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Abstract

We develop an analytical framework to study global identification in structural models

with forward-looking expectations. Our identification condition combines the similar-

ity transformation linking the observationally equivalent state space systems with the

constraints imposed on them by the model parameters. The key step of solving the iden-

tification problem then reduces to finding all roots of a system of polynomial equations.

We show how it can be done using the concept of a Gröbner basis and recently developed

algorithms to compute it analytically. In contrast to papers relying on numerical search,

our approach can prove whether a model is identified or not at a given parameter point,

explicitly delivering the complete set of observationally equivalent parameter vectors.

We present the solution to the global identification problem for several popular DSGE

models.
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1 Introduction

Parameter identification is one of the primary concerns of structural macroeconomic modeling. In

the context of traditional simultaneous equations systems, the essence of the problem and its treat-

ment has already been formalized in the 1940s, mainly by various authors connected to the Cowles

Commission for Research in Economics (see e.g. Koopmans, 1949). In recent decades, this class of

purely backward-looking models has been gradually replaced, in both academic circles and policy

making institutions, by the so-called dynamic stochastic general equilibrium (DSGE) models. In

these mathematical constructs, the dynamics is driven by unobserved stochastic processes and cru-

cially depends on agents’ expectations, typically assumed rational. The key difficulty with this class

of models in the context of identification is that while their solution has a state-space representation,

for which the global identification problem is fairly well understood, the coefficients defining this

solution are only implicit rather than analytical functions of the original model parameters. As a

result, a new approach to identification became necessary.

Early contributions highlighting the identification problem in simple DSGE models include Beyer

and Farmer (2007), Fukac et al. (2007), Canova and Sala (2009) and Cochrane (2011). A more

formal analysis soon followed, focusing first on local identification issues, and resulting in the rank

conditions on an appropriately defined Jacobian matrix (Iskrev, 2010; Komunjer and Ng, 2011) or

spectral density matrix (Qu and Tkachenko, 2012). Important progress has also been made towards

resolving the problem of global identification. Qu and Tkachenko (2017) present a numerical routine

that searches for observationally equivalent parameters by minimizing the Kullback-Leibler distance

in the frequency domain. Koci ↪ecki and Kolasa (2018) develop an alternative algorithm that relies

on the conditions linking observationally equivalent state space representations from Komunjer and

Ng (2011), thus avoiding the need to solve the model for each candidate parameter.1

However, while these two existing approaches to global identification problem are very useful

tools for detecting possible identification failure, they have one important limitation in that they

cannot strictly prove that a given model is globally identified. If a numerical search routine fails to

find an observationally equivalent vector of parameters to the one at which one checks identification,

this does not necessarily mean that such a vector does not exist. It might be that the algorithm

simply neglected some support of the (multi-dimensional) parameter space, where observationally

equivalent points are situated. Therefore, the lack of a solution to the problem of global identification

in DSGE models should be considered a serious methodological gap.

Against this backdrop, this paper develops an analytical framework to study global identification

in dynamic linear systems with rational expectations. The framework is comprehensive in that it

encompasses both determinate models, in which the rational expectations solution is unique, as

well as indeterminate ones, where the dynamics may be additionally driven by sunspot shocks. The

essence of our approach consists of two insights. The first one establishes a formal identification

condition that reduces checking identification of the model’s parameters (or their appropriately

1While all of this literature deals with linearized DSGE models, there have been some attempts to study local
identification of their higher-order approximations, see e.g. Mutschler (2015).
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defined analytical functions) to finding all roots of a system of polynomial equations. This condition

is derived by linking the observationally equivalent state space systems with the inherent constraints

imposed on them by the deep parameters of the underlying structural model. The second insight

relies on applying the concept of the Gröbner basis to analytically solve this system of polynomial

equations. In short, and postponing the details for later, this last step boils down to transforming

the original system of polynomials into an equivalent triangular system, which is done in a way

resembling Gaussian elimination in linear algebra.

The key advantage of our framework is that it explicitly derives and directly checks the global

identification conditions at a given point in the parameter space. This gives the formal proof of

global identification or lack thereof at this point as the calculation of the Gröbner basis is exact

in principle. Our explicit approach is hence an advantage over the two existing methods to check

global identification in DSGE models (Koci ↪ecki and Kolasa, 2018; Qu and Tkachenko, 2017), both

of which rely on searching numerically over the parameter space, and hence cannot formally prove

that the model is identified. Another useful feature of our framework is that it generalizes and

unifies the conditions linking observationally equivalent state space representations, which in the

previous identification literature were derived separately for singular and non-singular cases. While

designed to solve the global identification problem, our framework offers also some additional insights

over the existing and well-established approaches to handle its local variant. They can determine

which parameters need to be fixed to obtain identification but they do not explicitly link their

observationally equivalent values or can approximate such links only numerically as done by Qu and

Tkachenko (2012). In contrast, a Gröbner basis applied to our identification condition explicitly

produces the complete set of parameter vectors that are observationally equivalent to the one at

which one checks identification.

Gröbner basis methods are a fast developing field in computational algebraic geometry. Despite

their great potential, they are still very rarely used in economics, with only few exceptions. Kubler

and Schmedders (2010a) and Kubler and Schmedders (2010b) successfully apply these methods

to determine the exact number of equilibria in several economic models and to calculate them

analytically. Foerster et al. (2016) apply Gröbner bases to obtain higher-order approximations to

the solutions of Markov-switching DSGE models. Datta (2010) exploits this concept to find Nash

equilibria in games. Our contribution is to apply it to identification analysis of linearized DSGE

models. It needs to be stressed that the Gröbner basis-driven identification analysis of linear state-

space systems has long tradition in fields other than economics. Among the earliest examples in the

engineering literature, one can mention Walter and Lecourtier (1982) and Lecourtier and Raksanyi

(1985). In general, one strand in this literature, started with Ljung and Glad (1994), combines

differential algebra with Gröbner basis techniques, see e.g. Pia Saccomani et al. (2001), the other

one draws more heavily on algebraic geometry, see e.g. Meshkat et al. (2009), Ovchinnikov et al.

(2021). These approaches have become useful in biological, epidemiological, medical and chemical

applications to the extent that they culminated with a number of dedicated algorithms implemented

in many computer algebra languages – see e.g. DAISY in REDUCE software (Bellu et al., 2007),
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SIAN in MAPLE software (Hong et al., 2020), or COMBOS with web-based application (Meshkat

et al., 2014). These algorithms are confined to a differential equations setup and work under clearly

different (noise-free) notion of structural identification. They also make an implicit assumption

that the model’s coefficients are analytically known, which is a rare exception for the state space

representation of a DSGE model. In the statistics literature, the work that is closest to ours is the

recent paper by Duan et al. (2020), who vividly promote Gröbner basis methods to solve global

identification problems in many popular statistical (and econometric) models, e.g. binary choice

models with misclassification, whose local identification was studied e.g. by Hausman et al. (1998).

Despite the existence of analytical algorithms that are proved to succeed after a finite number

of iterations, computing a Gröbner basis for large systems of equations can be quite time and

memory consuming in practice. However, there are several features of our application that help

alleviate this curse of dimensionality. The key one is that, for a typical DSGE model, the system

of polynomials generated by our identification condition is of limited degree and very sparse. In

fact, we show that our identification analysis can be applied not only to small-scale DSGE models,

but also to their richer versions represented e.g. by a variant of the Smets and Wouters (2007)

setup, in which we remove the flexible price block. We show that observational equivalence can

be ruled out by fixing only two structural parameters, which turn out to be those that are locally

unidentified in an obvious way. We also apply our framework to study identification in several

variants of open economy DSGE models, including those featuring a line of promising extensions

suggested by the recent literature. Strikingly, we can prove that all of them are globally identified,

at least for a standard selection of observable variables. Overall, our findings indicate that ensuring

local identification in medium-sized DSGE models will often also make them globally identified.

