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Abstract

We propose a theoretical stochastic set-up for a panel of contributors to a volume
weighted raw money market index, which is the main contribution of this research. ‘The
hypothetical problems with: changes in the panel’s composition as well as the irregu-
larity of daily contributions may strongly influence the utility of a final benchmark to
be used in medium and long term loan contracts, especially with retail clients. Our
focus is on several classes of benchmarks’ formulae that are derived from this raw index
and allow for some confinement of the mentioned drawbacks while decreasing quality
measured by other criteria (goodness of fit). The set of classes include: the geomet-
ric time weights with different smoothing parameters and observation window’s length
used on the original raw index, stabilisation of the raw index in bands, rolling window
volume weights rebalancing and finally the geometric time weights performed on log-
transformed index (log-raw index is calculated from volume logarithms). The potential
trade-offs in such a benchmark’s stabilisation efforts are shown.

JEL: G12, G13, E43
Keywords: financial market indices, interest rate benchmarks, compound Poisson pro-
cess, index volatility reduction, transaction based benchmarks

1 Introduction

At the present time, after so-called LIBOR scandal1 and its consequences, there is a great

debate on new money market benchmarks design. Details of this historical discussion are out

of scope of this research but it suffices to say that the key change of the paradigm proposed

and broadly agreed upon is that money market benchmarks should be real transaction based

rather than hypothetical questionnaire’s results averaging as it was and still is the case2.
1cf.[2], [1] for a comprehensive overview of the scandal with a special focus on the manipulation techniques

and their scale
2cf.[4] : Chapter 2, Quality of the Benchmark: The data used to construct a Benchmark should be based

on prices, rates, indices or values that have been formed by the competitive forces of supply and demand and
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Even without precise new recipes ready to be implemented now it is possible to consider

some practical aspects that may arise when dealing with a panel of banks contributing their

real transactions to a repository and calculation agent. Adding to dilemmas of benchmarks’

reform elaborated by [5] our main focus here is to propose a stochastic model of a panel and

list some solutions to potential prohibitive volatility of volume weights in such benchmarks.

2 Stochastic set-up of a panel

Lets assume throughout this article that there exists a repository of all transactions per-

formed in the money market of a certain tenor (i.e. 3M), to which every bank i ∈ N in

a chosen panel P contributes its transactional deposit information (rates ri,j,t and volumes

vi,j,t) on daily basis. We assume every bank may have Mi,t transactions to report on a

certain day t and j ∈ Mi,t is a particular deal’s counter in a day t of i-th panellist. Based on

that information a hypothetical calculation agent works out the current benchmark value

according to pre-agreed set of rules and broadcasts it publicly.

For the sake of simplicity, we use daily aggregated amounts of different banks as building

blocks for a hypothetical index calculation, defined as follows:

Ri,t =

∑Mi,t

j=1 ri,j,tvi,j,t∑Mi,t

j=1 vi,j,t
Vi,t =

Mi,t∑
j=1

vi,j,t (1)

Furthermore we assume that the simplest natural first choice benchmark (which we use as a

reference and starting point) would be a pure volume daily weighted average of rates defined

as follows3:

Irawt =

∑N
i=1Ri,tVi,t∑N

i=1 Vi,t

(2)

With the aim of properly modelling a certain panel’s index behaviour, we may assume now

that the weighted rate Ri,t contributed on a day t by the i-th panellist and corresponding

aggregated volume Vi,t are both stochastic processes. We propose the following approach:

1. there exists a notional market rate known to each panellist who sets its deposits rates

negotiation policy with reference to it. This market rate follows an arithmetical Brow-

nian motion process with some mean µmkt and variance σmkt, starting at Rmkt,0

2. the above-mentioned policy (∀i) is reflected in spreads si,t to the hypothetical market

rate, which also follow arithmetical Brownian motion processes with means µspr,i and

be anchored by observable transactions entered into at arms length between buyers and sellers in the market
for the Interest the Benchmark measures.

3in asset markets it is commonly referred to as VWAP - volume weighted average price
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variances σspr,i, starting at si,0. We assume no correlation between any of the Brownian

motions.

3. hence the weighted rate may be described as: Ri,t = Rmkt,t + si,t

4. each aggregated volume is normally distributed with some µvol,i and variance σvol,i or

follows compound Poisson process (of normally distributed variables) with parameter

λ∗
i . For the sake of simplicity we define4:

λi =

λ∗
i for compound Poisson volume processes

0 otherwise
(3)

5. share of panellists with irregular volumes (compound Poisson) in the panel may be

treated as a deep model parameter γ = γ(P) ∈ [0, 1].

