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Abstract

The study aims to identify the granular demand and productivity shocks, their properties,

and the responses of the important firm-level variables to these shocks. We use comprehensive

data from the Polish enterprise sector that cover the 2002-2019 period. As the data do not

include prices, the identification of the demand shocks relies on the information on inventory

changes. We utilize the control function approach to estimate the parameters of the production

function and to identify productivity shocks. We use projection methods with granular data

to identify the dynamic impulse-response function. We show that the distributions of the

two shocks differ: i.e., supply (productivity) shocks are symmetrically distributed, and the

distribution of demand shocks is negatively skewed. Moreover, both distributions have fat

tails. Productivity shocks have much more persistent effect on firms’ outcomes than demand

shocks. Following demand shocks, there are short-lived increases in output, market share,

productivity, real wages and markups; whereas investment and employment demand remain

elevated for a longer period. We also find a very limited transmission of productivity into

wages and we showed that proxies for prices increase after demand shocks, and they decrease

after the supply shock, in a theory-consistent way.

Keywords: demand shocks, supply shocks, granular impulse response function, granular

local projections

JEL Codes: D22, D24, D4, J42, L11

Introduction and literature review

The aim of this study is to identify the dynamic responses of firms to granular supply (productivity)

and demand shocks and to describe the properties of distributions of these shocks. Most of the

existing literature on this topic has used macroeconomic data and macroeconomic identification

schemes (like structural vector autoregressions or dynamic factor models) to derive the impulse

responses. Following the routes pioneered by Cochrane (1994) and Gabaix (2011), we search for

the rationale for macroeconomic shocks by measuring the granular reactions of firms to these

shocks. The latter approach serves as a cross-check for the impulse responses identified using

macroeconomic models. The need for such a consistency check was stressed by Buera et al. (2021).

Our approach extends the existing literature by providing additional insights into the properties

of shocks and of firms’ adjustment mechanisms, in addition to performing a consistency check.

*Narodowy Bank Polski (NBP) & SGH Warsaw School of Economics, e-mail: michal.gradzewicz@nbp.pl The

views expressed herein are those of the author and have not been endorsed by Narodowy Bank Polski. The author
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Because both demand and productivity shocks are unobserved and affect firms’ outcomes si-

multaneously, separating them is challenging, as Klette and Griliches (1996) first noted. Various

schemes for identifying demand shocks have been presented in the literature, and their applicability

depends on the available data. For cases in which the data include information on prices, Foster

et al. (2008) and Pozzi and Schivardi (2016) have offered a feasible solution based on the estimation

of the demand schedules faced by firms. But if, as in our case, the prices are unavailable, indirect

approaches need to be used instead. We use the identification scheme proposed by Kumar and

Zhang (2019), as it is the most suitable approach for our analysis given our data. The approach

builds on the assumption that the demand shocks are realized after the firm has chosen its inputs

and output levels, whereas the supply shocks are realized before the inputs and output decisions

are made (and thus should not affect inventory stock). The uncertainty introduced by demand

shocks and timing assumptions create a gap between the expected and the realized sales. Thus,

the firm-level deviations of inventories from the targeted level of inventory stock provide informa-

tion about the unexpected shifts in demand. Note that the identification applied here is agnostic

regarding the exact source of the demand shock – e.g., whether it is a result of a transitory shift in

preferences or a change in monetary policy conditions – provided it is unobserved when decisions

about inputs and output are made.

The identification of supply (productivity) shocks is related to the estimation of the production

function. Here, we utilize here the control function approach pioneered by Olley and Pakes (1996),

as it addresses the endogeneity problem that can arise when productivity shocks that are not

observed by the econometrician are known to the firm (as is assumed in our identification scheme),

and it affects both output and input choices. Moreover, the lack of firm-level prices in our data

combined with the imperfect competition on the output markets implies that additional problems

can arise when using revenue rather than the quantity production function, as was recently stressed

by Bond et al. (2020), Doraszelski and Jaumandreu (2021) and Ridder et al. (2021) in the context

of measuring markups.

Kumar and Zhang (2019) proposed an adjustment to the production function estimation pro-

cedure that incorporates the demand for the firm’s products into the estimation of the revenue

production function in a way that consistently allows for demand shocks to be controlled for in

the estimation of the firm level productivity. This approach addresses some of the issues raised

in the literature. First, it changes the first stage of the estimation of the production function, as

inventories enter the production function as a state variable. Moreover, demand shocks may affect

the investment decisions of firms due to factors such as the credit constraints. Thus, our identifi-

cation assumes that demand shocks are part of the investment policy function used to control for

productivity1. Second, demand shocks are a source of independent variation between investments

decisions and labor (and material) choices, which resolves the collinearity problem described by

Ackerberg et al. (2015). Third, Doraszelski and Jaumandreu (2021) argued that controlling for the

heterogeneity in demand conditions across firms under imperfect competition is necessary to obtain

unbiased estimates of the parameters of the production function and productivity, and, thus, the

related measures of markups.2 They showed in simulations that controlling for the demand shifts

in the estimation procedure improves the estimates. In the empirical part of their study they used

a proxy for demand shifts taken from the survey data. In our study, we directly identify a shock

to the demand schedule.

We additionally refined the Kumar and Zhang (2019) identification scheme and added a mea-

sure of the firm’s market share to the investment control function. Both Bond et al. (2020) and

Doraszelski and Jaumandreu (2021) stressed that in cases in which firms are price-setters, the

variables in the control function for productivity should include marginal costs. While these costs

1We use investment as a control variable, as in Olley and Pakes (1996).
2Identified using a method proposed by De Loecker and Warzynski (2012).

2



are unobserved, they are closely related to markups. Moreover, many theoretical models (see,

e.g., Atkeson and Burstein, 2008; Burstein et al., 2020) predict that firm-level markups are closely

related to market shares.

In the empirical part of the paper we derive the demand and supply shocks using a compre-

hensive panel of financial statements from firms based in Poland, that covers more than 80% of

employment and output in the enterprise sector. This rich dataset allows us to generate findings

that are representative from a macroeconomic perspective. We show that although the standard

deviations of the distributions of the two shocks are not large, their tails are extremely fat. The two

distributions also differ in terms of skewness, as the productivity shocks are approximately sym-

metrically distributed, whereas the demand shocks are negatively skewed. Moreover, the demand

shocks are persistent, while the autocorrelation of the supply shocks is essentially zero.

Having derived the productivity and demand shocks, we use the local projection method pio-

neered by Jordà (2005) to estimate the dynamic responses of variables related to firms’ reactions to

these shocks. Local projection is a method that allows for a direct estimation of impulse responses

without the need to estimate and invert the full structural decision model. This characteristic of

the method makes it especially well-suited for use in microanalyses based on panel data, as in such

analyses, the estimation of a fully-blown simultaneous equations model is challenging. Nonetheless,

to our knowledge, this paper is the first to use local projections based on a large microeconomic

dataset, given that in the existing literature the method has been applied only in multi-country

macroeconomic contexts, such as in Auerbach and Gorodnichenko (2013) or Jordà et al. (2015).