The rest of this paper proceeds as follows. Section 2 presents the setup and establishes notation

for a typical dynamic linear system with rational expectations and its state-space representation.

Section 3 derives the conditions linking observationally equivalent state-space representations. Sec-

tion 4 combines these links with the original (structural) form of the model to establish the formal

global identification conditions. Section 5 offers a brief introduction to the concept of Gröbner basis

and describes its application to checking the identification condition. Several illustrative examples,

including popular DSGE models from the literature and their extensions, are presented in Section

6. Section 7 concludes and discusses some possible further research directions. All proofs and more

involved analytical details are relegated to the Appendix.

2 Structural model

Let us cast a linearized DSGE model in the following general form

Γ0(θ)

[
st

pt

]
= Γ1(θ)Et

[
st+1

pt+1

]
+ Γ2(θ)st−1 + Γ3(θ)εt (1)
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where st is an n×1 vector of states, pt is a q×1 vector of other endogenous (policy) variables (both

expressed in deviation from their steady-state values), and εt ∼ i.i.d.N(0,Σ(θ)) is a k × 1 vector

of shocks, which can include both innovations to structural (fundamental) disturbances, sunspot

shocks and measurement errors, the last two entering with zero loadings. Matrices Γ0(θ), Γ1(θ),

Γ2(θ), Γ3(θ) and symmetric positive definite k× k matrix Σ(θ) are explicit functions of deep model

parameters collected in an m× 1 vector θ ∈ Θ ⊆ Rm.
A dynamic solution to (1) can be written as

st = A(θ)st−1 +B(θ)εt (2)

pt = F (θ)st−1 +G(θ)εt (3)

where A(θ) is an n× n matrix, B(θ) is an n× k matrix, F (θ) is a q × n matrix and G(θ) is a q × k

matrix, all of which implicitly depend on deep model parameters θ. This is always the case if the

non-explosive equilibrium is unique. Under indeterminacy, the solution has still the form given by

equations (2)-(3) as long as one allows for a sufficient number of sunspot shocks in εt, see Lubik and

Schorfheide (2003). This becomes even more straightforward if, in the case of indeterminacy, one

equivalently transforms the model as suggested by Farmer et al. (2015), i.e. redefines a sufficient

number of errors in expectations as fundamentals.

Suppose the measurement equations relates the model variables to the data as follows

yt =M(θ) +H(θ)

[
st

pt

]
+ J(θ)εt (4)

where yt is an r × 1 vector of observable variables, M(θ) is an r × 1 vector, H(θ) is an r × (n+ q)

matrix and J(θ) is an r × k matrix, all of which explicitly depend on θ. Decomposing H(θ) into

blocks corresponding to the state and policy variables H(θ) = [ Hs(θ) Hp(θ) ] and using equations

(2) and (3) allows us to rewrite measurement equation (4) as

yt =M(θ) + C(θ)st−1 +D(θ)εt (5)

where an r × n matrix C(θ) and an r × k matrix D(θ) are defined as

C(θ) = Hs(θ)A(θ) +Hp(θ)F (θ) (6)

D(θ) = Hs(θ)B(θ) +Hp(θ)G(θ) + J(θ) (7)

Consequently, the law of motion for observable variables yt has a state space form, given by tran-

sition equation (2) and measurement equation (5). For future reference, and following Fernández-

Villaverde et al. (2007), such a representation will be called the ABCD-representation.
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3 Observational equivalence of state-space representations

One of the key insights from Komunjer and Ng (2011) is that the ABCD-representation of a DSGE

model is not identified, and hence its elements cannot be treated as reduced-form parameters. In

this section we generalize their results by developing a set of conditions linking the observationally

equivalent ABCD-representations that encompass both singular and non-singular cases.2 From now

on, to save on notation, let us denote any matrix X(θ) that depends on θ simply as X. Similarly,

when referring to this matrix evaluated at an alternative parameter vector θ̄, we will write in short

X̄.

3.1 Theoretical setup

To proceed, we need two assumptions to get our most general identification result for the ABCD-

representation of a DSGE model. The first one concerns stability of the model solution.

Assumption 1. (Stability) For every θ ∈ Θ and for any z ∈ C (a set of complex numbers) det(zIn−
A) = 0 implies |z| < 1.

The purpose of Assumption 1 is to restrict the analysis to stationary models. As a consequence,

we can define the steady-state value P = E(sts
′
t), which is a unique solution to the Lyapunov

equation P = APA′+BΣB′ implied by equation (2). Bearing in mind measurement equation (5), the

autocovariance sequence Λl = E(ỹtỹ
′
t−l), where ỹt = yt −M , is readily seen as Λ0 = CPC ′ +DΣD′

and Λl = CAl−1N , for l > 0, where N = APC ′ +BΣD′. Needless to say, we have Λ−l = Λ′
l.

To state the second assumption, let us define O = [C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′ and C =

[N
...AN

...A2N
... . . .

...An−1N ].

Assumption 2. (Stochastic minimality) For every θ ∈ Θ, matrices O and C have, respectively, full

column and full row rank, i.e. rank(O) = rank(C) = n.

Assumption 2 (under the name that we use) is well known in the linear system literature, see

e.g. Lindquist and Picci (1996). It is exactly the same as in e.g. Komunjer and Zhu (2020), who

term it as autocovariance minimality. Its main purpose is to confine the analysis only to those

ABCD-representations (consistent with given autocovariance sequences) in which the dimension of

the state vector is as small as possible. To this end, Assumption 2 ensures that the underlying

infinite block Hankel matrix made up of the covariances sequence has the (maximal) rank n for all

θ ∈ Θ (see Appendix A.2).

Assumption 2 differs from the assumptions made by Komunjer and Ng (2011) in how matrix

C is defined. In their framework, N is replaced either by B (Assumption 5-S, applicable to the

singular case) or the steady-state Kalman gain associated with the innovations representation of

the original state-space system (Assumption 5-NS, for the non-singular case). Moreover, Komunjer

2Non-singular models are the cases in which there are more shocks than observables (k > r) or when the system
is square (k = r) but non-invertible. See the table on page 2010 in Komunjer and Ng (2011).
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and Ng (2011) additionally impose left-invertibility of the transfer function (Assumption 4-S for

the singular case)3 or full row rank of matrix D (Assumption 4-NS for the non-singular case).

In our most general form of the identification condition, we do not need any of these additional

assumptions. We also do not have to distinguish between singular and non-singular models, which

spares us reformulation of the original problem into its innovations representation in the latter case.

In this sense, our framework can be seen both as unification and some generalization (as it relies on

weaker conditions) of that developed by Komunjer and Ng (2011).

Even though well established in the linear system literature, one may question the practical

aspect of Assumption 2 since it is impossible to check its validity for all θ ∈ Θ. However, in

Appendix A.1 we show that if Assumption 2 is valid for some θ at which we check identification,

then in fact it holds for almost all θ ∈ Θ. This allows us to safely proceed with our analysis, with

the understanding that the underlying deep parameter space Θ excludes those θ’s that violate the

assumption, which however form the nowhere dense subset of measure zero. In fact, as we discuss

at the end of this section using a simple MA(1) model example, the excluded parameter values

can just correspond to particular degenerate cases, and hence are not the relevant candidates for

observational equivalence to those θ’s for which Assumption 2 holds.

As implied by our model formulation, we deal with a stationary linear Gaussian environment.

This allows us to define observational equivalence in a standard way (see, e.g., definition 1 in

Rothenberg, 1971), by using only the first and second moments as they fully characterize linear

Gaussian models. More formally, let us define the z-spectrum of the ABCD-representation as

Φ(z) = H(z)ΣH ′(z−1), where H(z) = D + C(zIn − A)−1B is the transfer function (hence z−1

corresponds to its backward shift) and which is well defined for all z ∈ C in some open annulus

containing the unit circle, i.e. |z| = 1, so that the spectral density of the ABCD-representation is

also well defined. In fact, such an annulus exists by our Assumption 1, see e.g. Komunjer and Zhu

(2020), Lindquist and Picci (1996), Lindquist and Picci (2015), pp. 196-199, and our Appendix A.2.

