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1 Introduction

Technological change, due to purposeful R&Dactivities, iswidely acknowledged as a fundamental

driver of economic growth. Technological ideas, due to their non-rivalrous nature, essentially act

as a source of increasing returns to scale allowing output to grow even when input usage is

constant (Romer, 1990). However, whilst these precepts are well-established in the literature, the

exact specification of the R&D process (the “Idea Production Function”, hereafter IPF) is subject

to considerable dispute.1

In particular, and perhaps surprisingly, the majority of the existing R&D-based growth litera-

ture assumes that researchers’ labor is the only input into the R&D process (Romer, 1990; Jones,

1995, 1999; Ha and Howitt, 2007). Alternatively, some studies embrace the “lab equipment” speci-

fication of the R&D process, conditioning R&D output on the flow of R&D spending (Rivera-Batiz

and Romer, 1991; Kruse-Andersen, 2017; Bloom et al., 2020).

In reality, though, both approaches may be limiting since it is likely that productivity in the

R&D sector depends not just on the labor of researchers, but also on the services of R&D capital.

R&D capital should be understood as a stock, accumulated over the years through targeted R&D

investment. Indeed, anecdotal evidence suggests that R&D is an increasingly capital-intensive

activity: new scientific ideas and technological blueprints increasingly rely on the effects of ex-

perimentation in sophisticated laboratories as well as on advanced numerical computation, rather

than abstract philosophical reflection or pen-&-paper calculations. Modern R&D capital ranges

fromresearchers’ computing facilities to such extraordinarymachinery as theVeryLargeTelescope

and the Large Hadron Collider.

Moreover, the practicality and complexity of research equipment has also undergone system-

atic, cumulative changes and productivity improvements over the decades and centuries. The

difference for instance in usefulness of Ptolemy’s astrolabe or Galileo’s telescope, set against the

VLT is breathtaking. Likewise, consider how early statisticians computed correlations and ran

regressions without relying on computer processing capabilities. Modern R&D activity also in-

creasingly uses AI algorithms, ranging from general-purpose tools like web search engines, to

specific applications in genome sequencing or analysis of astronomical dataries, and sometimes

even in solving long-standing problems, as in the case of DeepMind’s AlphaFold which recently

produced a major breakthrough in the protein folding problem.

Given this, howwould the introduction of R&D capital affect our estimates and understanding

of the economy’s idea production function (IPF)? And what will be the implications of this

1 Jones (2021) demonstrates that the Idea production function can be retrieved from either the Romer or ‘quality-ladder’

endogenous growth approaches.
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extension for major questions such as whether ideas are getting harder to find, or whether the

recent slowdown in total factor productivity (TFP) growth constitutes secular stagnation, or rather

a temporary downswing? (e.g., Ramey, 2020).

In their influential paper Bloom et al. (2020) focus their attention around the following IPF,

Research Output = Research Productivity︸ ︷︷ ︸
αt

× Researchers. (1)

In other words, they postulate that research output, proxied by the rate of TFP growth in the

economy, is proportional to the number of researchers. Since the latter rose dramatically over the

post-war period whilst the former was fairly constant, this concentrates attention on how the “α”

middle term, capturing the (potentially time varying) level of research productivity, has behaved.

To achieve balance, the authors argue, α must have declined, indicating that research ideas have

been getting harder to find. (See also our “A First Look at the Data” section below).

But would “idea TFP” still be strongly falling over time if the IPF also included R&D capital

(in addition to R&D labor)? Consider the following log-linear (Cobb Douglas) specification where

Ȧt/At, TFP growth (theoretically representing the flow of new ideas), is a function of R&D labor

(i.e., number of researchers,R) but now also R&D capital (K ):

Ȧt
At

= ΓtK β
tR

1−β
t , (2)

where β ∈ [0, 1] captures the share of R&D capital in the production of ideas, and Γ (like α above)

captures unit research productivity. Predictions for idea TFP based on (1) will differ from those

based on (2) if the rate of change in R&D capital systematically differs from that of R&D labor.2 If

both variables grow at a common rate, then the dynamics of both “idea TFP” concepts (αt and Γt)

will be the same. Otherwise, they will differ and idea TFP, as in (1), may in fact be systematically

mis-measured, if not misleading.

However, although more general than (1), IPF (2) is still though quite restrictive: it implicitly

imposes a unit elasticity of substitution between both R&D input factors and assumes factor

productivity improvements behave in a neutral manner. In other words, if, say, R&D labor became

relatively more expensive, on this basis firms could simply substitute 1-for-1 into R&D capital.

Moreover, if R&Dproductivity changes over time (as it surely does) then the specification assumes

that it impacts both R&D factors in the same manner. By contrast our empirical findings, on a less

restrictive specification of the IPF (see equation (3) below), demonstrate that R&D capital is in fact

2 Where R and K are some fraction of, respectively, the aggregate labor force and aggregate capital stock.
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an essential, complementary, and relatively scarce factor in the R&D sector. In such a scenario, the

relative scarcity of R&D capital will constrain R&D output even when (as is the case) R&D labor is

abundant and fast growing. Notwithstanding, if that IPF specification (2) was correct, then using

(1) instead would mechanically mis-attribute the observed discrepancy in growth rates between

R&D labor and R&D output to falling idea TFP. Moreover, following standard omitted-variable

bias reasoning, doing so would also attribute an incorrect weight to R&D labor (the β), depending

on the true correlation between R&D factors.

Another important question is whether the growth rate of TFP is an appropriate measure

of research output. TFP growth may reflect many other phenomena than just research output.

For example, Baqaee and Farhi (2020) find that improvement in allocative efficiency, due to the

reallocation over timeofmarket shares to high-markupfirms, accounted for about half of aggregate

US TFP growth in 1997–2015. TFPmeasuresmay also conflate the cyclical volatility of capacity and

factor utilization rates (Fernald, 2018), which are independent of technical progress.3 In light of

this, we opt instead for patent applications, a more direct measure of R&D output. An important

implication of that choice is that patent applications, even relative to patents in force, have been

growing over time in the US over the last decades while the TFP growth rate has declined. That

in itself impacts on our estimates of idea TFP and makes the conclusion that “ideas are getting

harder to find” less likely.

A First Look at the Data An initial glance at the US data (Table 1) suggests the following.4 First,

the number of newpatent applications per researcher (∆A/R) was gradually increasing over time.

Maintaining exponential growth in idea production has indeed become more difficult, though:

the ratio of new patent applications to patents in force grew slower than R&D employment. A

similar conclusion is reachedwhen using data on “effective R&D employment”, defined by Bloom

et al. (2020) as the ratio of total R&D expenditure to the average R&D wage, which grew slightly

faster than raw R&D labor.

Second, “idea TFP” as defined in (1) depends crucially on the definition of research output.

With patent applications as the output variable, the resultant measure of idea TFP is increasing

over time. Declining idea TFP is only obtained once one identifies research output with patent

applications relative to patents-in-force, for example like in Bloom et al. (2020) (cf. last line of

3 See also Figure A.21 in appendix A for the indexed profile of Real TFP. Whilst some countries such as the US and France

have experienced a strong upward trajectory in TFP levels (albeit punctuated by low-growth episodes), other countries

(e.g., Canada, Italy) have experienced trend breaks and decades-long stagnation of TFP. Taken at face this would suggest

that such economies are in technical regress. Additional issues with TFP as a measure of ideas is measurement issues,

for example the provision of zero-price technologies.

4 For more general discussion of recent US growth and productivity performance see Fernald and Wang (2016); Fernald

et al. (2017) and for greater historical scope see Gordon (2016). See also Grossman et al. (2017) for links to income share

developments.
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Table 1: Summary Statistics of R&D Variables:

Average Annual Growth Rates (1968-2014)

Variables Symbol Growth Rate

Patent Applications ∆A 3.211

Patents-in-Force A 2.410

Patent Applications Relative to Patents-in-Force ∆A/A 0.782

R&D Capital K 3.394

R&D Labor R 2.099

R&DWage w 0.848

R&D Expenditure (Real) Ω 3.319

R&D Expenditure Relative to R&DWage Ω/w 2.450

R&D Capital Relative to Patents-in-Force K/A 0.961

R&D Labor Relative to Patents-in-Force R/A −0.304

Patent Applications Relative to R&D Labor ∆A/R 1.090

Patent Applications Relative to Ω/w ∆A/(Ω/w) 0.743

Patent Growth Relative to R&D Labor (∆A/A)/R −1.289

Patent Growth Relative to Ω/w (∆A/A)/(Ω/w) −1.628

Source: Derived fromWIPO, IPUMS CPS.