Moreover, to our knowledge our study is the first attempt to identify dynamic impulse responses

using a fully granular identification scheme.

Our empirical results indicate that the changes in firms’ outcomes are much more persistent

in response to productivity shocks than to demand shocks. Demand shocks result in short-lived

increases in output, market share, productivity, real wages, and markups; and in increases in

investment and employment for a couple of periods. Firms’ reactions to supply shocks are quali-

tatively similar, but they are more persistent. Moreover, regardless of the nature of the shock, the

resulting increases of labor productivity only partially translate into higher wages. We also use

the estimated production function to construct the measures of prices and find that prices tend to

increase temporarily after demand shocks, and to decrease temporarily after the supply shock, as

predicted by theoretical models.

The studies that are the closest to ours are Pozzi and Schivardi (2016) and Carlsson et al.

(2021). The authors of the former study also used granular measures of demand and supply

shocks (using data for Italian manufacturing firms that include prices, which implies a different

identification scheme), and found a limited pass-through of these shocks into firm’s output growth

for the current period. We extend their analysis to cover dynamic responses, which is important,

given that many of the firms’ characteristics are affected for a longer period of time. Moreover,

our analysis covers a wider set of variables of interest. The authors of the latter study used data

from Swedish manufacturing firms that include prices. They applied a set of long-run restrictions

in a firm-level panel SVAR model to identify and examine the effects of demand and supply

shocks. While their analysis included the reactions of output and prices, they concentrated on

the responses of labor market flows to these shocks, and found that demand shocks have a larger

impact on employment, whereas technology shocks have a larger impact on prices. Our work

extends their analysis by using a more comprehensive set of variables of interst and by broadening

the sectoral coverage of the analysis. Moreover, we use local projections as a more robust way to

measure dynamic short-run and long-run responses to firm-specific shocks.

The related literature has also measured the effects of supply and demand shocks on market

selection and firm turnover. The pioneering study of Foster et al. (2008) found that both pro-

ductivity and demand shocks affect firm survival. As we do not have direct information on firm
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bankruptcies, and the firm exits we observe in our data may have occurred for other reasons, we

do not include this variable in the main analysis (although it still serves as a control variable in

the identification of technology shocks). Roberts et al. (2018) focused on the role of firm-level

demand and supply shocks in firms’ exports, whereas Bachmann and Zorn (2020) used survey

data to investigate the relative role of demand and supply shocks in firms’ investment and output

growth. Coviello et al. (2021) found that Italian firms tend to adjust investments rather than em-

ployment after experiencing negative demand shocks (identified as reductions in local government

spending). The reactions of employment and wages were also studied by Cho (2018), who used

matched firm-level financial data with a dataset of transactions from the American Recovery and

Reinvestment Act.

The rest of the paper is organized as follows. In the next section, we present our identification

strategy. We then discuss our data sources and their properties. In the following section, we

report the results of our estimation: i.e., the targeted levels of inventories and the properties of

the distributions of demand and supply shocks. In the next section, we present our main results,

which indicate how firms respond to these shocks. In the final section, we offer some concluding

remarks and comments.

1 Identification

Our approach to the firm-level identification of demand shocks closely follows that of Kumar

and Zhang (2019), who used information on inventory changes to derive the unexpected demand

shocks faced by firms, and used the estimated production function to measure supply (productivity)

shocks. We modify their approach to estimateing the production function in order to address the

identification issues recently discussed in the literature on firm-level markup estimation.

Assume the production function of firm i at time t is

Qit = exp (ω∗
it + ϵ∗it)F (Vit,Kit), (1)

where Qit,Vit,Kit are the quantity produced, a vector of variable factors (e.g., labor, materials)

and capital, respectively. ω∗
it is the firm’s structural (observed) productivity, and ϵ∗it is an un-

observed, non-structural shock that contemporaneously affects production and productivity. We

use lower-case letters to denote the logarithms of the respective variables. We assume F (·) is

Cobb-Douglas (in Appendix B.1, we show our main results for the translog production function).

We assume the demand the firm faces follows a standard CES form:

Qs
it = P η

it exp (zit) , (2)

where Qs
it is the quantity demanded (and sold), Pit is the price firm i charges in period t, η is the

demand elasticity, and zit ∼ N (0, σ2) is an unexpected demand shock.

We assume that when making decisions in period t, the firm knows its capital stock Kit, its

productivity ωit and enters the period with some initial inventory stock N b
it. At the beginning of

the period, the firm chooses variable factors (Vit) and output prices Pit that maximize its expected

profits conditional on unobserved productivity, ϵ∗it, and demand shocks, zit. The firm may choose

to produce a different amount of output than it expects to sell, while aiming to achieve some

level of targeted inventory stock λit. After production, the demand and productivity shocks are

observed. These shocks determine the firm’s sales and output levels, and lead to end-of-period

inventory stock Ne
it and to the firm’s profits. Thereafter, the firm chooses whether to exit, and

(conditional on the exit decision) how much to invest to build capital for the next period.

The timing implies that the firm faces uncertainty when deciding how much to produce, and

the optimal choice may generate too much or too little inventory compared to the targeted level.
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As inventories cannot be negative, output shortages may occur. Thus, inventories contain useful

information on demand shocks, and we use this information for the identification of demand shocks.

Moreover, demand shocks can help us pin down productivity in the estimation of the production

function, which we will discuss later.

1.1 Demand shocks

In each period, the production sold needs to correspond to the output and inventory changes,

which implies:

Qit +N b
it = Qs

it +Ne
it, (3)

where Qit and Qs
it are output and sales, respectively. The demand function (2) can be decomposed

into an expected and an unexpected part: Qs
it = E (Qs

it|Iit) exp zit, where Iit is the firm’s beginning

of the period information set. The literature on inventory behavior (see, e.g., Ramey, 1991; Kahn,

1992, among others) stresses that due to the factors like production smoothing and/or stockout

avoidance in the presence of demand uncertainty, it is optimal for firms to maintain a targeted

level of inventory stock. We assume that each firm i at time t targets the end-of-period inventory

stock, which is proportional to its expected sales: λit = λiE (Qs
it|Iit). Kumar and Zhang (2019)

stressed that this assumption is satisfied in a large class of inventory models that predict a fixed

stockout rate as their optimal production strategy.