Then we have the following definition

Definition 1. θ and θ̄ are observationally equivalent (written as θ ≡ θ̄) if M̄ =M and Φ̄(z) = Φ(z)

for all z ∈ C in an open annulus containing the unit circle.

What Definition 1 conveys is that two deep parameters sets are observationally equivalent if they

result in the same means and autocovariance sequence of observable variables, so that we cannot

distinguish between these two alternative parametrizations using the first and second moments of

the data.4 We are now ready to state the key theorem.

Theorem 1. Let Assumptions 1 and 2 hold. Then θ ≡ θ̄ if and only if 1) Ā = TAT−1, 2) C̄ = CT−1,

3) AQA′−Q = T−1B̄Σ̄B̄′T ′−1−BΣB′, 4) CQC ′ = D̄Σ̄D̄′−DΣD′, 5) AQC ′ = T−1B̄Σ̄D̄′−BΣD′,

3Under left-invertibility, finding all observationally equivalent ABCD-representations closely resembles the so-
called deterministic realization problem, hence standard assumptions concerning observability and controllability are
sufficient.

4Observationally equivalent parameter sets as defined by Definition 1 can still generate different moments of
unobservable variables and imply different impulse response functions for any variable in the model.
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6) M̄ = M , for some nonsingular matrix T and symmetric matrix Q. In addition, if θ ≡ θ̄ then

both T and Q are unique.

This theorem is an adapted version of Corollary 4.5 in Glover (1973), which probably belongs to

“folk wisdom” among specialists in linear system theory.5 From the perspective of identification in

DSGE models, Theorem 1 generalizes and unifies the key propositions 1-S and 1-NS in Komunjer

and Ng (2011), who consider separately the singular and non-singular cases, for which they need to

assume left-invertibility of the transfer function in the former case and the full row rank of D in the

latter case. Most importantly, the general form of the theorem allows us to treat the case r < k,

which arises naturally under indeterminacy as full characterization of the model solutions requires

adding sunspot shocks (Lubik and Schorfheide, 2003).

It may be useful to know under what further conditions our Theorem 1 nests the conclusions

of Propositions 1-S and 1-NS in Komunjer and Ng (2011) for the singular and non-singular case,

respectively. Starting with the latter, let us define the Riccati equation (in symmetric matrix Π)

Π = AΠA′ +BΣB′ −KΣaK
′ (8)

where Σa = CΠC ′ + DΣD′ and K = (AΠC ′ + BΣD′)Σ−1
a (in what follows we assume that Σa is

positive definite). Let us also formulate the following assumption.

Assumption 3. For every θ ∈ Θ, the Riccati equation (8) possesses a unique, positive semidefinite

solution.

Clearly, Assumption 3 is a high level assumption. However, as we show in Appendix A.3,

checking whether it holds is quite easy. Then we have the following proposition.

Proposition 1. Let Assumptions 1, 2 and 3 hold. Then θ ≡ θ̄ if and only if 1) Ā = TAT−1, 2)

C̄ = CT−1, 3) K̄ = TK, 4) Σ̄a = Σa, 5) M̄ = M , for some nonsingular matrix T . In addition, if

θ ≡ θ̄ then T is unique.

The conclusions of this proposition, which we prove in Appendix A.4, are exactly as in Propo-

sition 1-NS in Komunjer and Ng (2011). Obviously, from an operational point of view, they should

be read together with the definition of Riccati equation (8), which links K and Σa (K̄ and Σ̄a) to

the ABCD-representation via matrix Π (Π̄).

Let us now move to the case, in which the number of observable variables is equal to the

number of shocks, i.e. r = k. This is by far the most relevant case in the DSGE literature, which

uses likelihood-based methods to estimate the model parameters. To nest the square case in our

framework, we need the following assumption.

Assumption 4. For every θ ∈ Θ, D is nonsingular.

Needless to say, as in the case of Assumption 2, if Assumption 4 holds for one θ ∈ Θ, then it

applies for almost all θ′s. Then we have the next proposition.

5Since Glover (1973) contains only the proof of a continuous time version of Corollary 4.5, we prove Theorem 1 in
Appendix A.2.
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Proposition 2. Let Assumptions 1-4 hold. Then θ ≡ θ̄ if and only if 1) Ā = TAT−1, 2) B̄ = TBU ,

3) C̄ = CT−1, 4) D̄ = DU , 5) Σ̄ = U−1ΣU ′−1, 6) M̄ = M , for some nonsingular matrix T and

nonsingular matrix U . In addition, if θ ≡ θ̄ then both T and U are unique.

The conclusions of this proposition are the same as in Proposition 1-S in Komunjer and Ng

(2011). From the perspective of deep parameter identification that we describe in the following

section, the conditions in Proposition 2 are a bit more convenient to handle than those stated in

Theorem 1, so we recommend using the former whenever Assumptions 3 and 4 are satisfied.

3.2 Simple time series examples

To illustrate the meaning and interaction between our all assumptions, theorem and propositions,

we consider two simple yet widely used time series models: MA(1) and ARMA(1, 1). Let us start

with the former, i.e. yt = ϕεt−1 + εt, where εt ∼ N(0, σ2). This model is nested in the ABCD-

representation by putting A = 0, B = ϕ, M = 0, C = 1, D = 1, Σ = σ2. Since A = 0, our

model is stable (i.e., Assumption 1 holds). Moreover, rank(O) = rank(C) = 1 for all θ, but

rank(C) = rank(N) = rank(ϕσ2) = 1 only for ϕ ̸= 0. Evidently, Assumption 2 simply excludes

the white noise model (i.e. ϕ = 0) from the considerations, i.e. a point at which C drops rank.

Note that this exclusion is not restrictive as white noise cannot be observationally equivalent to any

non-degenerate MA(1) model.

In the case ϕ ̸= 0, we can safely apply Theorem 1. Since C is restricted to 1, we immediately

have T = 1. Then, from 3), 4) and 5) in this theorem, we get Q = ϕ2σ2 − ϕ̄2σ̄2, Q = σ̄2 − σ2 and

ϕσ2 = ϕ̄σ̄2, respectively. Solving these three equations in three unknowns Q, ϕ̄, σ̄2 gives us exactly

two solutions (Q, ϕ̄, σ̄2) = (0, ϕ, σ2) and (Q, ϕ̄, σ̄2) = (σ2(ϕ2 − 1), 1ϕ , ϕ
2σ2) for ϕ ̸= ±1, and one

solution (Q, ϕ̄, σ̄2) = (0, ϕ, σ2) for ϕ = ±1. Hence, the model is not globally identified at ϕ ̸= ±1.

Let us now demonstrate how our identification analysis of the MA(1) model works in more

specialized cases addressed by Propositions 1 and 2, which require fulfilling Assumption 3.6 In our

MA(1) example, the Riccati equation (8) possesses two solutions: Π = 0 and Π = σ2(ϕ2 − 1).

For Assumption 3 to hold, we hence need to restrict |ϕ| < 1 as then the only positive semidefinite

solution to the Riccati equation is Π = 0. As a matter of fact, in Appendix A.3 we show that

Assumption 3 holds if and only if Ψ = A − BD−1C = −ϕ is stable, i.e. |ϕ| < 1. With this

restriction, Proposition 1 gives us σ̄2 = σ2, T = 1 and ϕ̄ = ϕ, while from Proposition 2 we have

T = 1 and U = 1. Hence, the MA(1) model is globally identified when |ϕ| < 1, which is consistent

with what Theorem 1 gave us as the alternative solution 1
ϕ is precluded from the space of allowable

parameters when Assumption 3 is imposed.