Table 1).

Third, R&D capital grew almost exactly in line with growth in patent applications and notice-

ably faster than growth in R&D labor and the number of patents in force. This indicates that “idea

TFP” growth measures which disregard the accumulation of R&D capital, such as (1), are most

likely biased.

Contribution By introducing R&D capital alongside R&D labor into the IPF, and then estimating

it allowing for a non-unitary elasticity of substitution and non-neutral unit productivity, our study

fills an important gap in the empirical literature on R&D-based economic growth. We find that

the elasticity of substitution between R&D capital and R&D labor in the IPF is about 0.6-0.8 and

significantly below unity. This implies that R&D capital should be considered an essential factor

in producing ideas, and complementary to R&D labor. We also identify a systematic positive

trend in R&D labor productivity at about 1% per year on average and a cyclical dynamic in R&D

capital productivity. On average, effective supply of R&D capital was lagging behind that of R&D

labor, constraining R&D output. Idea TFP, the Hicks-neutral component backed out from the IPF,

has not been falling but rather oscillating around a constant mean.

Accordingly, our results imply that ideas, instead of getting harder to find, in fact require more

sophisticated lab equipment to be found. This is a scarcity which can only be bridged by increased
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accumulation and development of R&D capital, and not necessarily by employing more R&D

staff. Because investments in R&D equipment are an endogenous variable that can be influenced

by policy and institutions, our results contribute to lowering the assessment of the likelihood and

inevitability of a secular stagnation in the future.

Organization Section 2 documents the construction of the time series of R&D capital as well

as measurement of R&D labor and R&D output. We construct the stock of R&D capital in the

post-war US economy, using the perpetual inventory method applied to BEA chain-type quantity

indexes for R&D assets. Section 3 discusses the IPF and its estimation over 1968-2019, using a

nonlinear system estimation technique with a flexible treatment of the unit productivity of R&D

factors. Section 4 presents our results. We present several IPF forms, where R&D capital is

included alongside R&D labor and where unit productivity in both R&D factors is modeled in an

increasingly flexible manner. Section 5 takes our results and show how R&D can be decomposed

over time into its constituent determinants; this illuminates which variables have or have not

constrained the production of ideas. Thereafter, in Section 6 we derive idea TFP as the residual

of the idea production function and comment on its properties. Section 7 concludes. Additional

material is in the appendices.

2 Data and Measurement

We shall now discuss our empirical strategy of measuring capital, labor, and output in the R&D

sector. A fundamental challenge here is to collect sufficiently long time series of acceptable proxies

of the variables of interest. Since the available classification systems are not able to uniquely

identify total R&D activity in the economy, we use a variety of auxiliary data sources that should

provide conceptually close proxy variables for the concepts at hand. See Appendix A for a more

extensive discussion of the data and transformations.

2.1 R&D Capital

To estimate R&D capital in the US economy we use Bureau of Economic Analysis (BEA) data.

Unfortunately the BEA does not measure the aggregate R&D capital stock directly, nor does it

publish long-run series on fixed-weights aggregates of R&D investment or R&D stock.5 The reason

for that is there are long-run trends in relative prices of inputs, such as the secular decline in prices

5 The available data (in constant dollars) starts in 1999. This time span is however too short to analyze long-run patterns

in R&D productivity.
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of equipment relative to structures (Greenwood, Hercowitz and Krusell, 1997).

We construct the R&D capital stock using the perpetual inventory method. The capital stock

is calculated as the sum of investment in period t and previous depreciated capital stock, K t =

(1− δ) K t−1+Irdt where δ ∈ (0, 1) is the depreciation rate of R&D capital and Irdt is real investment

in R&D. This relationship is initialized in the standard manner: K 0 = Ird0 /(g + δ), where g is the

long-run geometric growth rate of R&D investment. While the latter can be easily calculated

from historical data, there is considerable uncertainty about the depreciation rate of R&D capital.

We calibrate this rate at 15% per year. This number, which we understand as something of a

consensus in the literature (Venturini, 2012), is much higher than that pertaining to the aggregate

capital stock because of a relatively larger share of fast-depreciating equipment in R&D, and an

accordingly lower share of structures.6

To obtain long-dated series of the total R&D capital and private R&D capital we proceed as

follows. Since there are no measures of real R&D investment expressed in chained dollars we

estimate it based on available series, i.e, nominal R&D investment data as well as price indexes.

For the private sector, we divide nominal R&D investment (BEA code: Y006RC) by the price index

of this asset (Y006RG). The same strategy is applied for the public sector (Y057RC and Y057RG,

respectively). In addition, we also consider the following components of public investment:

Federal Non-Defense (Y069RC and Y069RG), Defense (Y076RC and Y076RG) and state and local

(Y073RC and Y073RG). R&D capital stock in the US since 1929 (under the baseline calibration) is

plotted in Figure 1, panel A. In turn, the R&D capital share in the total nonresidential capital stock

is shown in panel B.

2.2 R&D Labor

The second factor in the IPF is R&D labor. At the conceptual level – and in line with the definition

from the Frascati Manual (OECD, 2015) – this category refers to all employees who undertake

creative work aimed at general increases in the existing stock of knowledge. In practice, however,

application of this definition requires very detailed information about tasks that are related to

R&D activities. According to the best of our knowledge such data are not available, making it

effectively impossible to measure R&D labor directly.

6 Several recent studies provide empirical evidence that suggests that the depreciation rate of R&D capital may be even

higher than 15%. Bernstein and Mamuneas (2006) find that this deprecation rate is above 15% while Li and Hall (2019)

place it even above 30%. In the recent KLEMs (2019) edition, the depreciation rate for R&D assets is fixed at 20%.7 In

addition, the BEA publish historical series on depreciation of R&D assets in the US and, according to the BEA estimates,

the implied depreciation rate is slightly above the consensual value of 15%. Appendix A discusses the sensitivity of the

constructed series to different starting values, depreciation rates and different data sources.
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Figure 1: R&D Capital and R&D Labor
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To circumvent this, we use two strategies of indirect measurement. First, we estimate the labor

input in R&D activity using micro-data which contains information about the structure of occu-

pations. An ideal strategy would be to use detailed data on skills/abilities content in occupations

and merge them with the occupational structure of the labor force. The most important caveat to

this approach, however, is that the task-content of jobs changes over time and to the best of our

knowledge, there is no longitudinal survey on research intensity across occupations. For instance,

the O
∗
NET database offers estimates on a range of skill and abilities intensities of occupations,

but there is no direct measure of research intensity and the time span of this dataset is quite short

(the survey started in 1998).

Thus instead we use IPUMS CPS data (Ruggles et al., 2019).8 This database offers harmonized

micro data from the Current Population Survey (CPS), i.e., the monthly U.S. labor force survey.

Based on the conceptual definition of R&D personnel and scientists and engineers (S&E) we can

identify the following occupational groups whose work could be classified as embodying R&D

activity9:

Scientists Agricultural and Food Scientists (IPUMS code 1600); Biological Scientists (1610);
Conservation Scientists and Foresters (1640); Medical Scientists, and Life Scientists, All

Other (1650); Astronomers and Physicists (1700); Atmospheric and Space Scientists (1710);

Chemists and Materials Scientists (1720); Environmental Scientists and Geoscientists (1740);

Physical Scientists, nec (1760).

Mathematical & Computer Occupations Actuaries (1200); Operations Research Analysts

(1220); Statisticians (1230); Mathematical science occupations, nec (1240); Computer Scien-

tists and Systems Analysts/Network systems Analysts/Web Developers (1000); Computer

Programmers (1010); Software Developers, Applications and Systems Software (1020); Com-

puter Support Specialists (1050); Database Administrators (1060); Network and Computer

Systems Administrators (1100).

Engineers Architects, Except Naval (1300); Surveyors, Cartographers, and Photogram-

metrists (1310); Aerospace Engineers (1320); Chemical Engineers (1350); Civil Engineers

(1360); Computer Hardware Engineers (1400); Electrical and Electronics Engineers (1410);

Environmental Engineers (1420); Industrial Engineers, including Health and Safety (1430);

Marine Engineers and Naval Architects (1440); Materials Engineers (1450); Mechanical En-

gineers (1460); Petroleum, mining and geological engineers, including mining safety engi-

neers (1520); Engineers, nec (1530); Drafters (1540); Engineering Technicians, Except Drafters

(1550); Surveying and Mapping Technicians (1560).