From the firm’s perspective, the available output Qit + N b
it need to be equal to the expected

sales plus the targeted inventory stock:

Qit +N b
it = E (Qs

it|Iit) + λit. (4)

Equation (4) can be solved for expected sales. Our assumption regarding the targeted inventory

level then allows us to express equation (3) as:

log

(
Qs

it

Qit +N b
it

)
= − log (1 + λi) + zit. (5)

Equation (5) can be used to identify both the targeted inventory level and demand shocks, pro-

vided we have information on quantities, which is often absent in the available data. However, if

inventories are priced in line with output prices (which is the rule in practical accounting), the

ratio in the LHS of equation (5) can be measured in nominal terms:

log

(
Rs

it

Rit +RN b
it

)
= − log (1 + λi) + zit, (6)

where Rs
it is the value of the production sold in period t, Rit is the value of the output, and RN b

it is

the value of the initial inventories. Equation (6) shows that the cross-firm variation of the average

ratio of sales to the available output (which is observed, and can be easily computed in the data)

identifies the targeted inventory level λi, whereas its within-firm (time) variation identifies the

demand shock zit.

In the empirical application, we approximate the firm-specific constant − log (1 + λi) with a

function of firm characteristics, like in Kumar and Zhang (2019). We use a third order polynomial

of a firm’s size (measured as a log of employment), the interaction of its size with its ownership

status (state, private and foreign), and a regional indicator. We also experimented with a firm’s

fixed effects in a panel regression, but it did not have a qualitative effect on the results. The

regression in (6) is estimated separately for 2-digit NACE sectors (in a limited number of cases

the sectors are aggregated to avoid convergence problems with Tobit estimation that can occur

in small samples). Moreover, in 7.4% of the cases, the estimated measures of λi are outside the
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[0, 1] interval, and we therefore fix them at the boundary values. Finally, the demand shocks

zit are calculated as the difference between the LHS of equation (6) and the firm-level constant

− log(1 + λi).

There is an additional issue with the above identification scheme. The non-negativity of inven-

tories implies that with a sufficiently high positive demand shock, firms may stockout. Hence, we

cannot identify the full distribution of demand shocks with equation (5). This leads to two different

kinds of problems. First, the non-negativity of inventory implies that the LHS of (5) is truncated at

zero. Thus, to get consistent estimates of λj and the demand shocks one would have to include the

censoring in the estimation of (6), and apply a Tobit estimation. Second, the truncation implies

that we cannot recover the exact magnitude of the demand shocks. When Ne
jt = 0, then sales and

available output coincide; thus, the LHS of equation (5) is zero, and in these censored (bounded)

cases zit = log(1+λi). Kumar and Zhang (2019) proposed the use of the normality assumption of

the demand shock and the conditional expectation as a measure of the magnitude of the demand

shocks in censored cases. As E(zit|Ne
it = 0) =

∫ +∞
log(1+λj)

zit
ϕ(zit)

1−Φ(log(1+λj))
dzit, it follows that the

conditional demand shock (we call it ẑit) is:

ẑit =

log
(

Rs
it

Rit+RNb
it

)
+ log (1 + λi) for Ne

jt > 0

σ√
2π

1
1−Φ(log(1+λi))

exp
(

− log2(1+λi)
2σ2

)
for Ne

jt = 0
(7)

The logic and the approach applied here is similar to the Heckman correction commonly used

in quantitative social sciences to tackle the problem of selection into the sample. We used the

bounded shocks zit in the production function estimation (the rationale is given in Kumar and

Zhang, 2019). The conditional shocks ẑit are used in the discussion on the properties of the shocks

and the impulse-response analysis.

1.2 Production function and supply shocks

The estimation of the production function is subject to a well-known endogeneity problem (first

noticed by Marschak and Andrews, 1944): namely, that the productivity shock, which is unobserved

by the econometrician, affects both output and production factors, and introduces a bias into the

parameter estimates. We address this problem using the so-called control function, which was

pioneered by Olley and Pakes (1996). Our approach to estimating the production function and

productivity also addresses the problems of unobserved firm-level prices and imperfect competition,

which were recently discussed by Bond et al. (2020), Doraszelski and Jaumandreu (2021), and

Ridder et al. (2021).

As Kumar and Zhang (2019) pointed out, the explicit tackling of the demand helps to resolve

the problem of unobserved prices. Most firm-level datasets include information on revenues, not

on the quantities produced or sold. The observed (log) revenues are given by rit = qsit + pit and

together with the inverse demand function from (2) can be expressed as

rit = (1 +
1

η
)qsit −

1

η
zit. (8)

Moreover, equation (3) gives the relationship between production and sold production: qit =

qsit + log (1 + xit) where x =
RNe

it−RNb
it

Rs
it

is the ratio of the change in inventory value relative to

sales. By plugging this, together with the definition of production function (1), into (8), we get:

rit = (1 +
1

η
) logF (Vit,Kit)− (1 +

1

η
) log(1 + xit)−

1

η
zit + ωit + ϵit, (9)

where (log) revenues rit, (bounded) demand shock zit, a term related to inventories log(1+xit) and

production factors are all observed (or consistently estimated, as in the case of demand shocks),
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whereas structural productivity ωit = (1 + 1
η )ω

∗
it, non-structural productivity ϵit = (1 + 1

η )ϵ
∗
it, the

production function parameters, and η are unobserved, and thus need to be estimated.

Notice that the LHS of equation (9) are revenues rather than quantity produced, which solves

the problem with unobserved individual prices (pit) that was described by Bond et al. (2020).

In other words, using the explicit assumption regarding the demand the firm faces allows us to

estimate output elasticities rather than revenue elasticities.

A direct estimation of equation (9) yields biased estimates, as factor demands Vit(ωit, ·) in

any feasible timings of shocks and decisions depend on productivity. We use the control function

approach to get consistent estimates of equation (9). We use labor, materials, and outsourcing as

the variable factors: logVit = [lit,mit, oit]
′ (and capital as a state variable) and a Cobb-Douglas

production function F (·).3 The timing we discussed above implies that the investment iit depends

on productivity, capital stock and the end-of-period inventories. Moreover, it also depends on

profits, which are, given a non-competitive environment and a firm-specific residual demand (as

in our case), a function of markups. While the estimation of markups is not our primary concern,

as Doraszelski and Jaumandreu (2021) pointed out, the non-degenerate distribution of markups

across firms implies that the estimation of (9) yields biased estimates of output elasticities.