To sum up, Theorem 1 is general in that it comprises both invertible and noninvertible MA(1)

models, proving their global identification failure unless ϕ = ±1. The less general and obtained

under stronger assumptions Propositions 1 and 2 allow only for invertible MA(1) processes, in

which case their global identification holds.

6Note that, since D is restricted to 1, Assumption 4 holds automatically.
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Now let us consider an ARMA(1, 1) process yt = ψyt−1 + ϕεt−1 + εt, where εt ∼ N(0, σ2),

which can be written in the state space form yt = st−1 + εt and st = ψst−1 + (ψ+ ϕ)εt. Its ABCD-

representation is then A = ψ, B = ψ+ϕ,M = 0, C = 1, D = 1, Σ = σ2. Assumption 1 holds if |ψ| <
1. As regards Assumption 2, we have rank(O) = rank(C) = 1 and, since N = (1+ ψ(ψ+ϕ)

1−ψ2 )(ψ+ϕ)σ2,

we have rank(C) = rank(N) = 1 iff ψ + ϕ ̸= 0 and ψϕ ̸= −1. Since C = 1, restrictions 1) and 2) in

Theorem 1 immediately give us T = 1 and ψ̄ = ψ. Then, using 3), 4) and 5) in this theorem gives

us exactly two solutions (Q, ψ̄, ϕ̄, σ̄2) = (0, ψ, ϕ, σ2) and (Q, ψ̄, ϕ̄, σ̄2) = (σ2(ϕ2 − 1), ψ, 1ϕ , ϕ
2σ2) for

ϕ ̸= ±1, and one solution (Q, ψ̄, ϕ̄, σ̄2) = (0, ψ, ϕ, σ2) for ϕ = ±1. The conclusion on identification of

the ARMA(1, 1) model is hence the same as of the MA(1) model – both are not globally identified

at ϕ ̸= ±1. The conditions to apply Propositions 1 and 2 are also the same. This is because

the Riccati equation (8) possesses the same two solutions Π = 0 and Π = σ2(ϕ2 − 1) so that, for

Assumption 3 to hold, we need to restrict |ϕ| < 1. Under this restriction, ARMA(1, 1) is globally

identified.

3.3 Comparison with Komunjer and Ng (2011)

It is useful to juxtapose our identification analysis in these two simple examples with the approach

proposed by Komunjer and Ng (2011), who also us the ABCD-representation and rely on very

similar assumptions to ours. Let us start with the MA(1) case. To apply their Proposition 1-S,

we need to check three assumptions. The first one (Assumption 2) is identical to our stability

Assumption 1. Their Assumption 5-S corresponds to our stochastic minimality assumption 2 and

in the MA(1) case leads to the same restriction ϕ ̸= 0. The additional restriction in Komunjer and

Ng (2011) (Assumption 4-S) is left-invertibility, which holds if |z| > 1 implies H(z) has full column

rank, and in the context of our univariate examples is equivalent to H(z) = 0 implies |z| ≤ 1. In the

MA(1) case we have H(z) = D+C(zIn−A)−1B = 1+ z−1ϕ = 0 ⇔ z = −ϕ, hence left-invertibility
means |ϕ| ≤ 1. This restriction is hence similar to that implied by our Assumption 3, which we

need for the specialized Propositions 1 and 2 but not for the more general Theorem 1. As discussed

above, it leads to the conclusion that MA(1) is globally identified, while in fact it is not unless

noninvertible cases are ruled out.

One can proceed similarly with the ARMA(1, 1) model, for which Proposition 1-S in Komunjer

and Ng (2011) requires |ψ| < 1 (stability), ψ+ϕ ̸= 0 (Assumption 5-S) and |ϕ| ≤ 1 (left-invertibility).

Recall that our analysis using Theorem 1 does not need the left-invertibility restriction, but our

minimality Assumption 2 turns out to be now more restrictive than its counterpart Assumption 5-S

in Komunjer and Ng (2011) as it additionally imposes ψϕ ̸= −1.7 Overall, comparing all assumptions

in the two identification setups for the ARMA(1, 1) model reveals that those imposed by Komunjer

and Ng (2011) rule out all non-invertible cases while they are allowed in our framework except

when ψϕ ̸= −1. Similarly to the MA(1) example, this has implications for the global identification

analysis.

7Note that, since |ψ| < 1, this restriction only applies to ϕ’s in the non-invertibility region.
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4 Global identification condition for structural parameters

The ABCD-representation is defined by matrices that, except for some very special cases like the

simple time series models elaborated above, are very sophisticated functions of θ. As demonstrated

by Morris (2017), this is the case even for relatively simple setups like the An and Schorfheide

(2007) model.8 Therefore, to check identification of the vector of deep parameters, we typically

cannot apply Theorem 1 directly. Hence, we proceed as in Koci ↪ecki and Kolasa (2018) and treat

those matrices in this theorem that are only implicit functions of the deep parameters as unknown,

but additionally impose on them restrictions that would guarantee consistency with the underlying

DSGE model structure. Following a similar approach as in Iskrev (2010), and in the spirit of the

undetermined coefficient method by Uhlig (1999), these can be readily obtained by substituting the

model solution (2)-(3) into model formulation (1), which we rewrite for convenience in a block form

[
Γs0 Γp0

] [ st

pt

]
=

[
Γs1 Γp1

]
Et

[
st+1

pt+1

]
+ Γ2st−1 + Γ3εt (9)

Using Etεt+1 = 0 results in the following two matrix equation restrictions

Γs0A+ Γp0F − Γs1A
2 − Γp1FA = Γ2 (10)

Γs1AB + Γp1FB − Γs0B + Γ3 = Γp0G (11)

A similar operation using the original measurement equation (4) results in two other matrix restric-

tions, that are already available as equations (6) and (7).

We hence arrive at the following final set of conditions that have to be met by any parameter

vector θ̄ that is observationally equivalent to some θ

Γ̄s0Ā+ Γ̄p0F̄ − Γ̄s1(Ā)
2 − Γ̄p1F̄ Ā = Γ̄2 (12)

Γ̄s1ĀB̄ + Γ̄p1F̄ B̄ − Γ̄s0B̄ + Γ̄3 = Γ̄p0Ḡ (13)

C̄ = H̄sĀ+ H̄pF̄ (14)

D̄ = H̄sB̄ + H̄pḠ+ J̄ (15)

Ā = TAT−1 (16)

C̄ = CT−1 (17)

AQA′ −Q = −BΣB′ + T−1B̄Σ̄B̄′(T−1)′ (18)

AQC ′ = T−1B̄Σ̄D̄′ −BΣD′ (19)

CQC ′ = D̄Σ̄D̄′ −DΣD′ (20)

8See also Zadrozny (2022) on the mapping between structural and reduced-form coefficients when the solution to
a DSGE model has a VAR representation in observable variables.
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M̄ =M (21)

Q = Q′ (22)

In this system of equations, the unknowns of interest are structural parameters θ̄, on which the

following depend explicitly: Γ̄s0, Γ̄
p
0, Γ̄

s
1, Γ̄

p
1, Γ̄2, Γ̄3, Σ̄, H̄

s, H̄p, J̄ , M̄ . The other unknowns, namely

Ā, B̄, C̄, D̄, F̄ , Ḡ, T and Q, play only an auxiliary role. All remaining matrices are functions of

θ, and hence known while checking identification at this point in the parameter space. Therefore,

our final global identification condition for the structural (deep) model parameters can be stated as

follows

Definition 2. The model given by equations (1) and (4) is globally identified if and only if all admis-

sible solutions to system (12)-(22) are such that θ̄ = θ.

By operating on the structural model parameters, this definition is equivalent to Definition 1,

refining it such that it becomes operational.