TechniciansAgricultural and Food Science Technicians (1900); Biological Technicians (1910);

Chemical Technicians (1920); Geological and Petroleum Technicians, and Nuclear Techni-

cians (1930); Life, Physical, and Social Science Technicians, nec (1960); Professional, Research,

or Technical Workers, nec (1980).

8 See also https://cps.ipums.org/cps.

9 In practice, we try to match the Eurostat definition of human resources in science and technology. According to

this definition, scientists engineers (S&E) are workers who conduct research, improve or develop concepts, theories

and operational methods and/or apply scientific knowledge relating to their fields. This definition can be covered by

following groups of occupations (according to the ISCO-08 classification): Science and engineering professionals (21),

Health professionals (22) and Information and communications technology professionals (25).
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Social Scientists Economists andmarket researchers (1800); Psychologists (1820); Urban and

Regional Planners (1830); Social Scientists, nec (1840).

Health Professionals Chiropractors (3000); Dentists (3010); Dietitians and Nutritionists

(3030); Optometrists (3040); Pharmacists (3050); Physicians and Surgeons (3060).

The relative shares of these groups over time can be seen in Figure 1, Panel C. And for the same

group, Figure 2 calculates aggregate hours worked in the US economy.

Figure 2: Share of R&D related occupation groups in total US employment and hours worked
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Hence, in our baseline definition R&D labor includes scientists, Mathematical & Computer

occupations, Engineers, Technicians, Social Scientists and Health professionals. For such a group,

we calculate aggregate hours worked in the US economy. As an alternative operational definition

of R&D labor (and a robustness check) we also narrow the set of occupations to scientists, Math-

ematical & Computer occupations and Engineers (Figure 1, Panel C shows the evolution of such

occupational groups over time), in terms of employment and hours worked shares).

Our second strategy of indirect measurement is the following. For the sake of a further

robustness check we also take advantage of publicly available data on R&D employment and

merge historical series. We begin with official estimates of R&D activity published by statistical

offices, Eurostat and the OECD. Unfortunately the Eurostat/OECD series begins only in 1981. To
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overcome this we use older data vintages to extrapolate the existing series. For the time period

1968-1980weusedata collectedwithin the IRIS (Industrial Research andDevelopment Information

System) programme conducted by the NSF (National Science Foundation). Moreover, based on

historical data from Jones (1995) it is possible to further extrapolate the observations backwards,

i.e., into the 1950s-60s (see Figure 1, Panel D.)

2.3 R&D Output

The choice of the output variable in the IPF is also challenging. As one possible approach, since

R&D encompasses activities that are aimed at reducing unit costs of production or increasing the

variety of goods offered, one could measure the aggregate stock of knowledge/technology as the

level of TFP in the economy. In turn, the flow of R&D output would be represented as increases

in aggregate TFP over time.

However, although popular, the strategy of using TFP growth as a proxy of R&D output is

problematic.10 First, changes in TFP might be driven by changes in technology but they may

also could result from other processes. For instance, reduction in mis-allocation could increase

measured TFP (Oberfield and Raval, 2021). Other potential causes include, e.g., production

function mis-specification or changes in the internal composition of production factors. Second,

measured TFP sometimes falls over time while the functional form of the IPF requires positive

values of R&D output. This condition makes increases in TFP a less applicable proxy since there

have indeed been historical periods of decline in the TFP in the US.11

Another strategy in measuring the aggregate macroeconomic outcome of the R&D sector is to

use patent data. A common practice in the related literature is to use patent applications as the R&D

output variable (Madsen, 2008; Ang and Madsen, 2011; Venturini, 2012). This is the approach

we take. Since we are interested in long historical patent data our principal measures are taken

from Marco et al. (2015) which are updated with the recent WIPO (World Intellectual Property

Organization) series.

2.4 R&D Rental Prices

Finally, identification of the elasticity of substitution between R&D factors and the nature of unit

productivities requires data on relative rental prices. We calculate the capital rental rate as the

sum of the real interest rate and the R&D capital deprecation rate. Specifically we use the interest

10 There is also an open discussion as to whether one should use absolute or relative increases in TFP (Ȧ or Ȧ/A,
respectively) as the flow concept of R&D output (see Bloom et al., 2020).

11 In the associated literature, the problem of negative TFP growth in estimating IPFs is overcome by considering an

approximation of the IPF (Ha and Howitt, 2007) or by taking 5-year averages (Ang and Madsen, 2011).
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rate on 10-year government bonds (FRED code: GS10) deflated by the GDP deflator (GDPDEF).12

For the rental price of labor, we calculate the real hourly wage. The CPS dataset contains

sufficient information about wages, allowing us to construct long-dated series on real wages for

our baseline measure of R&D labor. It also enables us to construct the series of real hourly wages

for the alternative measure that uses a narrower set of occupations. In the case of the merged

historical series on R&D labor we use the same real wages as in our baseline since there is no

publicly available long series on wages in the R&D sector.

3 Idea Production Function

3.1 Constant Elasticity Specification

Following our earlier discussion, we estimate the following IPF:

∆Ãt =
[
η
(
ΓK
t K̃ t

) ξ−1
ξ + (1− η)

(
ΓRt R̃t

) ξ−1
ξ

] ξ
ξ−1

(3)

where∆At is the flow of new ideas (as represented by new patent applications). The IPF is written

in ‘normalized’ (or indexed) form. Thus, X̃t = Xt/Xz where Xz > 0 denotes the value of X at

the point of normalization.13 Distribution parameter η ∈ [0, 1] measures the steady-state level

of the R&D capital share in total R&D income. Parameter ξ > 0 is the elasticity of substitution

between R&D capital and R&D labor, with the special cases of Leontief, log-linear and linear

forms, respectively, given by ξ → 0, 1,∞.14 IPF form (3) relaxes the assumption of a unit elasticity

of substitution and accommodates the possibility of factor-specific productivity improvements

over time, whose paths are captured by ΓK
t and ΓRt for R&D capital and labor, respectively.

It is well-known that estimation of production relationships is improved by joint estimation

with the first order conditions (FOC), León-Ledesma, McAdam and Willman (2010). This is

because such an approach combines information fromdifferent sides of the production framework

(costs and volumes) and exploits cross-equation restrictions. In the case of the considered IPF

12 We have also experimented with CPI as the price proxy; results remain almost unchanged.

13 Without explicit normalization, parameter estimates in constant-elasticity functions can be shown to be scale dependent,

arbitrary and un-robust. Normalization points are averages. For linear series such as a time trend, they are given by

the arithmetic mean; otherwise geometric averages are used. See León-Ledesma, McAdam and Willman (2010) for

Monte-Carlo analyses, and La Grandville (1989) and Klump and de La Grandville (2000) for the seminal theoretical

contributions.

14 Thus (2) emerges as a special (and testable) case: ξ = 1; and ΓK
t = ΓRt .

11



and, after taking logs and combing the FOCs, this implies the proportionality:

ln
(
rK
t K t

wRt Rt

)
=
(
ξ − 1
ξ

)
ln
(

ΓK
tK̃t

ΓRt R̃t

)
(4)

where rK
t is the real rental price of R&D capital, wRt denotes real wages in the R&D sector.15 Thus,

estimation consists in the joint system estimation of parameters in the first-order condition (4)

with IPF (3) (in the latter case, we also transform the specification into logs).

3.2 Specification of Unit Productivity Terms

Another important decision to make relates to the assumption about the trajectory of produc-

tivity improvements to the R&D factor inputs over time. The latent nature of both processes

(and the Diamond–McFadden impossibility theorem in standard production theory) requires that

assumptions are made about each of them.

We consider three increasingly more sophisticated assumptions about the growth in unit

productivity of R&D factors in the IPF. The first two are nested in the Box–Cox form log Γjt =

B(γj , λj ; t). The log-level of productivity to each j R&D factor is increasing around a normalized

or average growth rate γj , where parameter λj ∈ R determines shape. If λj = 1 then the level of

unit productivity increases linearly over time at a constant growth rate γj . Otherwise the growth

is accelerating (λj > 1) or decelerating (λj < 1) relative to the mean γj (see Appendix B for more

details on the Box–Cox form).

The third case is where we consider a functional form that allows us to account for the

possibility of unknown structural breaks (or long swings). This is a good robustness check in itself

but is also motivated by some evidence of structural instability in the patent growth process (see

online Appendix C). In that case we use a Fourier expansion: log Γjt = F
(
γj , κ

sin
j , κcosj ; t

)
.16 Any

possible structural breaks or cycles around its trend growth rate of γj will thus be captured by the

κ parameters.