Assuming a monotone relationship between investment and productivity and scalar observabil-

ity (discussed extensively in Ackerberg et al., 2007), we can invert the investment function and

express productivity as: ωit = ωit(iit, kit, rn
e
jt, zit, ·). Doraszelski and Jaumandreu (2021) showed

that productivity should depend on the planned output (i.e., the expected output before the factor

decisions are made), and used a proxy for demand conditions to control for it. Our approach

allows us to measure demand shocks directly from the data, and we use these shocks to identify

productivity ωit(·). It is also consistent with the timing of decissions discussed above. Moreover,

Bond et al. (2020) and Doraszelski and Jaumandreu (2021) showed that if firms are price-setters,

one of the control variables in ωit(·) should be the firm’s (log) marginal costs. These costs are

usually non-observable, but they can be proxied by markups. Unfortunately, markups are also

unobserved, and production function estimation is often used to identify them. We use market

share as a proxy for marginal costs, given that in many economic models market share is correlated

with markups.4

Summing up, we assume ωit = ω(iit, kit, rn
e
jt, zit,msit, t), where msit is a measure of market

share. Plugging this into (9) yields the following equation, which is usually refereed to in the

literature as the first-stage equation:

rit = β∗
l lit +β∗

mmit +β∗
ooit +β∗

kkit − (1+
1

η
) log(1+xit)−

1

η
zit +ω(iit, kit, rn

e
jt, zit,msit, t)+ ϵit

= β∗
l lit + β∗

mmit + β∗
ooit − (1 +

1

η
) log(1 + xit) + φ(iit, kit, rn

e
jt, zit,msit) + ϵit, (10)

where β∗
i = 1+η

η βi and φ(·) are unknown, and we approximate them using a polynomial of order

three. Equation (10) gives consistent estimates of η, β∗
l , β

∗
m and β∗

ooit. As was pointed out by

Kumar and Zhang (2019) the introduction of demand shocks into the first stage estimation resolves

the collinearity problem between factors and investment discussed in Ackerberg et al. (2015). The

timing of our model implies that demand shocks affect investment only, and introduces independent

variation between the two variables.

Similar to Olley and Pakes (1996), we can calculate: φ̂it = r̂it + (1 + 1
η̂ ) log(1 + xit) − β∗

l lit −
β∗
mmit − β∗

ooit, where r̂it are fitted values from the estimation of (10). To identify βk, we assume

3In the empirical analysis we used capital, labor, materials and outsourcing services as production factors. We

use the translog production function as a robustness check, see Appendix B.1.
4See, e.g., Atkeson and Burstein (2008). Moreover, market share is a sufficient statistics for market power in a

Cournot model. A fixed effect panel regression of market share on a proxy of marginal costs, which is discussed in

section 1.4, yields a statistically significant coefficient, equal to 0.12.
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that productivity follows a first-order Markov process: ωit = g(ωit−1, χit−1) + ξit, where χit is an

exit probability. The inclusion of exit probability addresses the attrition bias in the measurement

of productivity, discussed in Olley and Pakes (1996), among others. The χit is measured as a

predicted exit probability from an estimated non-parametric logit function of investments, demand

shocks, and third-order polynomials of production factors as regressors (without the cross terms),

all lagged by one period. The above considerations imply the following relationship, referred to as

the second-stage equation:

φ̂it = β∗
kkit −

1

η̂
zit + g

(
φit−1 − β∗

kkit−1 +
1

η̂
zit−1, χit−1

)
+ ξit, (11)

where η̂ is an estimate derived from the first stage equation (10).

The g(·) function in equation (11) is also unknown and is approximated non-parametrically

using a third-order polynomial. We estimate equation (11) using an iterative non-linear sum of

squares estimation technique, which results in a consistent estimate of β∗
k . This allows us to

calculate productivity as follows:

ωit = φit − β̂∗
kkit +

1

η̂
zit, (12)

from which we calculate supply shocks as ∆ωit

In empirical settings we estimate the production function parameters separately for 2-digit

NACE sectors.5 As Ackerberg et al. (2015) observed, firm-level datasets usually have considerable

attrition, which affects productivity. In our case, the exit rate for each year varies between 6% and

12%. We controll for the exit probability, approximated by fitted values of logit, which is estimated

using production factors, the proxy variable (i.e., investments), and demand shock as regressors,

all lagged by one period. In both the first and the second stage regressions, we apply the within

transformation to take account of the panel structure of the data.

1.3 Firm-level responses to supply and demand shocks

So far, we have discussed the identification scheme for demand and supply shocks. Here, we focus

on the identification of the firms’responses to these shocks. We use the local projections method

pioneered by Jordà (2005) in the vector autoregressions context, which is flexible enough to accom-

modate non-linearities and the panel structure of the data (see e.g., Auerbach and Gorodnichenko,

2013; Jordà et al., 2015). This approach is especially well-suited to our granular data, as the esti-

mation of a full microeconomic decision model, which is needed to calculate impulse responses, is

often impossible when using such data. The approach is also very simple when using shocks that

are already identified, as is the case in our analysis.

We use the following set of regressions to derive impulse responses from the granular data:

yit+h = αih + γt + βhshockit + ϵit+h, for h ∈ 0, 1, . . . ,H − 1, (13)

where h denotes the horizon of a response, yit+h is the response variable, and αih is the fixed

effect. We include the time effects γt in the specification, as they control for the business cycle,

generating common movements of response variables across a large fraction of firms. βh measures

an impulse response at a horizon h. It is directly estimated from the data; and, importantly, it

makes it easy to quantify the accuracy of the estimator. Moreover, this method is more robust

to misspecification, because it estimates a separate regression for each horizon h, instead of using

5We aggregated some sectors to address the convergence problems in the second step in equation (11) and

to avoid the problem of negative point estimates (insignificant) of capital elasticity in a limited number of less

capital-intensive sectors.
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the same set of coefficients from the assumed and potentially incorrect autoregressive specification

for y in calculating the responses analytically. In practice, to consistently estimate the covariance

matrix, it is crucial to account for heteroskedasticity and autocorrelation in panel models. Thus,

we 1) cluster errors at the firm level, and 2) use a consistent covariance matrix estimator first

introduced by Driscoll and Kraay (1998). Appendix B.2 shows the main results of our paper when

the set of estimation equations in (13) is augmented with a lagged dependent variable, as suggested

in Olea and Plagborg-Møller (2021).

1.4 Markups and proxies for prices

We identify markups using the methodology proposed by De Loecker and Warzynski (2012). We

choose materials as a base factor, thus the markup µit is defined as:

µit = βM
i

(
wM

it Mit

Rit
· exp(ϵit)

)−1

, (14)

where the expression in the parenthesis is a share of material costs wM
it Mit in the firm’s revenues,

corrected by the residual from the first-stage regression given in equation (10).

Our dataset does not allow us to calculate the responses of prices to the demand and supply

shocks, but we construct two proxies for prices, and use them in the calculations of the impulse

responses. We use the relationship pit = logµit +mcit, where µit is defined in equation (14). The

first proxy for marginal costs mcit is unit labor costs, (see, e.g., Sbordone, 2002). Thus, the proxy

for a firm-level price becomes pit = logµit + logWL
it − log

(
Qit

Lit

)
. Second, we use the cost function

derived in the firm’s cost minimization problem with the production function given in equation

(1), and with a Cobb-Douglas specification of the F (·) function. When we define the economies of

scale of a firm i as γi =
∑

j∈{K,L,M,O} β
j
i , then the cost function (measured up tu a constant) is:

Cit(Q,Ω,WK
it ,W

L
it ,W

M
it ,WO

it ) ∝
(

Qit

Ωit exp(ϵit)

) 1
γi ∏

j∈{K,L,M,O}

(
W j

it

) β
j
i

γi
(15)

where W j
it is a price of a production factor j, and βj

i are the estimates of equations (10) and (11).