In this approach a panel P· on a market is described by set of parameters: Ξ(P) =

{N, γ, µmkt, σmkt, Rmkt,0, (µspr,i)
N
i=1, (σspr,i)

N
i=1, (si,0)

N
i=1, (µvol,i)

N
i=1, (σvol,i)

N
i=1, (λi)

N
i=1}.

If we now imagine that each of the parameters may be also drawn from some distributions

(i.e uniform distributions over typical range a certain parameter is expected to be equal to)

we may refer to such defined panel as a stochastic object (world) which we will use in the

Monte Carlo experiments described later. Technically, we have to add two more parameters,

namely: number of simulated panels SP and number of paths simulated for each panel ST ,

hence we propose the following nomenclature for a stochastic panel object: PΞ,SP ,ST
and a

stochastic panel’s instance after i-th MC simulation: PΞ,SP ,ST ;i.

Such characterised stochastic panel has a reach enough structure to accommodate for some

worlds that produce excessively volatile raw indices Irawt , which creates good grounds for

testing alternative benchmarks’ formulae. Volatility of a raw index may be high in this

set-up due to:

1. high share (γ) of panellists with irregular volumes

2. high variances of spreads (σspr,i) of the panellists with exceptionally high or low staring

spreads and trends (µspr,i)

3. high variances of volumes (σvol,i) of different panellists, especially the ones with un-

usually high or low spreads to the hypothetical market rate

4. high hypothetical market rate variance (σmkt).
4defined as number of days with nonzero reported volume to all days in a specified interval
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3 Benchmark’s classes

In this section we list and assess several classes of money market benchmark’s without

an ambition of conducting exhaustive classification. These are examples of some possible

approaches to index stabilisation5.

3.1 Time weighted indices

The first class builds on the idea of a moving average of a fixed length (window) but uses

unequal time weights. Usually, the fading monotonic weights are chosen, meaning that

today’s raw index has higher weight in the benchmark than the oldest in a window. This

method obviously aims at benchmark’s volatility reduction with some costs in tracking error

measure on the other hand. Particular selection of weights with a certain class is a matter

of choice in two dimensional space (error measure vs volatility measure).

3.1.1 Arbitrary weights

One possibility is that the final user (beneficiary) or its agent chooses a time window K and a

set of weights W = {w0, w1, ..., wK−2, wK−1 : w0 ≥ w1 ≥ ... ≥ wK−2 ≥ wK−1 ∧
∑K−1

d=0 wd =

1} she thinks are appropriate for the usage in mind (i.e WK=5 = {0.3, 0.25, 0.2, 0.15, 0.1},
where the weight 0.3 corresponds to the most current observation).6 Benchmark formula of

this class reads:

Iarbt (WK) =

K−1∑
d=0

wdI
raw
t−d (4)

Since this class suffers from infinite many degrees of freedom it is useless in contributing to

our research on trade-offs but it leads to more compact class described below.

3.1.2 Geometric weights

We may want to choose smoothing parameter 0 < α < 1 and the window size K of our

hypothetical benchmark to get the weights that are the result of a formula evaluation with

just these two parameters. With this aim we set the weights proportional to geometric

progression (to be precise: reversed geometric progression) and use a formula for the sum

of finite geometric series to get:

Igeot (α,K) =

K−1∑
d=0

α(1− α)d+1

1− (1− α)K−1
Irawt−d (5)

5we skip trivial classes as moving averages or arithmetic mean of all rates contributed
6which was the case for the draft proposal of a benchmark derived from Polish money market repository

SMRP during working meetings held in 2018
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This class is easily implementable for simulations and may be used in experiments when

iterating over some space of smoothing parameter α ∈ A and size of the window K ∈ K.

Some examples of the weights’ structure depending on these two parameters are shown in

Figure 1. In our experiments we used the following sets:A = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}

K = {5, 10, 20, 40, 50, 60}
(6)

The lower α the smoother (flatter) weights it produces. As we will see the benchmarks with

high values of α have similar characteristics to the original raw index they are derived from

because the weights diminish rapidly within the given window as a day counter d increases.