Due to substantial variation and a possible appearance of structural breaks, the normalization

15 Estimating the capital and researcher R&D FOCs separately can be problematic. Accordingly, among these three

equations (i.e., two first order conditions plus their ratio), we use the relative factor share equation (4), for the following

reasons. First, the share equation contains information on both forms of factor productivities over time, rather than

just one. Second, it does not require any information about the dynamics of markups. The individual FOCS are based

on the assumption of perfect competition. The share equation remains useful if markups are positive but stable over

time. However, recent empirical literature has documented a secular upward trend in markups in the US (De Loecker,

Eeckhout and Unger, 2020), albeit aggregate (rather than R&D-specific) ones. This could potentially lead to a systematic

bias in the estimation of the individual FOCs. At the same time, in the first-order condition using the relative factor share

(4) markups are eliminated. Third, condition (4) does not require any information about the prices of new ideas.

16 See Christopoulos and León-Ledesma (2010) for a discussion of Fourier forms in economics. We follow Ludlow and

Enders (2000) who showed that a single frequency is invariably sufficient to approximate the Fourier expansion in the

bulk of empirical applications.
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point for R&D factor shares seems far from obvious. We start with setting the distribution

parameter η at 1/3 (typical of the long-run average of the total capital income share). Making this

assumption reflects the fact that there is no reliable data that allows us to estimate factor shares

in the R&D sector. However, we also include cases wherein η is estimated. Finally, we estimate

using a nonlinear system estimators, which takes into account cross-equation correlation of the

residuals, as well as accounting for the cross-equation parameter constraints.

4 Results

4.1 Baseline Results

The first section of Table 2 presents the various parameter estimates and the expression of the

R&D productivity terms (B and F denotes the Box–Cox and Fourier forms respectively, and

“Exp.” denotes exponential). The middle section presents tests of relevant parameter restrictions,

and the final section shows estimation diagnostics. The first two rows in that final section refer to

ADF test of the unit root null associated to the errors in equations (4) and the logged form of (3);

p-values are obtained by bootstrapping. Finally terms ll, bic and rmse denote, respectively, the

Log Likelihood, and the Bayesian Information Criterion, and the Root Mean Square Error.

Case 1 estimates an IPF with only R&D labor (akin to equation (1)), followed in cases 2 and

3 by the IPF augmented with R&D capital (equation (2)), without and without the unit-elasticity

constraint. All forms produce superficially not entirely unreasonable results: the first yields

a power coefficient of 1.43, the second and third imply a growth rate of (Hicks neutral) R&D

unit productivity of around 1.2 − 1.3% per year (close to the R&D labor rates in subsequent

specifications). However the diagnostics suggest a poor fit to the data; or at least that these case

are dominated by the additional cases.

Cases 4 and 6 introduce the Box-Cox unit productivity forms, first for R&D labor then for both

R&D input factors, whilst case 5 imposes simple exponential productivity growth for both factors.

The case for a unitary substitution across these cases is mixed: case 6 illustrates the severe and

well-known issue of identifying productivity termswhen ξ ≈ 1 (Sato, 1970); column 4 produces an

unusually high elasticity value. All three cases suffer diagnostic issues, for instance the residuals

exhibit extreme persistence and non stationarity.
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Table 2: Baseline Results

Parameter, Case (1) (2) (3) (4) (5) (6) (7) (8)

β 1.428∗∗∗
(0.069)

ξ 1.000 0.844∗∗∗ 2.531∗∗∗ 0.737∗∗∗ 0.986∗∗∗ 0.793∗∗∗ 0.760∗∗∗
(−) (0.169) (0.920) (0.139) (0.169) (0.019) (0.062)

γR 0.013∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.011∗∗∗−0.013 0.011∗∗∗ 0.011∗∗∗
(0.002) (0.002) (0.003) (0.001) (0.308) (0.001) (0.001)

λR 2.890∗∗∗ 6.453
(0.766) (19.078)

γK 0.004 0.060 −0.016∗∗∗−0.013∗∗∗
(0.004) (0.615) (0.003) (0.004)

λR 5.208
(3.885)

κsinK 0.556∗∗∗ 0.438∗∗∗
(0.045) (0.137)

κcosK −0.427∗∗∗−0.337∗∗∗
(0.028) (0.109)

η 0.418∗∗∗
(0.121)

R&D Labor Productivity no Exp. Exp. B Exp. B Exp. Exp.

R&DCapital Productivity no Exp. no no Exp. B F F

η fixed fixed fixed fixed fixed fixed fixed estimated

ξ = 1 [0.357] [0.096] [0.058] [0.934] [0.000] [0.000]

λR = 1 [0.014] [0.775]

λK = 1 [0.279]

γR = γK [0.086] [0.937] [0.000] [0.000]

κKcos = κKsin = 0 [0.000] [0.006]

res4 [0.262] [0.086] [0.066] [0.101] [0.020] [0.006] [0.008]

res3 [0.413] [0.531] [0.095] [0.237] [0.085] [0.051] [0.001] [0.000]

ll 16.5 81.1 78.7 96.9 76.5 100.7 133.2 134.2

bic −29.0 −150.4 −141.7 −174.2 −133.3 −173.9 −239.0 −237.0

rmse4 0.140 0.140 0.124 0.137 0.129 0.089 0.089

rmse3 0.177 0.139 0.138 0.116 0.138 0.097 0.049 0.049

Notes: The numbers in parentheses are robust standard errors, where the significance stars are to be read as
∗ < 0.1,∗∗<

0.05,∗∗∗< 0.01. Probability values are in brackets. Symbols B and F denotes the Box-Cox and Fourier forms respectively,

and “Exp.” denotes exponential. Cases 2 and 3 (the Cobb Douglas cases) assume Hicks neutrality. In the diagnostic section

of the table, the first two rows refer to ADF test of the unit root null associated to the errors in equations (4) and the logged

form of (3) and the p-values are obtained by bootstrapping distribution. Thereafter we have Wald tests of various parameter

restrictions. Finally terms ll, bic and rmse denote, respectively, the Log Likelihood, and the Bayesian Information Criterion,

and the Root Mean Square Error.
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The final two cases are the most data congruent (witness the dramatic improvement in diag-

nostic measures). We impose constant growth in R&D labor productivity (consistent with the

results of column 6) and allow R&D capital productivity to follow the Fourier form (the difference

between cases 7 and 8 is that the latter freely estimates the distribution parameter17). Both Fourier

parameters are statistically significant, and of opposite signs implying a somewhat cyclical tra-

jectory for R&D capital productivity (the point estimates of the normalized productivity growth

of R&D capital are negative, but this is precisely an average over a cyclical trajectory). Indeed,

the role of structural breaks and swings is actually predominant over the sample (see also next

section) such that there is no visible downward trend in R&D capital augmentation. R&D labor

productivity is increasing by 1.1% per year. In contrast to previous estimates, non-stationarity in

residuals can be decisively rejected. The substitution elasticity, finally, is significantly below unity

(around 0.7 − 0.8). Thus, R&D capital and R&D labor are gross complements in the IPF. Unit

labor productivity is increasing in the R&D sector, while unit capital productivity exhibits strong

non-linear variability.

4.2 Robustness

As a robustness check we consider alternative empirical measures of R&D capital and R&D labor.

The additional estimates for fixed and estimated η are presented in Table D.1. All these results

replicate our previous preferred findings: the elasticity of substitution ξ is below unity; the

average growth rate of R&D labor productivity is ranging from 0.1% − 2.6% per annum; there is

thus evidence in favor of the presence of a cyclical dynamic / multiple structural breaks in R&D

capital productivity.

5 Decomposition of Ideas Growth

An instructive exercise is to use our preferred estimates to decompose the sources of ideas pro-

duction into its constituent elements: R&D factors and R&D productivity. This can illuminate

which elements constrain or encourage ideas production over time.

Specifically, using the IPF (3) we decompose growth in new patent applications as follows:

g∆Ãt
= ΠK,t(gΓK

t
+ gK̃ t

) + ΠR,t(gΓRt + gR̃t
) (5)

17 Parameter values did not prove very sensitive to different imposed η values. We also tried a number of different

non-linear system estimation methods but with little variation in estimates or inference. Details available.
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where

ΠK,t = η

(
ΓK
t K̃ t

∆Ãt

) ξ−1
ξ

, (6)

ΠR,t = (1− η)
(

ΓRt R̃t
∆Ãt

) ξ−1
ξ

(7)

are the respective factor shares in R&D.We use the theoretical values for new patent applications,

i.e. the values explained by IPF, excluding regression residuals. Furthermore, aiming to capture

secular trends in ideas production rather than high-frequency fluctuations, data on R&D inputs

and output have been HP-filtered prior to the decomposition (using λ = 6.25, annual data).

