolio of 10 instruments
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Calculations for market data in PLN as of 2017-10-09 provided by Thomson Reuters and Tullett Prebon
through Thomson Reuters , time step ∆ = 1/12, number of simulations J = 2000. Semi-annual coupons on

both legs, notionals = 1.
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Figure 4: Expected exposure and quantile potential future exposure profiles and same sample paths
for receiver swaption contract
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Receiver swaption fixed 0.044 2Y IRS in 3Y expiry time, cash equivalent settlement. All notionals are
equal 1. Sample paths (upper pane) and EE profiles (lower pane).
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Figure 5: Expected exposure and quantile potential future exposure profiles for three different IRS
contracts
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Calculations for market data in PLN as of 2017-10-09 provided by Thomson Reuters and Tullett Prebon
through Thomson Reuters, calibrated parameters of HW2s:

c1 = 0.00009629, a1 = −0.0308108, c2 = 0.00660564, a2 = −0.0314923889, time step ∆ = 1/12, number of
simulations J = 2000, Instruments: 4Y IRS receiving fixed 0.03 starting at 0 (upper pane), 2Y IRS

receiving fixed 0.024 staring in 2Y time (central pane), 3Y IRS receiving fixed 0.015 starting at 0 (lower
pane). All IRSes with semi-annual coupons on both legs. All notionals are equal 1.
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