3.2 Rolling window’s average weight indices

Another class arises from the concept of stabilisation of weights used in the calculation of

raw index in a day. As in the previous class we choose some window size K over which

period we would like to stabilise volume weights. When on a certain day there is no data

to report from a contributor we simply have to reweigh the scheme to include only the ones

with nonzero contribution. It is sensible to choose K ≥ 252
mini λ∗

i
if the parameters λ∗

i express

a fraction of expected occurrences of nonzero volume days in a business year consisting of

252 days. This condition’s satisfaction would increase chances that at least one nonzero

volume day of a certain contributor i occurred within the window frame and hence the

effective weights are more stable. Impact of a volatility of volume is therefore reduced as

well. Mathematical formula describing an index from this class follows:

Irollt (K) =

∑N
i=1Ri,t

(∑t
s=t−K+1 Vi,s

)∑N
i=1

∑t
s=t−K+1 Vi,s1{Vi,T0

̸=0}
(7)

3.3 Indices based on logarithmic transformation of volume

Next idea of reducing the impact of huge swings in volume and impact of a one-off massive

transactions is to take natural (or decimal) logarithms of volumes before plugging them into

raw index calculation:

I ln,rawt =

∑N
i=1Ri,t lnVi,t∑N

i=1 lnVi,t

(8)

This trick yields in more equal treatment of every deal with less influence of transacted

volume (i.e. 1.000.000 and 100.000 transacted translate approximately into 0.5454 and

0.4545 weights). When implementing this transformation on real or simulated data, one

should mind the fact that if the volume traded falls into a band of [0, 1] one shall apply
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some modification (i.e cut it off at 1) to avoid negative volume weights.

It is reasonable to mix that class with geometric weights, potentially creating even smoother

and less volatile benchmarks:

I ln,geot (α,K) =

K−1∑
d=0

α(1− α)d+1

1− (1− α)K−1
I ln,rawt−d (9)

3.4 Crawling band indices

The last (but certainly not least) class we are considering is based on the concept of filtering

the raw index within a given band width 2b. The iteration algorithm is simple (T - set of

counters in the time series):

1. start Ibandt (b) = Irawt

2. for all t+ i ∈ T:

if : (Irawt+i > Ibandt+i−1(b) + b or Irawt+i < Ibandt+i−1(b)− b) then: Ibandt+i (b) = Irawt+i ,

else: Ibandt+i (b) = Ibandt+i−1(b)

As a band width choice is solely the final user’s arbitrary decision we may argue that this kind

of filtration may be performed without any authority supervising it or physically calculating

it, provided that the underlying raw index is. Once crawling band class index is implemented

we will have a piecewise constant benchmark, visually less volatile but if standard deviation

is applied as a volatility measure it is easily verifiable that in fact it is on the contrary.

4 Measures of volatility and tracking error

The main assumption for further analysis and experiments is that the raw index calculated

daily from volume weights is too volatile from a hypothetical user’s perspective, be it a

trader in a bank or a borrower with indexed loan to that raw benchmark. It is obvious

that any stabilisation of a raw index (starting with simple moving averages) will decrease

volatility of a new benchmark and increase its tracking error measure to the original raw

index[3]. In this section we define the spaces of these trade-offs.

4.1 Standard deviation

Naturally, first choice of a volatility measure is a standard deviation, especially from financial

derivatives traders’ point of view. Indices that have very low standard deviation (basically

fixed for a long time) tend not to attract attention of traders as they suppose to make

money from the realised volatility [3]. On the other hand, extreme and ephemeral spikes
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in standard deviation of an underlying instrument also bode ill for trading development,

because of lack of homoscedasticity in the index process.

In our experiments we will use classical standard deviation (SD) measure calculated for the

longest possible common calendar window for the whole group of alternative benchmarks

we will be testing.

4.2 Mean average change

From the perspective of a borrower standard deviation is not the best measure of volatility

she cares about. We may assume that the index of her choice would be the one that is

semi-fixed in some longer than one day periods. That would not only increase predictability

of financial costs in the first loan period for the borrower, but also limit the feeling that

index is a draw from a lottery, hence random and potentially questionable. We believe that

one of the measures such an index user would consider is a mean average change (MAC) of

a benchmark I ·t as defined below:

MAC(I ·s; [t, t+K]) =
1

K

t+K−1∑
s=t

|I ·s+1 − I ·s| (10)

4.3 Mean absolute error

One of the possible cost measure of our benchmark’s stabilisation efforts may be a mean

absolute error (tracking error), formula for which is proposed below.