Figure 3: The idea growth decomposition

(Annual change on HP-filtered contributions)

Specification (7)

0
-0

.0
2

0.
02

0.
06

0.
04

19
68

19
69 19

70
19

71 19
72

19
73 19

74
19

75 19
76

19
77 19

78
19

79 19
80

19
81 19

82
19

83 19
84

19
85 19

86
19

87 19
88

19
89 19

90
19

91 19
92

19
93 19

94
19

95 19
96

19
97 19

98
19

99 20
00

20
01 20

02
20

03 20
04

20
05 20

06
20

07 20
08

20
09 20

10
20

11 20
12

20
13 20

14
20

15 20
16

20
17 20

18

 R&D Labor  R&D Capital R&D Labor Prod. R&D Capital Prod.

Specification (8)

0
-0

.0
2

0.
02

0.
06

0.
04

19
68

19
69 19

70
19

71 19
72

19
73 19

74
19

75 19
76

19
77 19

78
19

79 19
80

19
81 19

82
19

83 19
84

19
85 19

86
19

87 19
88

19
89 19

90
19

91 19
92

19
93 19

94
19

95 19
96

19
97 19

98
19

99 20
00

20
01 20

02
20

03 20
04

20
05 20

06
20

07 20
08

20
09 20

10
20

11 20
12

20
13 20

14
20

15 20
16

20
17 20

18

 R&D Labor  R&D Capital  LATC  KATC

Figure 3 decomposes the growth of ideas into factor and productivity terms, using the last two

specifications in Table 2. From this we can perhaps identify three main phases of ideas growth: (i)

sluggish growth in ideas (up to early 1980s), (ii) sharp acceleration in ideas growth (1980s-2000s),

and (iii) slowdown in ideas growth (since 2000s). The relative contribution of R&D capital vs.

R&D labor depends on the model specification – either they are roughly equal or R&D labor is

somewhat more important – but in any case the time trends of both contributions are largely

parallel to one another, namely both are relatively steady over time, with just a minor increase

around the early 1980s and a minor decrease in late 2000s. Furthermore, as labor productivity

is growing uniformly at ∼ 1% per year, its contribution to ideas production is also steady, and

quantitatively somewhat less important than the contribution of input growth. The three phases

of ideas growth are accounted for exclusively in the strong cyclical dynamic of R&D capital

productivity. The contribution of that factor to ideas growth was strongly negative in phase (i),
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then sharply increased into the positive domain in phase (ii), and then gradually fell back to about

zero in phase (iii).

Interestingly, the timing of the three phases coincides with the adoption of ICTs as major

general purpose technologies in the 1980s-2000s (Bresnahan and Trajtenberg, 1995; Jorgenson,

2005; Aum, Lee and Shin, 2018). Universities and research labs in the US were among the earliest

adopters of both technologies. In that same period, R&D capital productivity increased markedly.

In turn, according to our results the episode of R&D capital productivity growth ended around

the time of the global financial crisis. It is conceivable that it will resume one day in the future,

perhaps after a breakthrough in artificial intelligence (Brynjolfsson, Rock and Syverson, 2019;

Growiec, 2022).

6 Is Idea TFP Falling Over Time?

With a constant elasticity IPF specification, there is no unique idea TFP. Instead, unit productivity

of each factor (ΓK
t ,ΓRt ) is separately identified. With this in mind, however, one can nevertheless

calculate a joint “idea TFP” factor capturing Hicks-neutral technical change in R&D.18 Specifically,

we calculate the log of idea TFP from the IPF (3) as follows:

log(T̃FP ) = ξ

ξ − 1 log

η
(
ΓK
t K̃ t

) ξ−1
ξ + (1− η)

(
ΓRt R̃t

) ξ−1
ξ

η
(

K̃ t

) ξ−1
ξ + (1− η)

(
R̃t
) ξ−1

ξ

 . (8)

The results are plotted in Figure 4. In contrast to Bloom et al. (2020) we do not find a sharp

drop in idea TFP, rather a wave oscillating around a constant mean. Along with the three phases

in ideas growth, identified in Section 5, idea TFP first falls (until 1980s), then grows (from 1980s

up to about 2010), and then begins to fall again.

We interpret our results as an indication that R&D capital is an essential, complementary factor

in R&D activity. In R&D, like in the aggregate economy, capital accumulation markedly outruns

the growth in labor supply over the long run. In effective terms, though, factoring in the systematic

increases in R&D labor productivity and much more erratic behavior of R&D capital productivity

over the period 1968-2019, average growth in R&D labor outran that of R&D capital. On top of

this trend, the effective R&D capital-to-labor ratio also exhibited a clear cyclical pattern, following

the three main phases of ideas growth which we identified above (Figure 5). This may indicate

18 Themapping from the pair (ΓK
t ,ΓRt ) to Hicks-neutral idea TFP is not invertible. There is a second dimension of technical

change, absent in the concept of idea TFP: factor bias in technical change (see Klump, McAdam and Willman, 2012).
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Figure 4: Idea TFP backed out from the IPF
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Notes: Dashed lines represent confidence intervals. Idea TFP retrieved from the last columns in table 2 presented in logs.

that Bloom et al. (2020) celebrated result that “ideas are getting harder to find” should be in fact

reinterpreted as “there is an increasing scarcity of R&D capital required to find the new ideas”,

with a policy implication that R&D output could be increased by subsidizing and facilitating the

accumulation of state-of-the-art R&D capital rather than necessarily increasing R&D employment.

Figure 5: Effective R&D Capital-to-Labor Ratio (Log)
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In relation to the debate whether the observed slowdown in TFP growth over the last decades

is a sign of an upcoming secular stagnation (Jones, 2002; Gordon, 2016) or represents a transition

phase to a digitally mature economy which would again grow faster once the transition period

is over (Brynjolfsson and McAfee, 2014; Brynjolfsson, Rock and Syverson, 2019), our results are

indicative of the latter option. According to our estimates, the current slowdown in R&D output
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is likely due to a relative shortage of R&D capital, rather than sharply falling idea TFP.19

7 Conclusion

We introducedR&Dcapital alongsideR&D labor into the Idea Production Function, and estimated

it using a flexible, non-neutral, non-constant elasticity specification. We find that the elasticity of

substitution between R&D inputs in the IPF is 0.7−0.8 and significantly below unity. This implies

that R&D capital should be considered an essential factor in producing ideas, and complementary

to R&D labor – in other words the marginal productivity of R&D labor will be enhanced by the

presence of R&D capital.

We also identify a systematic positive trend in R&D labor productivity at about 1% per year

on average and a cyclical trend in R&D capital productivity. Our results suggest that, cyclical

variability aside, the effective supply of R&D capital was systematically lagging behind R&D

labor, constraining R&D output over the long run.

Our results imply that ideas, rather than simply getting harder to find, in fact require more

sophisticated lab equipment to be found (or implemented). This is a scarcity which can only be

bridged by increased accumulation and development of R&D capital, not necessarily just by

employingmore R&D staff. Moreover, because investments in R&D equipment are an endogenous

variable that can be influenced by policy, our results suggest a weakened case for future secular

stagnation.

Our analysis could be extended in a number of dimensions. First, one could use international

panel data or aggregated global-level data on R&D inputs and output to gaugewhether our results

hold more broadly. Second, one could consider alternative measures of R&D output. Using TFP

growth is a usual alternative, albeit plagued with measurement issues and the necessity to make

potentially arbitrary decisions such as, for example, applying a smoothing filter to accommodate

the randomness in the timing of adoption of new technologies and the presence of episodes of

falling TFP levels due to reasons unrelated to the actions of the R&D sector. Finally, our results

could be used in theoretical studies aiming at understanding the mechanisms of long-run growth

in presence of R&D capital. In Growiec (2019, 2022) we take some first steps in that direction.

19 Speculatively, the most promising kind of R&D capital required to achieve progress is probably AI algorithms.
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A Data Construction

A fundamental problem in the current research project is a collection of the long time series that

would be acceptable proxies of variable of interest. We will discuss in details specific problems,

e.g. long-run trends on relative prices or changes on occupational systems, that affects precision

of our measurement strategy.

A.1 Output

From an economic perspective, R&Dactivities aim to reduce unit cost of production or increase the

variety of offered goods. At the aggregate level, the existing stock of knowledge/technology can be

presented by the total factor productivity (TFP). Specifically one can use TFP estimates provided

by Fernald (2018) which account for changing capacity utilization. Since the TFP is measured

residually adjustment by capacity utilization reduces unwarranted variation due to changes in

short-run factors, i.e., demand fluctuation. Second, one could use the Multifactor Productivity

(MFP) index provided by OECD. Thirdly, one could use the latest Penn World Table estimates of

the TFP (Feenstra, Inklaar and Timmer, 2015).