We measure WM
it = WO

it =
P IC

jt

PGO
jt

, i.e., the relative price of intermediates to the price of output

in sector’s j (in which the firm operates). The firm-level wages WL
it are defined as an average

compensation of employees.6 The price of capital WK
it is calculated following the seminal work of

Jorgenson (1963) as a user cost of capital:

WK
it = UCCit =

P INV
jt

PGO
jt

(
bitroeit + (1− bit)iit −∆ logP INV

jt + δ
)
, (16)

where bit is the share of equities in the sum of the firm’s equities and liabilities, roait is the firm’s

after tax return on assets, and iit is the unit cost of liabilities, and δ is set at 0.07. Thus, we used

the average costs on the firm’s liabilities and the returns of the firms’ assets to measure the firm’s

rate of return. The firm’s (log) marginal costs is calculated as mcit = log ∂Cit(·)
∂Qit

.

2 Data and measurement

Our annual data cover an 18-year period (2002-2019), and include the financial reports and balance

sheets of almost all Polish enterprises with more than nine employees (in full-time equivalent

6We also calculate responses of a simpler version of the proxy for price, which is based on wages, output and

productivity only, hance we assume that prices of capital and materials are not affected by the shock. The results

are qualitatively similar.
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Table 1: Data trimming and coverage

initial demand final

No. of observations 928,168 855,924 772,275

Observation share 1.00 0.92 0.83

No. of firms 131,580 111,817 104,161

Firms share 1.00 0.85 0.79

Average spell 7.05 7.65 7.41

Output coverage 0.85 0.83 0.69

Employee coverage 0.83 0.79 0.78

Firm coverage 0.56 0.52 0.46

Source: own calculations and Eurostat data

positions). The data are collected by the Central Statistical Office, and comprise non-financial

enterprises from the agriculture, mining, manufacturing, construction, and market and non-market

service sectors (the latter covers only units from the enterprise sector), as well as a limited number

of enterprises in the agriculture sector.

The original data7 is an unbalanced panel of over 0.928 million observations – i.e., more than

131,000 firms were observed for an average of seven years (see Table 1) – while also containing

missing observations. The original data cover 56% of all firms with 10+ employees that are regis-

tered8, and they cover 83% of all employees of all registered firms with 10+ employees and 85% of

the total economy’s output. Thus, smaller firms are under-represented in our dataset.9

We have trimmed the original data to render them usable for further analysis. Around 15%

of the firms (8.2% of observations) did not have any inventories during the observation period.

In these cases, it is impossible to apply the identification scheme for the demand shocks. The

properties of the trimmed data are presented in the demand column in Table 1. The estimation

of the production function and the supply shocks is more demanding, and not all of the firms

in the sample reported usable data. The data on capital stocks and investments are especially

problematic, with relatively high shares of zeros or missing values. Zeros are problematic, as we

need to log most of the variables. Thus, we decided to replace zeros with ones in the analysis of

the production function10 in order to use as much information from the data as possible.

The properties of the final sample for which both demand and supply shocks are available

are presented in final column in Table 1. The final dataset has 0.772 million records based on

observations of more than 104,000 firms over an average of 7.4 years. The firms in our final dataset

represent 46% of all firms in Poland with 10+ employees, 78% of the country’s employees and 69%

of the economy’s global output.

Nominal output is measured as total revenues from production and from the sale of purchased

goods. The dataset contains information on the stock of inventories at both the beginning and the

end of the period. The dataset also allows us to use relatively disaggregated production factors:

i.e., labor input is measured as the firm’s employees, capital is measured as the firm’s tangible

fixed assets (buildings, land, machinery, and vehicles), and materials are measured as the sum of

7A similar dataset with shorter time coverage and slightly lower firm coverage was used by Gradzewicz (2021)

in the analysis of investment spikes.
8The firm registry also contains firms that are not active. Moreover, some smaller firms, mainly those employing

fewer than 50 employees, decided not to fill out the compulsory form, which is a statistical base for our data.
9The information on the total economy is taken from Eurostat databases with the acronyms: ‘bd 9bd sz cl r2’

and ‘nama 10 a64’.
10The unit in the data is 1000 PLN – approximately 255 USD – a very small amount compared to the scale of

even smaller enterprises.
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Figure 1: Density of targeted inventories λi and its relationship to the inventory-to-output ratio
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Notes: inventories/output is defined as a mean of the firm-level ratio of the end-of-period inventories and the output

produced, both measured in nominal terms.

purchases of materials used in the production process and purchases of commodities for resale.

We also use outsourcing outlays as a separate production factor, observing that the share of this

factor in total costs is rising, and these costs are functionally different from materials. In order to

construct real values from nominal values (when needed, as our approach addresses the problem of

a lack of price data for the firm’s output), we use the respective deflators from the sectoral national

accounts provided by Eurostat. Capital is deflated using the Eurostat sectoral data on values of

fixed assets in the current and previous period replacement costs, while investments (used as a

proxy variable in the control function approach) are deflated using the Eurostat sectoral data on

gross capital formation deflators. Market shares are calculated as a fraction of industry sales, with

the latter defined as a 4-digit NACE aggregation of sectoral sales (calculated using the original

data, before trimming).

3 Estimation results

Before we proceed to our main findings, we present some intermediate results from the estimation

that are worth highlighting. They concern the targeted inventory levels, the production function

parameters, and the properties of the shocks.

3.1 Targeted inventory levels

The estimation of equation (6) yields λ̂i, which is the targeted inventory level (measured as a

fraction of expected sales). The left panel of Figure 1 displays the density of λi. For over 95% of

the firms, the targeted inventory level is below 20% of expected sales, and the dominant values

are in the 12-13% range. The graph presents the kernel densities of all firms, and specially of the

non-constrained firms (and thus only of the firms that did not fail to meet the demand for their

products). The left panel of Figure 1 suggests that the approximation to the truncation problem

presented in equation (7) does not affect the density of λi.

The right panel of Figure (1) shows the scatterplot of λi and its closest (albeit imperfect)

directly observed counterpart: i.e., the mean of the firm-level ratio of the end-of-period inventories
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Figure 2: Densities of demand and supply shocks
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and the output produced, both measured in nominal terms. There is no clear pattern between the

two, and the correlation is significant but small (0.052). This indicates that the information that

λi holds is unique, and cannot be directly (and simply) derived from the data.