MAE(I ·s; [t, t+K]) =
1

K + 1

t+K∑
s=t

|I ·s − Iraws | (11)

The natural expectation is that the longer the period we are averaging over, the higher MAE

of our index because it is not responding to much more volatile raw index, hence the absolute

error cumulates. We follow findings of [6] and use MAE as more natural and unambiguous

measure of average error, skipping RMSE (root-mean square error).

4.4 Trade-off spaces and optimal sets

We propose to compare the results of Monte Carlo simulations of different benchmarks’

characteristics in two simple pairs: mean absolute error against standard deviation and

mean absolute error against mean average change. We expect that the plots of average

values of the measures used (MAE, SD, MAC) in these two paired spaces exhibit downward

slope, hence allowing for an introduction of an optimal trade-off sets concept. An index

belongs to that set if there is no better index in that space, were by better we mean the one

with smaller volatility measure value and smaller tracking error measure than all the other
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indices in that particular space. Formal definition of the optimal set OI,P for a given list of

tested indices I and stochastic panel PΞ,SP ,ST
is proposed below:

OI,P,MAE,SD =

{
I · ∈ I : ∄I

′
s.t. MAE(I ·) > MAE(I

′
) ∧ SD(I ·) > SD(I

′
)

}
(12)

and

OI,P,MAE,MAC =

{
I · ∈ I : ∄I

′
s.t. MAE(I ·) > MAE(I

′
) ∧MAC(I ·) > MAC(I

′
)

}
(13)

where MAE,MAC,SD are averages over their underlying values in SP simulations of

panel’s PΞ,SP ,ST
characteristics with ST path simulations for each panel drawn.

5 Monte Carlo experiments set-up

In our experiments we have taken into consideration the following set of benchmarks I from

five classes we discuss in section 3:

1. raw index RWA7

2. arithmetical mean of contributed rates from a certain day AA

3. from arbitrary weights: SMRPindx with WK=5 = {0.3, 0.25, 0.2, 0.15, 0.1}

4. from geometric weights: 10 indices of a form G_K:α with window sizes:

K = {5, 5, 5, 5, 5, 10, 20, 40, 50, 60} and smoothing parameters:

A = {0.9, 0.8, 0.7, 0.6, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01} respectively8

5. from mixture of geometric weights with logarithmic transformation of volumes: 6 in-

dices of a form L_K:α with window sizes: K = {5, 10, 20, 40, 50, 60} and one smoothing

parameter: α = 0.01 respectively9

6. from rolling window’s average weights: 6 indices of a form M_K with window sizes:

K = {5, 10, 20, 40, 50, 60} respectively10

7. from crawling band indices: 3 indices of a form S_b with half-band sizes b ∈ B =

{0.0005, 0.001, 0.002} 11

7as defined in section 2
8referred to as: G_5:0.9, G_5:0.8, G_5:0.7, G_5:0.6, G_5:0.01, G_10:0.01, G_20:0.01, G_40:0.01,

G_50:0.01, G_60:0.01
9referred to as: L_5:0.01, L_10:0.01, L_20:0.01, L_40:0.01, L_50:0.01, L_60:0.01

10referred to as: M_5, M_10, M_20, M_40, M_50, M_60
11referred to as: S_0.0005, S_0.001, S_0.002
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8. raw index on log-transformed volumes RWAlog12

As we wanted to perform simulations within reasonable time (approx. 1 hour per stochas-

tic panel), we have chosen number of panels randomly generated from stochastic object

PΞ,SP ,ST
to be SP = 100 with ST = 2500 paths (one business year long - 252 timesteps per

year) simulated for each panel.13

We have used two sets of meta-parameters Ξ1 and Ξ2 which deliberately differ from each

other but the treatment of parameter λ responsible for the volume frequencies and indirectly

for the share of irregular contributors in a panel. The set of common meta-parameters for

both Ξ and their corresponding uniform distributions’ parameters are:

1. number of contributors: N ∼ U(5, 20)

2. hypothetical market rate behaviour: µmkt ∼ U(−0.01, 0.01), σmkt ∼ U(0.001, 0.004),
Rmkt,0 ∼ U(0.015, 0.1)

3. contributors’ spread to market behaviour: (µspr,i)
N
i=1 = [0], (σspr,i)

N
i=1 ∼ U(0.001, 0.008),

(si,0)
N
i=1 ∼ U(−0.0035, 0.0035)

4. contributors’ volumes behaviour: (µvol,i)
N
i=1 ∼ U(500, 10000), (σvol,i)Ni=1 ∼ U(200, 3000)

In the set Ξ1 we used (λi)
N
i=1 ∼ U(52, 1095), which translates to ≈ 30% share of irregu-

lar contributors and in the set Ξ2 we took (λi)
N
i=1 = [0] for entirely regular contributors

stochastic panel.