Note that being able to solve the system of equations above analytically, i.e. giving the full set

of θ̄ ∈ Θ that satisfy it, essentially resolves the problem of identification in a given DSGE model.

However, this is not easy as equations (12)-(22) are non-linear and their number is fairly large

even for small-scale models. Naturally, one can try to solve this system numerically, as it is done

in a less general framework by Koci ↪ecki and Kolasa (2018), but numerical methods can give only

one solution at a time rather than their full set. Solving the identification problem hence requires

analytical methods, and to this end we will use some concepts developed in computational algebraic

geometry.

To apply these methods, we first need to write our model such that the coefficients on the

model variables that show up in the equations of the original model formulation (1) and (4) form

polynomials. In many cases this is straightforward and can be achieved by basic algebraic operations

on the model equations. For example, if some coefficients in a model equation form a fraction, we

can simply multiply all terms in this equation by the denominator of this fraction. Whenever

this is not possible, e.g. when one parameter enters as an exponent of another, we need to define

auxiliary parameters that add to the original ones, possibly replacing some of them.9 We will

denote the thus obtained modified parameter vector as α, and will refer to its elements as semi-

structural parameters, as opposed to deep parameters collected in θ. Naturally, since the deep and

semi-structural parameters are linked analytically having the solution to the global identification

problem defined for α makes the identification analysis for θ easier, if not straightforward.

9Rewriting the model equations using auxiliary parameters may be useful even if it is not necessary to obtain
a polynomial structure. Take for example the New Keynesian Phillips curve πt = βEtπt+1 + (1−ξ)(1−βξ)

ξ
xt, which

can be easily cast in the form required by our analysis by multiplying it by ξ. Obviously, for any value of the
Calvo probability ξ there exists an observationally equivalent alternative number, which lies outside the unit interval
and hence should not be taken into account. However, while solving the identification problem mathematically, this
alternative parametrization will be found, only to be discarded after applying economic restrictions. If we instead
replace ξ in the vector of model parameters with a semi-structural parameter κ = (1−ξ)(1−βξ)

ξ
, this validation step can

be avoided.
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To see the nature of the underlying problem a bit more clearly, let us eliminate some terms in

the system of equations (12)-(22) and reorganize to get

Γ̄s0TA+ Γ̄p0
¯̃F − Γ̄s1TA

2 − Γ̄p1
¯̃FA = Γ̄2T (23)

Γ̄s1TA
¯̃B + Γ̄p1

¯̃F ¯̃B − Γ̄s0T
¯̃B + Γ̄3 = Γ̄p0Ḡ (24)

C = H̄sTA+ H̄p ¯̃F (25)

D̄ = H̄sT ¯̃B + H̄pḠ+ J̄ (26)

AQA′ −Q = −BΣB′ + ¯̃BΣ̄ ¯̃B′ (27)

AQC ′ = ¯̃BΣ̄D̄′ −BΣD′ (28)

CQC ′ = D̄Σ̄D̄′ −DΣD′ (29)

M̄ =M (30)

Q = Q′ (31)

where ¯̃F = F̄ T and ¯̃B = T−1B̄.10 We have thus turned our identification conditions into a system of

polynomial equations. In this alternative formulation, the unknowns are: ᾱ (on which the following

depend analytically: Γ̄s0, Γ̄
p
0, Γ̄

s
1, Γ̄

p
1, Γ̄2, Γ̄3, Σ̄, H̄

s, H̄p, J̄ , M̄), as well as matrices ¯̃B, D̄, ¯̃F , Ḡ, T

and Q.

It is straightforward to derive a similar set of identification conditions for the square case, when

we can use the similarity transformation defined by Proposition 2. These are

Γ̄s0TA+ Γ̄p0F̄ T − Γ̄s1TA
2 − Γ̄p1F̄ TA = Γ̄2T (32)

Γ̄s1TABU + Γ̄p1F̄ TBU − Γ̄s0TBU + Γ̄3 = Γ̄p0Ḡ (33)

C = H̄sTA+ H̄pF̄ T (34)

DU = H̄sTBU + H̄pḠ+ J̄ (35)

M̄ =M (36)

U Σ̄U ′ = Σ (37)

forming a system of polynomial equations in ᾱ, F̄ , Ḡ, T and U .

10Note that, since T is nonsingular, there is a one-to-one relationship between these two newly defined matrices and
their parents F̄ and B̄.
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5 Implementation

As we have demonstrated in the previous section, the key step in solving the identification problem

in a DSGE model boils down to solving a system of polynomial equations. In our implementation

we draw on the concept of a Gröbner basis. Intuitively, calculating it is analogous to Gaussian

elimination in systems of linear equations, and it is entirely analytical. There exist many algorithms

that produce a Gröbner basis in finitely many steps and, since the first algorithm proposed by

Buchberger in the 1960s, enormous progress in computational efficiency has been made. Below we

first offer a brief introduction to the key concepts. Readers interested just in application of our

framework may want to skip this part and move directly to Section 5.2. Those interested in more

theoretical detail, we refer to widely suggested introductive textbooks on computational algebraic

geometry (and Gröbner basis in particular) by Cox et al. (1997) and Cox et al. (2005). An excellent

introduction in the context of finding all equilibria in economic models can be found in Kubler et

al. (2014).

5.1 Gröbner basis

5.1.1 Theoretical foundations

Let K denote any field. For us, the most important fields are Q, i.e. that of rational numbers, the

field of real numbers, i.e. R and the field of complex numbers, i.e. C. In addition, let us denote as

K̄ an algebraically closed field containing K. Without going into details, one can think of K̄ as C.
The set of polynomials in variables x1, . . . , xl with coefficients in K will be denoted K(x1, . . . , xl).

Each polynomial equation is a finite sum of terms cxd11 x
d2
2 · · ·xdll , where c is a coefficient (in K)

and xd11 x
d2
2 · · ·xdll is called a monomial, where each di is a non-negative integer. The degree of a

monomial is d1 + · · ·+ dl, and the degree of a polynomial equation is the maximum of the degrees

of its all monomials.

Suppose we have a set of s polynomials f1, f2, . . . , fs ∈ K(x1, . . . , xl). Then, a variety V is defined

to be a set of all solutions to f1 = 0, f2 = 0, . . . , fs = 0, i.e. V (f1, . . . , fs) = {(a1, . . . , al) ∈ K̄l|f1 =

0, . . . , fs = 0}. Of course, the initial polynomials f1, . . . , fs only represent the variety. There are

many other alternative sets of polynomials, some of which could do a better job in the sense of the

ease with which the underlying solutions can be read. In particular, this opens a way to a Gröbner

basis. To this end, define an ideal generated by f1, . . . , fs as I = ⟨f1, . . . , fs⟩= {u1f1+· · ·+usfs|ui ∈
K(x1, . . . , xl), i = 1, . . . , s}. The ideal is just a set of all polynomials that may be written as a

weighted sum of all initial polynomials (called its generators), in which the coefficients (weights) are

polynomials themselves. For example x2 ∈
〈
x− y2, xy

〉
, since x2 = x · (x − y2) + y · (xy).11 What

makes the ideal useful is that V (f1, . . . , fs) = V (I), i.e. the solution set of the initial finite system

of polynomials and that of an ideal generated by these polynomials (i.e. an infinite system) are the

same. To realize it, note that a solution of I is also a solution of f1 = 0, f2 = 0, . . . , fs = 0 since

11In what follows, when we will present examples with small number of variables we will sometimes use x, y, z, etc.,
instead of x1, x2, x3, etc.
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fi ∈ I, for each i = 1, ..., s. (just put one ui = 1 and the remaining uj = 0, for all j ̸= i). On the other

hand, if a∗ = (a∗1, . . . , a
∗
l ) is a solution to f1 = 0, f2 = 0, . . . , fs = 0, then when evaluated at this a∗,

u1f1+· · ·+usfs = 0 for all ui ∈ K(x1, . . . , xl). Evidently, any ideal can have different generators. As

a matter of fact, if ⟨f1, . . . , fs⟩ =
〈
f ′1, . . . , f

′
s′
〉
, then V (f1, . . . , fs) = V (I) = V (f ′1, . . . , f

′
s′). Hence,

the solutions to f1 = 0, . . . , fs = 0 and to f ′1 = 0, . . . , f ′s′ = 0 are the same. In the essence, what

defines the solution set is the ideal and not the initial polynomials. The main idea of a Gröbner basis

is to find alternative generators that represent the ideal in a “better” way. For example, in the case

of linear polynomials (equations), this “better” way is to find their row echelon form. Importantly,

by the Hilbert basis theorem, each ideal must be generated by finite number of polynomials, hence

the algorithmic methods to find a “better” representation of the variety may be safely applied.