3.2 Production function parameters

Our baseline calculations assume the Cobb-Douglas production function with four factors, esti-

mated separately for the 2-digit NACE aggregations. The cross-sector average labor elasticity is

βl = 0.2, ranging from 0.013 in agriculture to 0.4 in the computer repairs. This range is com-

monly found in the literature. The average elasticities of materials and outsourcing, βm = 0.26

and βo = 0.15, respectively, sum up to 0.4, which is roughly in line with the values reported in

empirical studies. The capital elasticity βc = 0.023 is relatively small, on average, although the

variation is quite large, ranging from 0.001 in financial services11 to 0.11 in coal mining. The graph

with the densities of production function parameters is presented in Figure A.1 in the appendix.

3.3 Properties of demand and supply shocks

The identification procedure outlined in chapter 1 allows us to simultaneously derive demand

and supply shocks. As we mentioned in the introduction, demand and supply shocks are usually

identified at the macroeconomic level, assuming some distribution; usually a normal distribution.

In the identification scheme, we assume that at the firm level, shocks are (log)normally distributed.

As the distribution of firms approximately follows the power law, Gabaix (2011) showed that the

distributions of firm groupings and aggregate outcomes can have properties that differ from the

properties of firm-level distributions. Below, we will characterize the properties of the distributions

of the demand and supply shocks identified for all firms in our data.

Figure 2 presents the kernel densities, and Table 2 shows the moments and the positional

statistics of demand and supply shocks. The density of the demand shocks is pictured for all firms

(for which the calculation is feasible), and for the subgroup of non-constrained firms. Interestingly,

the shapes of the distribution of the two shocks differ considerably. The distribution of the demand

11As the dataset excludes firms classified into the sector of financial institutions, all of the firms in this sector are

classified into the sector of enterprises.
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Table 2: Properties of demand and supply shocks

mean sd skewness kurtosis q10 q25 q75 q90

demand shock zit 0.00 0.17 -12.55 411.08 -0.12 -0.03 0.06 0.11

supply shock ∆ωit 0.04 0.13 2.37 179.48 -0.07 -0.01 0.08 0.14

shocks exhibits negative skewness, whereas the supply shock distribution is almost symmetric. The

distribution of the demand shocks is centered at zero while the supply shocks are centered at 4%,

which indicates that demand shocks have redistributive effects whereas supply shocks have both

redistributive and growth effects. Moreover, significant differences are also observed in both the

dispersion and the thickness of tails. The distribution of demand shocks is much more dispersed,

less in terms of standard deviation (which is only 30% higher) than in terms of kurtosis, which is

more than 2.3 times higher than in case of supply shocks. The mixture of both negative skewness

and high kurtosis of demand shocks is apparent in the positional statistics: i.e., while the 75th and

90th percentiles are quite similar across the distributions (and are even higher for supply shocks),

the 10th and 25th percentiles are significantly lower for demand shocks.12

There are also noticeable differences in the persistence of the two shocks, measured as an

autoregression coefficient in a pooled regression. The persistence of supply shocks is low and is

even negative, at -0.05; although it is significantly different from zero (with a standard error equal to

0.001).13 By contrast, demand shocks are much more persistent: i.e., the autoregression coefficient

is 0.70 (0.001), and is thus slightly lower than that reported in Foster et al. (2008). Additionally,

the demand and supply shocks are almost orthogonal, as the correlation coefficient between the

two is -0.04. These findings show our assumptions regarding the different timings of the shocks are

reasonable (a high correlation would suggest that demand shocks as well as supply shocks affect

inventory changes). The correlation between the shocks calculated for each period separately varies

in time, and the time pattern of correlation is slightly anticyclical: e.g., the correlation with the

HP-adjusted log of sales is -0.24.

The next section will focus on the responses of various variables, most notably sales, to the

identified shocks. Here, we investigate the relationship between shock volatility and sales volatility.

Our methodological approach does not allow us to perform the variance decomposition exercise.

Instead, we use a simple statistic: namely, the ratio of a standard deviation of a shock to a standard

deviation of sales.14 Figure 3 presents the cross-firm distributions of these measures. In most firms,

the volatility of demand shocks constitutes a relatively small fraction of the overall sales volatility:

i.e., in half of the firms, the volatility of demand shocks is at most 3% of sales volatility; and in

only 13% of the firms, the volatility of demand shocks exceeds 10% of sales volatility. Combined

with a relatively large dispersion of demand shocks, these findings suggest that there needs to be

a substantial correlation between the volatility of sales and the volatility of demand shocks. This

is indeed the case here, as the slope of a simple regression15 is 1.3 with a standard error equal to

0.009.

The relative volatility of supply shocks is generally higher (as presented in Figure 3). In half of

the firms, the volatility of supply shocks constitutes at most 7.5% of sales volatility; whereas for

12It is worth emphasizing that the magnitude of the demand shocks is relatively large, as the size of about 10%

of the negative demand shocks exceeds 12% of sales. A similar pattern is found for the positive demand shocks.
13It is important to keep in mind that supply shocks are defined as ∆ωit, and, in turn, that the productivity ωit

is a highly persistent variable, with a persistence coefficient equal to 0.99. For reference, the persistence of log real

sales is 0.95. Foster et al. (2008) also found high persistence in the levels of productivity.
14The volatility of shocks and the volatility of sales are positively related, as presented in Figure A.2 in the

appendix.
15It can be interpreted as a sort of pass-through coefficient that reflects how much output volatility is, on average,

generated by shock volatility.
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Figure 3: The ratio of shock volatility to sales volatility
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a large fraction (35%) of firms, the volatility of supply shocks exceeds 10% of sales volatility. The

regression of the volatility of sales shocks on the volatility of sales yields a higher multiplier, 1.39

(0.01), suggesting a higher pass-through of supply shock volatility to sales volatility.

4 Firm responses to shocks

After discussing the properties of demand and supply shocks, we now focus on the dynamic re-

sponses of important variables to these shocks. As we discussed in section 1.3, we use linear

projections to identify an impulse-response function (IRF) based on the data. We decided to

calculate IRFs of a relatively large subset of variables in order to gain a comprehensive picture

of firm-level adjustments to either a temporarily higher demand for the firm’s products or to an

improvement in the firm’s productivity.

We have chosen nine indicators as response variables. In addition to real sales, we also present

the results for market share, displaying the firm’s outcomes relative to the industry. Moreover, we

calculate impulse responses for employment and investments to gauge the extent to which firms

are adjusting their factors of production. We also show the behavior of labor productivity (log of

value added per person employed), and how it translates into real average wages (calculated as the

compensation of employees over employment). Additionally, we estimate the responses of markups

in order to check if the shocks trigger the short-run changes in the firm’s monopoly power. As the

shocks should induce the opposite reactions of prices, we also calculate the impulse responses of

both proxies for prices, i.e., the ULC-based measure and the marginal-cost-based measure, which

are described in section 1.4.