However, the using TFP as a proxy of the R&Doutput yields some problems. First, any changes

in TFP might be driven by changes in the technology but also it could result from other processes.

For instance, reduction in miss-allocation could improve TFP stock. Second, the TFP is the stock

variable and, as a result, the output of the R&D sector is related to changes in existing technology

so it could be measured by growth rates of the TFP. At the same time, functional form of the Idea

production function requires positive values of the output. This condition makes the TFP growth

less applicable proxy as there could be some periods/events of decline in the TFP.
1

Another strategy in measuring an aggregate macroeconomic outcome of the R&D sector is to

use patent data. A common practice in related literature is to use the patent applications (Madsen,

2008; Ang and Madsen, 2011; Venturini, 2012). Since we are interested in long historical patent

data our principal measure is taken from Marco et al. (2015). The series of interest – the flow of

new patent applications – is portrayed on figure A.1.

A.2 R&D Capital

We use the Bureau of Economic Analysis (BEA) data to estimate R&D capital in the US economy.

The key problem in measuring the total R&D capital stock is a fact that there is no available

1
In the associated literature, the problem of negative TFP growth in estimating idea production function is overcome by

considering approximation of idea production function (Ha and Howitt, 2007) or by taking 5-year averages (Ang and

Madsen, 2011).
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Figure A.1: New patent applications in the US, 1968-2019
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Notes: In this figure we plot on the lhs axis the log of patent applications and

on the rhs the growth rate of patents.

aggregate R&D capital stock, i.e., combining private and public sector. At the same time, there

the BEA does not publish long-run series on fixed-weights aggregates of R&D investment or R&D

stock.
2

The reason for that is that are long-run trends in the relative prices of inputs, long-run

decline in relative prices of investment (Greenwood, Hercowitz and Krusell, 1997). Therefore,

we consider two approaches. First, we use direct measure of fixed assets. Second, the standard

perpetual inventorymethod (PIM) is applied to the investment series in order to estimate the R&D

capital.

In our first approach, we aggregate the available series on the R&D fixed assets. Although

the BEA does not provide data on aggregate R&D assets it offers detailed series private and

government sector. In particular, we use the BEA chain-type quantity indexes for R&D assets in

both private (BEA code: kcntotl1rd00) and public sector (BEA code: kcgtotl1rd00). Since both

series are indexes and, therefore, measure capital accumulation they do not contain information

about capital level. Thus, we take the nominal value of net R&D capital stock to get an estimate

of the real capital stock. Namely, we use current cost net R&D stock in 2012 in private (BEA code:

k1ntotl1rd00) and public sector (BEA code: k1gtotl1rd00). Next, it is assumed that public and

private R&D capital are perfect substitutes, i.e., the elasticity of substitution between these inputs

tends to∞, and we simply sum estimated aggregates.

In the second approach, we use the perpetual inventory method. The capital stock (Kt) is the

2
The available data (in constant dollars) starts in 1999. This time span is too short to analyze the long-run patterns in R&D

productivity.
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sum of the capital stock in previous period reduced by deprecation and investment at period t:

K t = (1− δ) K t−1 + Irdt (A.1)

where δ is the deprecation rate of R&D capital and It is the real investment in R&D. A key problem

in calculating capital based on the PIM (A.1) formula is the initial condition problem. We follow

OECD (2009) and apply the following formula:

K 0 = Ird0 /(g + δ) (A.2)

where g is the long-run (geometric) growth rate of R&D investment.

While the g element can be easily calculated from historical data there is a lot of uncertainty

about the deprecation rate of the R&D capital. The standard choice in the literature is to fix

deprecation rate at 15% (Venturini, 2012). More recently, there are several studies that provide

empirical evidence that suggest a higher depreciation rate. Bernstein and Mamuneas (2006) find

that deprecation rate is above 15% while Li and Hall (2019) document that the depreciation rate

of R&D capital is even above 30%. In the 2019 KLEMS vintage, the deprecation rate for the R&D

assets is fixed at 20%.
3

In addition, the BEA publish historical series on deprecation of R&D capital. As previously,

deprecation of R&D capital is also available separately for private and public sector. According

to the BEA estimates, the implied deprecation rate is slightly above consensual value of 15%.

However, the BEA estimates suggest that the deprecation rate has not been constant over time

(figure A.7). Before the WWII substantial short-run variation in the depreciation rate for both

public and private R&D capital can be observed. This is due to approximation error related to

the available BEA statistics. Namely, the BEA publish data expressed in billions of dollars and

rounded to one digit. Therefore, in extreme case, i.e., for public capital, there is no depreciation

of R&D capital in the 1920s because the reported value of depreciation is zero. Abstracting from

this period, the implied deprecation rate has been stable since the WWII to the late 1950s. After

that, there is unquestionable declining trend in deprecation rate. In our baseline setting, we use

standard in the literature assumption that annual depreciation rate equals 15%. However, based

on above discussion, we will carefully document a sensitivity of this choice.

To apply the PIM method we proceed as follows. Since there is no measures of real R&D

investment expressed in chained dollars we estimate the series of interest based on available

3
See https://euklems.eu/wp-content/uploads/2019/10/Methodology.pdf.
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series, i.e, nominal R&D investment data as well as price indexes. For private sector, we divide

nominal R&D investment (BEA code: Y006RC) by price index of this asset (BEA code: Y006RG).

The same strategy is applied for public sector (BEA codes Y057RC and Y057RG, respectively). In

addition, we also consider the following components of public investment: federal non-defense

(BEA codes: Y069RC and Y069RG), defense (BEA codes: Y076RC and Y076RG) and state and local

(BEA codes: Y073RC and Y073RG).

Based on the constructed series we can formulate the following stylized facts:

– The R&D capital stock has a unit root.
4
Non-stationarity of R&D capital is quite an intuitive

feature as it can be expected that in the economy there is some accumulation of R&D capital.

This implies thatR&Dcapital shouldbe rather anupward trending than a stationaryvariable.

Technically speaking (see equation (A.1)), R&D capital would be stationary if investment in

new capital (It) equals over the time depreciated capital stock. This case seems to be

unrealistic.

– The dynamics of accumulation in aggregate R&D assets is complex. There are several time

series features that can be simultaneously documented.

– There is a downward (almost linear) trend in growth rate of R&D capital.

– Even after differentiating the R&D stock are highly persistent. This is suggested by

high persistence estimates obtained for the AR(1) model.

– There is a visible structural break in the R&D capital accumulation. Since the 1970s

the growth rate of the R&D capital has dropped permanently. This can be observed

for both the FAT and PIM based series. In addition, the above visual investigation is

confirmed by a broad range of statistical tests.

– The role of short-run fluctuations has been declining over the time. To evaluate the role

of business cycles and medium-term variation we use a band pass filter proposed by

Christiano and Fitzgerald (2003) and decompose all fluctuations in three groups: short-

run/business cycles (frequency higher than 8 years), medium-term swings (from 8 to 50

years) and long-run oscillation and long-run trend (frequency below 50 years). Visual

inspection of spectral decomposition suggests that the role of business cycles in shaping

the R&D accumulation was significant only before the 1970s. Since the beginning of

the 1970s the R&D accumulation is mostly driven by long-run trend and medium-

run swings. Substantial magnitude of the long-run and medium-run fluctuation is

4
We applied a battery of unit root and unit root under structural break tests. These are available on request.
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consistent with high persistence that can be found for annual growth rates of R&D

assets.

– The accumulation of R&D capital has been faster on average in comparison with total assets.

– The share of public/private assets in the total R&D capital has not been stable over the time.

The following periods can be identified (see figure A.12)

– Sudden and substantial rise in public R&D capital during the WWII due to increasing

role of defense R&D.

– Slight upward trend in share of public R&D assets in total R&D assets due to rising role

of defense sector as well as space programme.

– Diminishing role of public assets in total R&D capital since the beginning of the 1970s.

– The properties of the PIM-based series of the R&D capital are slightly sensitive to a choice

of (i) deprecation rate, and (ii) initial period.

The characteristics of the PIM-based series depend on the depreciation rate as well as initial

year (A.1). To check sensitivity of properties of the PIM based series of R&D capital we

calculate the counterfactual PIM series (i) using various values of depreciation rate, (ii)

truncating recursively available sample. To scrutinize an effect of these changes we calculate

long-run averages. In addition, we consider two measure of co-movement with the FAT-

basedmeasures of the R&D capital. First, the correlation between annual growth rateswhich

measures short-run co-movement. Second, we employ long-run approach which is related

to testing the cointegration.