Before we can define (and obtain) a Gröbner basis, we have to take a stand on the ordering

of monomials since every algorithm to compute the basis must involve polynomial divisions. It

is not sufficient to set up the ordering of the variables xi in K(x1, . . . , xl), indicating implicitly

x1 > x2 > · · · > xl, since this would still leave room to write a polynomial with different orders of

summation. An ordering is a rule that allows for a unique placement of terms in a polynomial. It

turns out that the chosen ordering greatly influences the ultimate Gröbner basis, and some orderings

are particularly useful. For our purposes, the most important ordering is the so-called lexicographic

(in short, lex) ordering, i.e. xd11 x
d2
2 · · ·xdll >lex x

e1
1 x

e2
2 · · ·xell in K(x1, . . . , xl), with variables implicitly

ordered as x1 > x2 > · · · > xl, if d1 = e1, . . . , dm = em and dm+1 > em+1 (where possibly m = 0).

For example, x1x
2
2x3 >lex x1x

2
2x

3
4 since d3 = 1 > e3 = 0. Let us define xd := xd11 x

d2
2 · · ·xdll . If we

choose a monomial ordering, each polynomial may be written uniquely as f = cxd + · · · . Then xd

is called the leading monomial and cxd is the leading term, which we denote LT (f) = cxd. For

example, consider f = −2
3x

3
1x2 − 7

2x
2
1x

2
2 + 2x1x

3
2 +

1
2x

4
3 ∈ Q(x1, x2, x3). This polynomial is written

in lex ordering, with LT (f) = −2
3x

3
1x2, and the leading monomial x31x2. Let LT (I) be the set of

all leading terms of elements of I i.e. LT (I) = {cxd| there exists f ∈ I with LT (f) = cxd}. Let us
define the ideal generated by the elements of LT (I) as ⟨LT (I)⟩. Then we have a definition.

Definition 3. Assuming any monomial ordering, g1, . . . , gt ∈ I is a Gröbner basis for ideal I if

⟨LT (g1), . . . , LT (gt)⟩ = ⟨LT (I)⟩

Equivalently, we can say that polynomials g1, . . . , gt ∈ I constitute the Gröbner basis for ideal

I if the leading term of any (nonzero) polynomial in I is divisible by the leading term of one of

g1, . . . , gt.
12 The practical meaning of this is that if g1, . . . , gt ∈ I is the Gröbner basis for ideal I,

then any f ∈ I may be written as f = a1g1 + a2g2 + . . . + atgt, where each ai is a polynomial in

K(x1, . . . , xl). Hence V (f1, . . . , fs) = V (I) = V (g1, . . . , gt). In other words, g1, . . . , gt are generators

for I, every (nonzero) I possesses a Gröbner basis, and solutions to g1 = 0, . . . , gt = 0 and to the

initial polynomials f1 = 0, . . . , fs = 0 are the same. When there is only a finite number of solutions,

the underlying ideal is called zero-dimensional.

The Gröbner basis contains a lot of information about the solutions set of the initial polynomial

system. For example, the initial system does not have any solution if and only if the Gröbner basis

12A nonzero term cdx
d is divisible by a nonzero term cex

e if di ≥ ei for all i.
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contains only 1. Further, whether an ideal is zero-dimensional or not is explicitly “coded” in the

Gröbner basis and can be easily read off. The initial system of polynomials possesses a finite number

of solutions (i.e. I is zero-dimensional) if and only if for every variable xi there exists a polynomial

in the Gröbner basis such that its leading monomial is equal to xmi , for some m > 0. Importantly,

calculation of a Gröbner basis is analytical, i.e. numerical approximations are not involved.

The fact that in our exposition we confined to lex orderings is not a coincidence for then we

have the next result of great practical importance.

Proposition 3. Let I be a zero-dimensional ideal and g1, . . . , gt ∈ I be the Gröbner basis for I with

respect to the lex ordering with x1 < x2 < · · · < xl. Then it must be that t ≥ l and we can order

g1, . . . , gt such that g1 contains only x1, g2 can contain only variables x1 and x2 and the leading

monomial of g2 is xm2
2 , for some m2 > 0, g3 can contain only variables x1, x2 and x3 and the leading

monomial of g3 is xm3
3 , for some m3 > 0, and so on until gl, which can contain all variables and its

leading monomial is xml
l , for some ml > 0.

Hence, using the lex ordering for a zero-dimensional ideal, the resulting Gröbner basis becomes

a “triangularized” system of equations.13

5.1.2 Examples

To illustrate the usefulness of Proposition 3, we offer several simple examples. Consider first the

case t = l

x5 + y2 + z2 − 4 = 0

x2 + 2y2 − 5 = 0

xz − 1 = 0

(38)

The Gröbner basis for (38) with respect to lex ordering with z < y < x is

2z7 − 3z5 − z3 + 2 = 0

4y2 − 2z5 + 3z3 + z − 10 = 0

2x+ 2z6 − 3z4 − z2 = 0

(39)

Since the leading monomials in the Gröbner basis comprise z7, y2 and x, the ideal generated by

(38) is zero-dimensional. Bearing in mind that solutions of (38) and (39) are the same, solving (38)

amounts to solving the first equation in (39) for z. For every such obtained solution with respect

to z, we get two solutions for y using second equation in (39), and one solution for x using the last

equation in (39).

13Under some further conditions, the Gröbner basis for a zero-dimensional ideal in lex ordering is {q1(x1), x2 −
q2(x1), x3 − q3(x1), . . . , xl − ql(x1)}, where every qi(x1) is a univariate polynomial in x1. This is the content of the
Shape Lemma, see e.g. Becker et al. (1994), which was exploited in Kubler et al. (2014). This is a particularly
convenient setup since, by solving q1(x1) for x1 and plugging this solution in the remaining equations, we immediately
obtain the total set of solutions. As useful as it may appear, this concept plays no role in our approach as the Gröbner
bases in our identification analysis typically do not have to possess the Shape Lemma structure.
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On the other hand, if t > l, in order to find the solutions to the whole system of equations we

have to check whether the solutions of g1 = 0, . . . , gl = 0 still fulfill gl+1 = 0, . . . , gt = 0, and discard

those solutions which do not satisfy the latter. To this end, consider the following system

x2 + xy + 2x+ y − 1 = 0

x2 + 3x− y2 + 2y − 1 = 0
(40)

The Gröbner basis in lex ordering with y < x is

y2 − 1 = 0

x2 + 3x+ 2y − 2 = 0

xy − x− y + 1 = 0

(41)

Since the leading monomials include y2 and x2, the underlying ideal is zero-dimensional. From the

first equation we conclude y = ±1. If y = 1, the second equation becomes x(x+3) = 0, while the last

one is x = x (i.e. not binding). Hence the first two solutions are (x, y) = (0, 1) and (x, y) = (−3, 1).