6 Results

The results of such set Monte Carlo experiments are listed in Table 1 and presented in

Figures 2, 3, 4, 5. For the first set of meta-parameters we have the following optimal set in

MAE × SD:

OI,PΞ1,100,2500,i=1,MAE,SD =
{
RWA, G5 : 0.9, G5 : 0.8, G5 : 0.7, G5 : 0.6,

G10 : 0.01, G20 : 0.01, G40 : 0.01, G50 : 0.01, G60 : 0.01,

L20 : 0.01, L60 : 0.01,M5,M10,M20,M40,M50,M60

}
Hence we have 18 out of 29 tested indices in the optimal set constituting a trade-off space for

choices between volatility and tracking error for the benchmark potential user and beneficia-

ries. The dominated indices here are:
{
AA,RWAlog, SMRPindx, G5 : 0.01, L5 : 0.01, L10 :

12as defined in subsection 3.3
13implementation in Python with Numpy and Scipy modules
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0.01, L40 : 0.01, L50 : 0.01, S0.0005, S0.001, S0.002

}
. Interestingly, the fact that crawling band

indices seldom change does not translate into lower standard deviation, because quadratic

function involved in its calculation is convex. Also majority of the smoothed log-volume

weighted indices lay outside the optimal set. It is worth mentioning at this stage that the

choice of smoothing parameters in geometric weights classes is intended to frugally include

only the indices that lead to meaningful results. There was no point of including whole

range of high α parameters into longer and longer windows because they produce pretty

much the same results in that space. Extending window frame length for highly skewed (to-

wards latest observation) time weights does not change dramatically the value of an index

nor its volatility nor tracing error. Only much smoother weighting schemes (i.e.: α < 0.05)

differentiate the results when time windows are longer.

For the stochastic panel with no irregular contributors (Ξ2) in the same space MAE × SD

the optimal set is exactly the same although the position of the whole set is parallel shifted

to the left (cf. Figure 6).

In the MAE × MAC space the size of the optimal set is larger by 3-4 items, leaving

behind only:
{
AA,RWAlog, SMRPindx, L5 : 0.01, L10 : 0.01, S0.001, S0.002

}
for Ξ1 and{

AA,RWAlog, SMRPindx, L5 : 0.01, L10 : 0.01, S0.0005, S0.001, S0.002

}
for Ξ2. The compari-

son of the two optimal sets in this space is slighly different than in MAE×SD. The indices

with longer window size than 10 seem to produce very alike results, whereas smaller window

indices show much higher differentiation (Figure 7).

7 Conclusions and further research

In general, greater window size results in some standard deviation’s reduction in all con-

templated indices, whereas mean average change is reduced much quicker, reaching an area

in which further increase of K does not yield in volatility decrease but the error is growing

faster. That area falls into K ∈ [10, 20].

The indices based on log-volume transformed weights with geometric smoothing rarely be-

longed to optimal sets in our experiments, usually being dominated by some member of

pure geometric weight indices with a longer window and the same smoothing parameter.

It is worth mentioning that log-volume transformation always helped to reduce volatility

measure values but at a cost that forced these benchmarks outside an optimal trade-off sets.

The crawling band indices examined in the two trade-off spaces did not provide encourage-

ment for their extensive usage, as they do not help to reduce standard deviation (in fact

they increase it) and their help in reducing MAC is significant but not enough to beat other

indices from other classes.
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The rolling window’s average weight benchmarks proved to be promising, as they usually

were members of our optimal sets beating arbitrary weight index (SMRpindx ), but the in-

crease in window size did not translate into major SD or MAC reductions.

The effective choice of benchmarks within the optimal trade-off sets depends on the per-

spective and the objectives of a final beneficiary i.e. trader in a bank hedging its funding

costs, a retail mortgage borrower on a floating reference rate or even the monetary and

regulatory authorities. We proposed flexible environment to test benchmark formulae in

hypothetical panel’s combinations. Using that set-up we are able to tell if we have found

optimal benchmark within contemplated list or not. Having the optimal trade-off sets we

may try to compare it with some budget line i.e. slope of cost to volatility trade-off which

should yield in finding one benchmark given our preferences is optimal.