The long-run properties of the PIM-based series are not extremely sensitive to a choice of

initial year and deprecation rate. Figure A.8 illustrates a dependence of geometric growth

rate and average annual growth rate of R&D capital on deprecation rate and initial period.

There is a natural trade-off between assumed deprecation rate of the R&D capital and its

long-run growth rate. For a higher deprecation rate more investment is required to replaced

obsolete R&D capital and this implies slower R&D capital accumulation. However, this

effect is not substantial. For extreme values of the depreciation rate, i.e., 0% and 40%, the

average annul growth rate as well as geometric growth rate do not differ so much and range

from 6% to 7% per annum.

Moreover, the long-run average rate of accumulation of R&D capital depends substantially

on a choice of initial period but this relationship is consistent with the long-run slowdown
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in R&D accumulation. Both the PIM-based series and the FAT-based measure exhibit a

visible decline in growth rates of available R&D stock (see Figure ??, right panel). This fact

is consistent with previous evidence in favor of occurrence of structural break.

Finally, we look at co-movement between the FAT-based measure and various PIM-based

proxies that base on different values of δ. At the first sight, there is extremely high positive

short-run correlation between considered series (FiguresA.9 andA.10). In particular a choice

of time invariant deprecation rate has no impact on the analyzed degree of co-movement

as the lowest estimated correlation coefficient is above 0.9. The short-run correlation is

slightly lower for detected previously structural break (in the late 1960s/ early 1970s) nut

it is still significantly positive. The analysis of potential impact of our PIM assumptions on

the long-run co-movement with the FAT-based series is more puzzling. In our baseline case,

i.e., δ = 0.15, there is no strong evidence in favor of the cointegration between the analyzed

time series. Abstracting for the low power of unit root and cointegration test, the reason for

that is that has been structural breaks in the analyzed series and its effect on the DGP (data

generating process) could be not proportional.

– The constructed series of the R&D capital are comparable to measures in other databases.

We use two additional data sources that offer data on the US R&D capital. First, we use

capital the R&D capital stock from KLEMS database (van Ark and Jäger, 2017). Second,

we use an index of R&D capital services from the Multifactor Productivity (MFP) database

provided by OECD.

All series are shown in Figure A.3. It is straightforward to observe that short-run co-

movement between those series is high. Moreover, the average growth rate is very similar

among the considered sources.

– Finally, the share of the R&D assets in total capital stock has been systematically rising from

the 1920s to 1980s and it has been roughly stable since the beginning of the 1980s. All in

all, the average share of the R&D capital in nonresidential (total) available assets has been

fluctuated around 8% (5%) since the beginning of the 1980s. This empirical pattern is mostly

determined by a rising role of R&D intensity in private sector. The share of the R&D assets

in private capital stock has been systematically risen since the 1920s. At the same time, the

share of R&D in public assets exhibits hump-shaped trajectory, reaching the maximum in

the 1980s.
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A.3 R&D Labor

Estimation of the Idea production function requires data on labor engaged in the research and

development process. At the conceptual level and in line with the definition from the Frascati

Manual (OECD, 2015) it refers to employees who undertake creative work that is aimed at general

increase in an existing stock of knowledge.

In practice, an application of the above definition requires very detailed information about

tasks that are related to R&D activity. However, according to the best of our knowledge such data

are not available. As a result, R&D activity cannot be measured directly. Therefore, we will use

two strategies.

First, we take advantage of publicly available data on R&D employment. Although statistical

offices (Eurostat or OECD) publish estimates on R&D activity their availability is strongly limited.

Namely, the Eurostat/OECD series starts in 1981. To overcome this problemwe use older vintages

in order to extrapolate existing series. Before 1981we use data collectedwithin the IRIS (Industrial

Research and Development Information System) program conducted by the NSF (the National

Science Foundation). Moreover, based on historical data from Jones (1995) it is possible to get

extrapolated observations earlier, i.e., in 1950s.

In our second approach, we estimates the labor input in R&D activity using microdata which

contains information about structure of occupations. An ideal strategy is to use detailed data

on skills/abilities-content in occupations and merge them with structure of labor force. The

most important problem with this approach is that, according to our best knowledge, there is no

longitudinal survey on research-intensity among occupations. For instance, the O-NET data offers

estimates on skill and abilities intensity but there is no direct measure of research intensity and

the time span of this dataset is quite short since this survey started in 1998.

Thus, in our empirical part, we use IPUMS CPS data (Ruggles et al., 2019). This database

offers harmonized micro data, namely the Current Population Survey (CPS), i.e., the monthly U.S.

labor force survey. Based on the conceptual definition of R&D personal or the S&E groups we

can identify the following occupational groups whose work could be classified as R&D activity
5
:

Scientists; Mathematical and computer occupations; Engineers; Technicians; Social scientists

and Health professionals (see the main text for precise definitions).

Based on above available classification we define two aggregate of the R&D labor. In our

baseline definition, we include scientists, mathematical and computer occupations and engineers.

5
In practice, we try to match the Eurostat definition. According to human resources in science and technology approach

scientists and engineers (S&E) are workers who conduct research, improve or develop concepts, theories and operational

methods and/or apply scientific knowledge relating to fields. This definition can be covered by following group oc-

cupation (according to ISCO-08 classification): Science and engineering professionals (21), Health professional (22) and

Information and communications technology professionals (25).
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In addition, we consider a broader definition that includes also technicians, social scientist and

health professionals.

The following set of stylized facts can be formulated:

– Share of the R&D related workers is total employment is rising over the time. This is

consistentwith the previous empirical evidence in the literature (Jones, 1995; Ha andHowitt,

2007).

– There are substantial differences in the level of R&D employment. Even if we look at the

series of the Scientists&Engineers the share of this group in total employment according to

data provided by (Jones, 1995) is almost two times higher than the share which is estimated

based on NSF/Eurostat data. By definition, this difference would be higher if we compare

with the (IPSUM-based) share broader group of occupations.

– Nevertheless, all proxies of the R&D employment suggest almost identical upward tendency.

According to the merged series on Scientists&Engineers and the IPUMS-based group of

scientists the share of R&D employment in total employment rose by around 80% between

1968 and 2017. For the baseline IPUMS-based definition this increase has been even larger

and exceeded 100%.

– Detaileddecompositionof the IPUMS-basedmeasures illustrates keymeasurementproblem.

An on-going technical change has created demand for new occupations that are closely

related to the new technologies. This is mostly observable for computer-related occupations.

In the late 1960s this occupational group was almost absent on the labor market while in the

late 2000s their share (together with mathematical occupation) was around 4%.
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Figure A.2: Total R&D capital (annual growth rate) and Nonresidential Private Fixed Assets
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Notes: red color denotes nonresidential private capital while blue line stands for total R&D capital.

Figure A.3: The comparison of the R&D stock with other data sources (annual growth rate)
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Notes: blue line is the BEA-based estimates of R&D stock, red color denotes the KLEMS estimate and yellow color is the

OECD estimate of the R&D capital.
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Figure A.4: Spectral decomposition of the total R&D capital (annual growth rate)
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Notes: See main text for description.
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Figure A.5: Spectral decomposition of the private R&D capital (annual growth rate)
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Notes: See main text for description.
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Figure A.6: Spectral decomposition of the public R&D capital (annual growth rate)
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Notes: See main text for description.
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Figure A.7: Implied deprecation rate of R&D capital based on the BEA data
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Notes: Implied depreciation rates for public and private R&D capital.
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Figure A.8: Sensitivity analysis of the PIM-based series to a value of the depreciation rate (δ) and
a choice of initial year
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Figure A.9: Sensitivity analysis of the PIM-based series to a value of the depreciation rate (δ)
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Figure A.10: Sensitivity analysis of the PIM-based series to a choice of initial year
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Figure A.11: Public R&D capital (annual growth rate) and its components
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Notes: red color denotes defense R&D capital, blue color stands for non-defense federal R&D capital while yellow refers
to state and local R&D capital.
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Figure A.12: Share of public R&D capital in total R&D capital (in %)
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Notes: red color denotes the share calculated using PIM-based series while blue color represents share obtained from

(nominal) BEA series.

Figure A.13: Share of R&D assets in total and nonresidential capital stock (in %)
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Figure A.14: Share of R&D assets in total private capital stock (in %)
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Notes: This figures shows private R&D assets by class.
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Figure A.15: Share of R&D assets in total public capital stock (in %)
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Notes: This figures shows public R&D assets by class.