If we put y = −1, then the second equation gives two solutions for x i.e. x = 1 or x = −4. However,

only x = 1 is consistent with the last equation. Hence, the third solution is (x, y) = (1,−1). As we

discuss later, in practice we do not have to find the full set of solutions of the Gröbner basis for a

zero-dimensional ideal manually since every computer algebra package has a dedicated function to

do this.

Let us now turn to the case of ideals that are not zero-dimensional, which means that the ana-

lyzed system has infinite number of solutions, and which will typically represent local identification

failure in a model identification analysis. While in this case Proposition 3 cannot be applied, the

Gröbner basis in lex ordering might also be useful to shed some light on the solution nature. To

illustrate this point, consider the following system

x2 − y2 + x+ y − z = 0

x2 + 2y2 − 2x+ y − z = 0

x3 − x2z − xy2 − 2y2z + x2 + xy + xz − yz + z2 = 0

(42)

Computing the Gröbner basis in lex ordering with z < y < x for (42) results in two equations

y4 + y − z = 0

x− y2 = 0
(43)

We immediately see that the ideal generated by (42) is not zero-dimensional since there is no zm,

for some m > 0, among the leading monomials. However, the Gröbner basis is still useful as it

points that setting y to any number will result in unique solutions with respect to x and z, but

fixing either z or x in general does not imply uniqueness for the remaining variables. Hence, if x, y, z

were the parameters of a model, then fixing y would identify it. It is not difficult to anticipate that

analogous reasoning will be key to achieve identification in non-identified DSGE models, which we

will discuss in Section 6.
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5.2 Computation

For all our calculations that follow, we use SINGULAR, a free and open source computer algebra

system specialized in polynomial calculations, see at www.singular.uni-kl.de. It has implemented

many routines for calculation of the Gröbner basis, which is useful as there is no single algorithm

that beats in terms of computational efficiency all alternatives for all possible cases. SINGULAR

can be considered a repository of most state-of-the-art algorithms, with active community of users

sharing their experience in approaching various problems.

Importantly, SINGULAR has built-in routines that compute all solutions to zero-dimensional

ideals once the Gröbner basis is obtained, also in the so-called overdetermined cases when the

number of equations exceeds the number of variables. To deal with them effectively, it exploits

the approaches presented in Lazard (1992) or Möller (1993). The idea is to decompose the original

zero-dimensional ideal so that the solution set of the initial polynomials will be the disjoint (finite)

union of solutions to some smaller systems of l equations in l variables. This leads to the so-

called triangular decomposition. See Kubler et al. (2014), section 2.2.3, for some intuition. The

computation of all solutions is numerical but can be done with arbitrary precision.

In order to appreciate the great potential of the Gröbner basis in tracing identification problems,

let us consider a simple New Keynesian model used in a similar context e.g. in Koop et al. (2013).

The model is easy to handle as, in contrast to typical DSGE models that we discuss in Section

6, it does not include state variables. More specifically, the model is given by the following three

equations

Rt = ψπt + ε1,t (44)

xt = Etxt+1 − τ(Rt − Etπt+1) + ε2,t (45)

πt = βEtπt+1 + κxt + ε3,t (46)

which describe the evolution of three endogenous variables: output xt, inflation πt and the interest

rate Rt. The model dynamics is driven by three i.i.d. shocks collected in vector εt = [ε1,t, ε2,t, ε3,t]
′,

where εt ∼ i.i.d. N(0,Σ) and Σ = diag(v1, v2, v3), with vi for i = 1, 2, 3 denote the variances of the

shocks. The model can be cast in our basic form (1) with:

Γ0 =

 1 0 −ψ
τ 1 0

0 −κ 1

 ; Γ1 =

 0 0 0

0 1 τ

0 0 β

 ; Γ2 = 0; Γ3 = I3

We assume that all endogenous variables are observable, demeaned and that there are no measure-

ment errors, hence yt = [ Rt xt πt ]′, M = 0, H = I3 and J = 0. The 7-dimensional vector of

deep parameters is θ = [ ψ τ β κ v1 v2 v3 ]′.

The model admits one stable solution, which can be written as Γ0yt = εt. Since then yt ∼
i.i.d. N(0,Γ−1

0 Σ(Γ−1
0 )′), there is no need to describe the dynamics in terms of the state-space
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system. The model is globally identified at Γ0,Σ if Γ̄−1
0 Σ̄(Γ̄−1

0 )′ = Γ−1
0 Σ(Γ−1

0 )′ implies Γ̄0 = Γ0

and Σ̄ = Σ. The fact that the discount factor parameter β is not identified is obvious as it does

not show up in the solution. Hence, in what follows, we set β = 0.995, which is still necessary for

stability. Less obvious but also well known result is that all the remaining parameters are globally

unidentified too, see e.g. Rubio-Ramı́rez et al. (2010). To demonstrate it using the Gröbner basis,

let us first write the identification condition in an equivalent form Γ̄′
0Σ̄

−1Γ̄0 = Γ′
0Σ

−1Γ0 and define

auxiliary parameters (α1, α2, α3) = (v−1
1 , v−1

2 , v−1
3 ) that replace the three variances in θ, so that the

vector of semi-structural parameters is α = [ ψ τ β κ α1 α2 α3 ]′. Obviously, the mapping

between α and θ is unique and straightforward.

Let us consider the following benchmark parameter values at which we check identification:

ψ = 2, τ = 0.5, κ = 0.6, v1 = 0.04, v2 = 0.1, v3 = 0.15.14 The Gröbner basis, calculated with

SINGULAR function std assuming lex ordering consistent with that we used to define α, is then

237ᾱ2
3 − 2360ᾱ3 + 5200 = 0

325ᾱ2 − 237ᾱ3 − 1670 = 0

980ᾱ1 − 237ᾱ3 − 22920 = 0

1300κ̄+ 237ᾱ3 − 2360 = 0

4900τ̄ + 237ᾱ3 − 4030 = 0

150ψ̄ + 3ᾱ3 − 320 = 0

(47)

As we emphasized before, the Gröbner basis conveys a lot of useful information. First of all,

inspecting it reveals that our identification condition possesses exactly two solutions. This is because

the first (quadratic) equation in (47) has two solutions, for each of which we can recursively and

uniquely obtain all other parameters using the remaining equations. We do not need to do this

manually as SINGULAR contains the useful procedure solve to find them explicitly. Obviously, the

first solution is the point at which we check identification while the second one (reported here up to

four decimal digits) is: τ = 0.6633, κ = 1.2154, ψ̄ = 2.0675, ᾱ1 = v̄−1
1 = 24.1837, ᾱ2 = v̄−1

2 = 7.5385,

ᾱ3 = v̄−1
3 = 3.2911, which still results in the unique stable solution for our choice of β. Note that

numerical approximation “starts here” only because the solution to the quadratic equation involves

approximation. However, the solution precision can be set in SINGULAR at an arbitrary level.

Importantly, the first equation suggests that if we fix ᾱ3 = α3 (i.e. v̄3 = v3), the remaining two

variances, as well as κ̄, τ̄ and ψ̄ are unique, hence the model is globally identified. As a matter

of fact, we can fix any of the shock variances to achieve the same goal. This can be confirmed by

computing the Gröbner basis with lex ordering such that the variance that we want to fix comes

last. Obviously, the same conclusion can be achieved by using Gröbner basis (47), combined with

the desired restriction, and by running command solve.

14In principle, SINGULAR can calculate the Gröbner basis for symbolic α rather than its particular value. This
can be useful in simple examples like the one considered here, but not practical in typical DSGE models, in which the
solution matrices do not have analytical representation.
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5.3 Checking global identification

By calculating the Gröbner basis for a given DSGE model, we obtain a formally proved verdict

about global identification of its semi-structural parameters. To complete the identification analysis

about the deep model parameters, we need to use the restrictions mapping θ̄ into ᾱ. In particular,

this step also allows us to rule out those observationally equivalent semi-structural parameter sets

that violate the restrictions imposed on them by the deep parameters.