4.1 Demand shocks

Figure 4 displays the responses of a set of variables to a one-period firm-level demand shock. A

positive demand shock triggers an increase in real sales. Interestingly, although the reaction of sales

to the shock is large on impact (see the discussion in the previous chapter for a reference regarding

the shock volatility), it exhibits almost no persistence. Although sales are significantly higher even

five years after the shock, the size of the response is very small. The increase in sales lifts the
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firm’s output more than that of its competitors, and the firm’s market share rises, but only in the

period of the shock. Higher sales in response to the shock translate into higher employment. A

substantial share of this additional employment is probably short-term, as the level of employment

drops a year after the shock. Employment returns to its initial level very slowly, staying slightly

elevated even 10 years after the shock. This pattern indicates that at least a portion of the initial

increase in employment is permanent, most likely because employment protection, which is quite

strong in Poland16, prevent firms from reducing their employment levels.

Figure 4: Responses to demand shocks
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Notes: The dark and light gray areas represent 90% and 95% confidence intervals, respectively. The horizontal

axis is expressed in years.

A positive demand shock triggers the firms to increase its investments. The firm’s purchases

of capital goods remain elevated levels for about four years, which increases the efficiency of its

16The various dimensions of the OECD’s Employment Protection Legislation index usually rank Poland among

the countries with relatively high labor protection.
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production processes. Hence, the firm’s labor productivity (measured as real value added per

employee) rises. It increases substantially in response to the shock (technically, sales – and hance

the value added – increase more than employment), and stays at an elevated level for four years

after the shock. But the increase in productivity is not permanent, and productivity eventually

returns to the pre-shock level. An increase in labor productivity translates into higher real wages.

However, higher productivity only partially translates into wage increases. The short-term pass-

through of productivity into wages is close to 0.1 and declines thereafter. Higher wages persist for

the first year only, then return to the pre-shock level, and eventually stay on a level slightly lower

than in the period before the shock.

Following an expansion in the demand for a firm’s products, the markups that the firm charges

rise. While the initially large increase in markups is short-lived, the markups are somewhat elevated

three to six years after the shock, and then return to the pre-shock level. Our observation that

markups increase in response to a positive demand shock is consistent with the findings of Nekarda

and Ramey (2020) who used macroeconomic data to identify markups and their responses to

demand shocks. Moreover, in line with sectoral oligopolistic models of the economy (see especially

Burstein et al., 2020), we find a positive correlation between markups and market share, conditional

on demand shocks.17

Finally, the evolution of both proxies for prices suggests that firm-level prices tend to rise after

a demand shock. However, the two measures do not provide a consistent picture of the inertia of

the price response. The ULC-based measure indicates a sharp and immediate increase of the price,

but the proxy stays on a slightly elevated level up to seven years after the shock. In contrast, there

is a higher inertia of an increase in price, measured using marginal costs. The mc-based proxy

indicates prices are above the initial level up to five years after the shock. Summing up, prices

tend to increase temporarily after the demand shock.

4.2 Supply shocks

We defined a supply shock as a one-period increase of the change in the TFP. Figure 5 displays

the path of TFP (Ωit) after the shock (estimated using the local projection method). There are

two observations that we need to highlight. First, the shock does not permanently shift the path

of TFP. Second, although the persistence of the shock is very low, TFP remains at an elevated

level for about six years.

The responses of our variables of interest to supply shocks are presented in Figure 6. The first

observation that emerges is that compared to the demand shocks, the firms’ responses to supply

shocks are much more persistent.

Sales increase after the supply shock, remain higher for about five years, and then return to

the pre-shock levels. The response of the market share closely mirrors that of sales. The shock we

identified and used in the estimation of impulse responses does not affect permanently the level of

TFP, thus sales and a the market share return to the level before the shock. It suggests that the

firm’s initial efficiency improvement vanishes after six years, driving down its market share and its

sales.

A positive supply shock drives the demand for production factors, leading to increases in

both employment and investment. In contrast to demand shocks, which triggered the highest

employment response in the short run, there is almost no short-term change in employment after

the supply shocks. However, employment rises substantially in the second period, and then slowly

returns to the pre-shock level, reaching it seven years after the shock. It appears that given

the labor market frictions and lags associated with finding new employees, firms adjust relatively

slowly to supply shocks. The changes in investments are concentrated in the second and third

17The unconditional correlation of markups and market share is 0.005.
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Figure 5: Response of TFP, Ωit, to a supply shock
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periods after the shock, which is also understandable given the time needed to adjust the firm’s

capital stock. Importantly, both labor and investments rise after a productivity shock, indicating

a conditional complementarity between labor and capital after a supply shock.

Labor productivity also rises after a supply shock, staying above the pre-shock level for about

five years. Likewise in the case of a demand shock, the increase in labor productivity only partially

translates into real wages, which are higher only immediately after the shock. Moreover, there is

a high dispersion of the evolution of wages after the supply shock across firms, and the confidence

bands associated with the estimate are wide. The pass-through of productivity into real wages is

again close to 0.1. The incomplete pass-through of productivity shocks to wages was also found

by Guiso et al. (2005), who attributed it to risk-sharing considerations.

Markups tend to rise immediately after the supply shock, and to decline shortly thereafter.

The adjustment is short-lived and four years after the shock the markups return the the pre-shock

level. Again, as predicted in the theoretical model of Burstein et al. (2020), markups tend to move

in line with the market share, at least in the short run. Moreover, our short-run results are again

consistent with the findings in Nekarda and Ramey (2020), who found using a macroeconomic

identification scheme that markups are procyclical, conditional on TFP shocks. However, they

found that the positive response of markups have relatively more inertia.

Finally, our results provide quite consistent evidence on the behavior of prices after the pro-

ductivity shock. The ULC-based measure declines immediately after the shock, and then for the

next two years it returns to the pre-shock level. The marginal-cost-based measure, which includes

not only the information on markups and wages, but also the costs of capital and intermediates,

does not change in the moment of the shock, and declines a year after the shock. The prices stay

on a reduced level up to five years after the shock and then return to the pre-shock level. Summing

up, prices tend to decrease temporarily after the supply shock.
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Figure 6: Responses to supply shocks
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Notes: The dark and light gray areas represent 90% and 95% confidence intervals, respectively. The horizontal

axis is expressed in years.