Figure A.16: Share of the R&D employment (FTE, 1968=1)
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Notes: The black line is themerged (from various sources) series, red line is the IPUMS-based share of scientists, orange
stands for the IPUMS based share of the R&D employees according to baseline definition while blue represents the
IPUMS-based share of the R&D employees according to broader definition.
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Figure A.17: Share of the R&D related workers in total US employment and hours
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Figure A.18: Share of the R&D related occupations in aggregated hours (in%) – baseline definition

0
2

4
6

8

1970 1980 1990 2000 2010 2020

Scientists Mathematical and Computer occupations
Engineers

Notes: Narrower occupational definition of R&D occupations.
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Figure A.19: Share of the R&D related occupations in aggregated hours (in%) – broader definition
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Notes: Broader occupational definition of R&D occupations.
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Figure A.20: Share of the R&D related occupation groups in total US employment and hours
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Figure A.21: Total Factor Productivity, 1954-2019: Constant National Prices, 2017=100

(G7 + Switzerland + Spain)
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Source: Feenstra, RobertC., Robert Inklaar andMarcel P. Timmer (2015) “TheNextGenerationof thePennWorld

Table.” American Economic Review, 105(10), 3150-3182. Indexed: 2017 = 100. The series were downloaded

from FRED with the mnemonic RTFPNAXXA632NRUGwhere XX denotes the relevant country code, e.g. US.
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B Unit Productivity Forms

B.1 Box Cox

Following Klump, McAdam and Willman (2007), we model time-varying technological progress

terms using a Box-Cox transformation (specified in normalized form). This allows deterministic

but time-varying technological progress termswhere curvature or decay terms could beuncovered

from the data in economically meaningful ways.

Γit = eg
i
t (B.1)

git = γ
i
×
[
t̃λi − 1
λi

]
× tz, (B.2)

The growth rate of technical change associated to factor i is therefore given by,

γit = dgit
dt

= γ
i
× t̃(λi−1)

(B.3)

where t̃ = t/tz and curvature parameter λ ∈ R determines the shape of the technical progress

function. Note, the re-scaling of γ and t by the fixed point value tz in (B.2) allows us to interpret γi

directly as the rates of i factor-specific unit productivity improvements at the fixed-point period

(t = tz).

For λ = 1, technical progress functions are the (textbook) linear specification; otherwise they

are exponential (λ ∈ (0, 1)), log-linear (λ = 0) or hyperbolic functions in time (λ < 0). If λ > 1

then technical progress is rapidly expanding; although essentially at odds with a BGP it is not

impossible to observe such a pattern in a finite sample.

Asymptotically, function (B.2) would behave as follows in levels and growth rates, respectively:

lim
t→∞

git →∞ λi ≥ 0

lim
t→∞

git = − γi
λi
tz λi < 0

(B.4)

γit = dgit
dt

= γi × t̃λi−1 ⇒



∞ (as t→∞) λi > 1

γi λi = 1

0 λi < 1

(B.5)
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B.2 Fourier

Our second case uses a trigonometric trajectory which is a special case of a Fourier expansion:
6

log Γjt = exp
[
(t− tz)

(
γj + κsinj sin

(
2πκt
T

)
+ κcosj cos

(
2πκt
T

))]
,

where π = 3.14 and j = K,L. Any possible structural breaks will be captured by the parameters

κ ∈ R parameters, where κsinj = κcosj retrieves the simple linear case. As regards the appropriate

number of frequencies κ ≥ 1 to include, we follow Ludlow and Enders (2000) who showed that

a single frequency is invariably sufficient to approximate the Fourier expansion in the bulk of

empirical applications.
7
Indeed higher values of k one might able capture rather low-frequency

fluctuations in factor-biased technical change.

6
See Christopoulos and León-Ledesma (2010) for a discussion of Fourier forms in economics.

7
Moreover, according to Becker et al. (2004) the Fourier expansion has more power to detect several smooth breaks of

unknown form in the intercept than, say, the Bai and Perron (1998, 2003) multi-break tests.
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C Stability Analysis

In this section, we perform a simple exploratory analysis of structural breaks on the patent growth

series. We model it as a simple AR(1) process which should well capture its time series path.

We then estimate that form recursively over time and plot the persistence parameters and

its associated standard errors. Values of the residuals outside of the standard error bands are

indicative of structural breaks, large movements or cyclical swings. Looking at Figure C.1, we can

see some suggestive evidence for structural instability for the periods around the mid 1980s, mid

1990s, around the Great recession.

Figure C.1: Recursive Residuals Stability Analysis for Patents

0
-0

.2
-0

.1
0.

1

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Notes: In this figure we derive the recursive residual (in black) plus/minus

their two standard errors (in red dash) for an AR(1) regression in ∆Ãt.

The interpretation of those recursive exercise being that residuals outside the

standard error bands suggest instability in the parameters of the equation.
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D Robustness

D.1 Alternative Measures of R&D Factors

As a robustness check we consider alternative empirical measures of R&D capital and R&D labor.

The additional estimates for fixed and estimated η are presented in Table D.1. Qualitatively, all

results replicate our previous preferred findings: the elasticity of substitution ξ is below unity;

the average growth rate of R&D labor productivity is ranging from 0.1%− 2.6% per annum; there

is evidence in favor of presence of a cyclical dynamic / multiple structural breaks in R&D capital

productivity.

Table D.1: Robustness

(1),(2) (3),(4) (5),(6) (7),(8)

Baseline
†

Narrow R&D Labor Merged R&D Labor Private R&D capital

ξ 0.793∗∗∗ 0.760∗∗∗ 0.836∗∗∗ 0.810∗∗∗ 0.687∗∗∗ 0.639∗∗∗ 0.789∗∗∗ 0.815∗∗∗

(0.019) (0.062) (0.034) (0.044) (0.025) (0.057) (0.017) (0.085)

γK −0.016∗∗∗−0.013∗∗∗−0.007 −0.006 −0.005∗∗∗−0.005∗∗∗−0.062∗∗∗−0.074∗

(0.003) (0.004) (0.007) (0.005) (0.002) (0.001) (0.005) (0.042)

γR 0.011∗∗∗ 0.011∗∗∗ 0.001 0.002 0.003∗∗ 0.002∗∗ 0.026∗∗∗ 0.026∗∗∗

(0.001) (0.001) (0.003) (0.003) (0.001) (0.001) (0.002) (0.002)

γsinK 0.556∗∗∗ 0.438∗∗∗ 0.650∗∗∗ 0.510∗∗∗ 0.401∗∗∗ 0.329∗∗∗ 0.537∗∗∗ 0.638∗

(0.045) (0.137) (0.041) (0.134) (0.039) (0.064) (0.047) (0.356)

γcosK −0.427∗∗∗−0.337∗∗∗−0.406∗∗∗−0.345∗∗∗−0.398∗∗∗−0.316∗∗∗−0.548∗∗∗−0.664∗

(0.028) (0.109) (0.03) (0.086) (0.033) (0.07) (0.032) (0.365)

η 0.418∗∗∗ 0.405∗∗∗ 0.426∗∗∗ 0.280∗

(0.121) (0.1) (0.104) (0.149)

R&D Labor Productivity Exp. Exp. Exp. Exp. Exp. Exp. Exp. Exp.

R&D Capital Productivity F F F F F F F F

η fixed estimated fixed estimated fixed estimated fixed estimated

ξ = 1 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.031]

γR = γK [0.000] [0.000] [0.388] [0.332] [0.000] [0.000] [0.000] [0.017]

κKcos = κKsin = 0 [0.000] [0.006] [0.000] [0.000] [0.000] [0.000] [0.000] [0.192]

res3 [0.004] [0.006] [0.008] [0.011] [0.000] [0.000] [0.008] [0.009]

res4 [0.001] [0.001] [0.000] [0.000] [0.000] [0.000] [0.002] [0.003]

ll 133.2 134.2 115.6 116.2 134.2 134.7 127.9 127.4

bic −239 −237 −203.7 −201 −241.1 −238.2 −228.2 −223.4

Notes: The numbers in parentheses are standard errors, where the significance stars are to be read as
∗p < .1,

∗∗p < .05 and
∗∗∗p < .01. Probability values are in brackets. In the diagnostic section of the table, res3 and

res4 refer to ADF test of the units root null associated to the errors in equations (4) and the logged form of

(3) and the p-values are obtained by bootstrapping distribution. Terms ll, bic denote, respectively, the Log

Likelihood and Bayesian Information Criterion.

†
: the baseline columns replicate the final two columns of Table 2.
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