Further research may be also conducted when experimenting with correlation between Brow-

nian motions in the stochastic panel model (between spreads and volume) as well as micro-

modelling the transactions within one contributor’s data. The real data from a deposit rate

repository would also give rise to further calibration of stochastic panel model.
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8 Appendix

Figure 1: Geometric weights’ structure depending on parameter α and window size K
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Table 1: Results of Monte Carlo experiments with stochastic panels PΞ1,100,2500 and
PΞ2,100,2500 for a set of indices I

PΞ1,100,2500,i=1 PΞ1,100,2500,i=2 PΞ2,100,2500,i=1 PΞ2,100,2500,i=2

SD MAE MAC MAE SD MAE MAC MAE
AA 0,0015674 0,0007588 0,0001472 0,0007717 0,0014173 0,0006026 0,0001518 0,0006101

RWA 0,0017518 0,0000000 0,0006831 0,0000000 0,0015132 0,0000000 0,0004579 0,0000000
RWAlog 0,0016193 0,0005586 0,0003729 0,0005594 0,0014211 0,0005019 0,0001781 0,0005063

SMRPindx 0,0016210 0,0005356 0,0001756 0,0005298 0,0014434 0,0003801 0,0001276 0,0003790
G_5:0.9 0,0017246 0,0000678 0,0005872 0,0000674 0,0014991 0,0000449 0,0003961 0,0000445
G_5:0.8 0,0017016 0,0001295 0,0005033 0,0001287 0,0014870 0,0000864 0,0003411 0,0000857
G_5:0.7 0,0016816 0,0001865 0,0004281 0,0001854 0,0014762 0,0001254 0,0002916 0,0001244
G_5:0.6 0,0016641 0,0002396 0,0003608 0,0002381 0,0014668 0,0001621 0,0002472 0,0001610
G_5:0.01 0,0016191 0,0004689 0,0001573 0,0004645 0,0014422 0,0003282 0,0001160 0,0003271
G_10:0.01 0,0015864 0,0005462 0,0000884 0,0005373 0,0014200 0,0004023 0,0000702 0,0004038
G_20:0.01 0,0015513 0,0006529 0,0000535 0,0006354 0,0013902 0,0005113 0,0000462 0,0005182
G_40:0.01 0,0015018 0,0008312 0,0000360 0,0007981 0,0013425 0,0006893 0,0000335 0,0007078
G_50:0.01 0,0014811 0,0009132 0,0000326 0,0008727 0,0013218 0,0007686 0,0000309 0,0007930
G_60:0.01 0,0014625 0,0009918 0,0000304 0,0009440 0,0013028 0,0008433 0,0000292 0,0008737
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M_5 0,0016316 0,0004254 0,0002155 0,0004253 0,0014550 0,0002738 0,0001836 0,0002704
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S_0.002 0,0017960 0,0006924 0,0001776 0,0006896 0,0015640 0,0006903 0,0000646 0,0006929
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Figure 2: Trade-off space MAE × SD of stochastic panel PΞ1,100,2500,i=1
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lower subplot represents a zoomed area of congestion on the upper pane
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Figure 3: Trade-off space MAE × SD of stochastic panel PΞ2,100,2500,i=1
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Figure 4: Trade-off space MAE × MAC of stochastic panel PΞ1,100,2500,i=2
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Figure 5: Trade-off space MAE × MAC of stochastic panel PΞ2,100,2500,i=2

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
MAC

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

M
AE

AA

RWA

RWAlog

SMRPindx

G_5:0.9
G_5:0.8

G_5:0.7
G_5:0.6

G_5:0.01

G_10:0.01

G_20:0.01

G_40:0.01

G_50:0.01

G_60:0.01

L_5:0.01

L_10:0.01

L_20:0.01

L_40:0.01

L_50:0.01

L_60:0.01

M_5M_10M_20M_40M_50M_60

S_0.0005

S_0.001

S_0.002

0.000150 0.000155 0.000160 0.000165 0.000170 0.000175 0.000180 0.000185 0.000190
MAC

0.00022

0.00024

0.00026

0.00028

0.00030

M
AE

M_5

M_10

M_20
M_40M_50M_60

lower subplot represents a zoomed area of congestion on the upper pane

17



Figure 6: Optimal sets compared in MAE × SD space
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Figure 7: Optimal sets compared in MAE ×MAC space
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