Conclusions

The aim of our study was 1) to identify shifts in the demand and productivity schedules of individual

firms; 2) to describe the properties of these shocks; and 3) to estimate the empirical granular

dynamic responses of variables like sales, employment, and investments to these shocks. We used

a comprehensive dataset from the Polish enterprise sector, that covers more than 80% of the

whole output and employment of the country’s enterprise sector. These data allowed us to draw

conclusions that are representative from a macroeconomic standpoint. However, as our data do not

contain information on physical output and prices, we used the identification scheme of demand

shocks proposed by Kumar and Zhang (2019). It extracts the unexpected demand shocks from

the time variation of inventories and sales. The direct observation of demand shocks also helped

us to address the problematic issues in the production function estimation implied by the lack of
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price data under imperfect competition. Thus, in the control function approach to the estimation

– which is discussed extensively in, for example Ackerberg et al. (2015) – we controlled for the

heterogeneity of demand changes, as recommended by Doraszelski and Jaumandreu (2021). We

identified the dynamic responses of a set of variables to temporary demand and supply shocks using

a projection method pioneered by Jordà (2005). To our knowledge, our study is the first attempt

to identify dynamic impulse responses using a fully granular identification scheme. Moreover, we

use the information from the estimation of the production function to construct the proxies for

individual prices and we measure their responses to the two shocks.

We showed that although the distributions of the two shocks have quite regular standard

deviations, their tails are very fat. The two distributions also differ in terms of skewness; i.e., the

productivity shocks are approximately symmetrically distributed, whereas the demand shocks are

negatively skewed. Moreover, the demand shocks are persistent, while the supply shocks are not.

The empirical analysis revealed that the changes in firms’ outcomes in response to productivity

shocks are much more persistent than those in response to demand shocks. Demand shocks result

in short-lived increases in output, market share, productivity, real wages, and markups; and to

increases in investments, and employment for a couple of periods. Firms’ reactions to supply

shocks are in most cases qualitatively similar, but they are more persistent. Our analysis showed

that prices tend to increase temporarily after demand shocks, and to decrease temporarily after

the supply shock, as predicted by theoretical models and found by Pozzi and Schivardi (2016) in a

firm-level analysis. Moreover, regardless of the nature of the shock, the resulting increases of labor

productivity only partially translate into higher wages.

The differences we found in the persistence of both shocks and responses to shocks are consis-

tent with the results of many macroeconomic models (in which the persistence of the technology

shocks is usually assumed in the calibration, like, e.g., in the canonical DGSE models, see Smets

and Wouters, 2003). The positive reactions of output and demand for production factors we ob-

served are also consistent with the findings of many macroeconomic models. In addition, other

observations we made are consistent with assumptions that are frequently found in macroeconomic

models. In particular, our finding that markups increase after a productivity shock suggests that

prices are sticky, as rising productivity does not fully translate into prices. By contrast, the limited

impact of both productivity and demand shocks on wages we found is consistent with nominal wage

rigidities. Moreover, the sluggish response of employment to both types of shocks points to the

importance of labor market frictions, which are, for example, emphasized in search models.
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Appendices

A Additional graphs

Figure A.1: Cobb-Doglas elasticities (cross-sectional dispersion)
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Figure A.2: Sales volatility and demand (right panel) and supply (left panel) shock volatility
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B Robustness of the main results

B.1 The identification of supply shocks

The identification scheme used to detect shocks in the data leaves more room to maneuver in

choosing details of econometric procedure for productivity shock than for demand shocks. Here,

we present our main results limited to the impulse responses of the most important variables (due

to space considerations), with important changes in the identification scheme of the supply shock:

1/ using the translog production function instead of Cobb-Douglas, and 2/ using the Perpetual

Inventory Method (PIM) to measure capital (in both cases, holding the other elements of the

identification scheme constant and identical to the baseline case).

Figure B.1: Robustness: responses of log employment, log wage and log sales to supply shocks in

the benchmark Cobb-Douglas case versus translog and PIM capital
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Notes: Cobb-Douglas is used in the baseline; translog – unrestricted coefficients translog production function; PIM

– Cobb Douglas production function with capital calculated using the perpetual inventory method.
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Table B.1: Robustness - properties of supply shocks

supply shock mean sd skewness kurtosis q10 q25 q75 q90

baseline 0.04 0.13 2.37 179.48 -0.07 -0.01 0.08 0.14

translog 0.03 0.11 3.90 342.82 -0.05 -0.01 0.07 0.12

PIM 0.03 0.12 0.53 68.05 -0.07 -0.01 0.08 0.13

Notes: Cobb-Douglas is used in the baseline; translog – unrestricted coefficients translog production function; PIM

– Cobb Douglas production function with capital calculated using the perpetual inventory method.

In order to check the robustness of our results for the shape of the production function we

assume an unrestricted translog with all squared and cross terms for all production factors. The

parameters are estimated separately within 1-digit NACE groupings, using fixed effects (within

transformation) in the identification. Most of the parameters are identified in the first step of the

control function approach, with only linear and square capital terms left for the second stage. The

first column of Figure B.1 shows the impulse responses of log employment, wages, and sales to

supply shocks identified using the translog function, compared with the benchmark Cobb-Douglas

case in the second column. The comparison shows that our main results are robust to the shape

of the production function, which can be attributed to the high correlation of both measures of

supply shocks (0.897). Table B.1 shows that most of the properties of the distributions of shocks

in the translog case are similar to the baseline Cobb-Douglas case.

Using the perpetual method requires: 1/ a starting point for capital (we use the value of

capital in the first period for the company in the data), 2/ depreciation rates (we use separate

depreciation rates for buildings, machinery, and vehicles that follow Fraumeni, 1997), and 3/ a

long and continuous time series of investments. We tried to minimize the loss of observations

generated by short spells of missing data due to companies being out of the sample for one or two

years. In these cases we imputed investments using the mean values from the adjacent periods.

Despite these efforts, the effective number of observations of capital decreased by 17%, and the

effective number of supply shocks identified declined by 13.2%. The correlation of supply shocks

identified using the PIM definition of capital with the supply shocks in the baseline case proved to

be high, at 0.854. Table B.1 indicates that most of the properties of the distributions of the two

types of shocks were similar. The third row of Figure B.1 shows that the impulse responses hardly

changed. Thus, our main results are robust to the change in the definition of capital.

B.2 Controlling for the lagged dependent variable

A recent analysis by Olea and Plagborg-Møller (2021) showed that controlling for the lagged

dependent variable leads to a more robust inference in applied local projections. This means that

a set of equations defined in (13) becomes:

yit+h = αih + γt + ρyit−1 + βhshockit + ϵit+h, for h ∈ 0, 1, . . . ,H − 1, (17)

The augmentation is particularly relevant with highly persistent data and lag-augmented local

projections with normal critical values that are asymptotically valid with both stationary and non-

stationary data, and that also over a wide range of response horizons. Figure B.2 compares the

impulse response functions in the baseline case with the impulse response functions derived with

lag-augmented local projections, and shows that the general shape of responses is not affected by

the assumptions of the estimation method.
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Figure B.2: Robustness: responses of log employment, log wage and log sales to supply and demand

shocks in the baseline specification and in the specification augmented for the lagged dependent

variable
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Notes: The first and third columns show the responses of selected variables in the baseline case, while the second

and the fourth columns show the responses of selected variables in the specification augmented for the lagged

dependent variable, as suggested in Olea and Plagborg-Møller (2021).
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