These restrictions can be of two types. One concerns possible remaining dependencies between

the semi-structural parameters, which are imposed by the deep parameters and which were ignored

while defining the former. The second type of restrictions is related to the range of admissible

values of θ̄ summarized by their space Θ, which may also impose restrictions on ᾱ. Accommodating

such restrictions directly in the existing algorithms used to calculate the Gröbner basis is not easy,

and hence they have to be verified ex post. Admittedly, this part of our identification analysis is

model dependent and cannot be easily automated. As we demonstrate in our examples, since the

links between α and θ are analytical, this step can be straightforward, though nothing guarantees

that it will be such for all possible DSGE models. However, even if the mapping between α and

θ is too sophisticated to handle analytically, applying our framework can still greatly simplify the

underlying identification problem, making it easier to analyze with numerical methods.

To summarize, a complete identification analysis in our framework can proceed as follows.

1. Write the model such that Assumptions 1 and 2 are satisfied for selected parameter vector

θ and the coefficients in the model equations (1) and (4) form polynomials. If necessary or

convenient, define auxiliary parameter vector α.

2. Solve the model at θ to obtain matrices A, B, F and G.

3. Calculate the Gröbner basis associated with identification conditions (23)-(31), or (32)-(37) if

Assumptions 3 and 4 hold.

4. If the obtained Gröbner basis suggests multiple solutions, use the mapping between ᾱ and θ̄

to rule out those resulting in θ̄ /∈ Θ (and in particular those for which θ̄ ∈ ∅).

5. If at least one of the alternative solutions θ̄ ̸= θ remains, the model is not globally identified

at θ.

6. If instead the Gröbner basis implies only one admissible solution, then the model is globally

identified at θ if and only if the mapping between ᾱ and θ̄ is unique (for θ̄ ∈ Θ).

This analysis can be further refined to distinguish between global and local identification failure.

Again, doing it at the level of mapping between α and θ boils down to checking if a possible non-

uniqueness of the mapping imply a finite number or infinitely many admissible θ’s consistent with

a given α. In the former case, the model is globally unidentified, but local identification holds.

Similar information at the level of semi-structural parameters is coded in the Gröbner basis. If it

implies multiple admissible solutions, but is zero-dimensional, the model is locally identified.
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The two key computational steps 2 and 3 can be automated by preprocessors similar to Dynare

(Adjemian et al., 2011). As discussed above, calculating the Gröbner basis (step 3) requires spe-

cialized software like SINGULAR. As our procedure requires highly accurate inputs, we recommend

solving the model (step 2) with procedure nt_solve in SINGULAR, which solves non-linear sys-

tems of equations with arbitrary precision, and which can take as starting values the model solution

obtained with standard software to solve DSGE models (like Dynare).15 The remaining steps are

model dependent and may require manual input. As regards step 1, one may need to remove redun-

dant state variables if the original model formulation does not meet Assumption 2, which may be

tough to automate.16 Rewriting the model equations such that the coefficients in the model equa-

tions form polynomials may also be best done manually. It might be also not straightforward to

write a general code that examines the mapping between the deep and semi-structural parameters

if the latter need to be defined (step 4).

At this point, it is useful to summarize what makes our identification framework distinct from

those used in other fields. All works that apply Gröbner basis in the context of state-space models

cited in the Introduction (for survey and comparison of various approaches, see also ch. 2 in Walter

and Pronzato, 1997; Chis et al., 2011; Bates et al., 2019) use a continuous time setup (ordinary

differential equations) and deal with the so-called structural identification. Structural identification

concerns the idealized framework in which observables are measured without noise and input is

known.17 It answers the question whether parameters can by uniquely recovered assuming some

given noise-free input-output data. In this sense, structural identification is only necessary for our

analysis. Another distinct feature of our approach is that we successfully circumvent the prob-

lem that analytical mapping between the deep and ABCD-representation parameters is unknown.

Beyond the state-space framework, our important contribution is the practical insight that the

identification problem in DSGE models essentially boils down to solving a system of polynomial

equations.

Before we proceed, let us discuss one limitation of our approach related to the current hardware

restrictions. As we have already mentioned, it has been formally proved that computing a Gröbner

basis requires a finite number of iterations. However, these computations can be very memory

intensive. Even when the resulting Gröbner basis is small, the polynomials generated at intermediate

steps can be very large so that the computing unit runs out of memory. Unfortunately, there is no

easy way to judge how complicated the calculations will be just by looking at the original system.

It certainly helps if the polynomials consist of a small number of monomials and their degree is

also small. Inspecting our identification conditions (23)-(31) reveals that they generate monomials

of relatively small degree, not exceeding three but for those that arise from possibly non-linear

dependence of matrices Γ0-Γ3 on θ (or α). The polynomials are even simpler in the square case,

when conditions (32)-(37) can be used. Moreover, matrices Γ0-Γ3 are typically sparse, especially in

15The use of arbitrary precision is also strongly favored in the identification analysis by Qu and Tkachenko (2022).
16See Komunjer and Ng (2011) for how this can be necessary and how it can be done in the case of more sophisticated

models like Smets and Wouters (2007).
17Roughly speaking, this would amount to assume in our setup that all shocks are observable and there are no

measurement errors.
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larger DSGE models, which we will see in the examples below. These features are probably why

our identification framework can work even for medium-sized models. It is also clear that the size

of the model matters, and especially the number of state variables and shocks as they determine

the dimensions of matrices ¯̃B, D̄, ¯̃F , Ḡ, T and Q that need to be solved for. For example, as we will

show in the next section, we can easily solve the identification problem in a variant of the Smets

and Wouters (2007) model in which the output gap is defined as deviation of output from trend. If

we instead consider the original formulation, which includes a flexible price block with additional

six state variables, our framework cannot handle it anymore due to memory constraints.

6 Examples

We demonstrate the working of our identification framework with several examples of DSGE models,

for which, and unlike in the Koop et al. (2013) model considered in Section 5.2, we need to use

the ABCD-representation. The first one is based on Cochrane (2011), and its simplicity allows us

to show in detail the key steps of our analysis, including the use of the Gröbner basis. We next

exploit a small-scale model by An and Schorfheide (2007), AS henceforth, modified to allow for

correlation between government spending and productivity as in Herbst and Schorfheide (2016).

This is a very instructive example as it allows to nest various non-trivial types of identification

issues, including the case when the model is only locally (but not globally) identified. Solving the

identification problem in these models using our approach takes only a fraction of a second.18 We

then move to two popular medium-sized models represented by Smets and Wouters (2007) and

Justiniano and Preston (2010), where computational time can be non-negligible and the memory

constraints mentioned in the previous section can become binding.

6.1 Cochrane model

6.1.1 Model summary and its analytical solution

Consider a very simple model

it = Etπt+1 (48)

it = ϕπt + xt (49)

where it is the nominal interest rate, πt denotes inflation and xt is a monetary policy shock that

follows a stationary AR(1) process. The first equation can be interpreted as the log-linearized

Fisher relationship, while the second as a simple monetary policy feedback rule. We restrict here

our attention to the case of determinacy so that ϕ > 1.

Substituting out it and writing the process driving xt explicitly leads to the following system

xt = ρxt−1 + εt (50)

18All computation is done using a unit with CPU speed 2.90 GHz and 16 GB of RAM memory.
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ϕπt + xt = Etπt+1 (51)

where | ρ |< 1 and εt ∼ N(0, v), with v > 0 denoting the variance. This system can be easily cast

into form (1), with st = xt, pt = πt, θ = [ ρ ϕ v ]′ and

Γ0 =

[
1 0

1 ϕ

]
; Γ1 =

[
0 0

0 1

]
; Γ2 =

[
ρ

0

]
; Γ3 =

[
1

0

]
; Σ = v

Note that all deep parameters collected in θ enter the model equations linearly so that we do not

need to rewrite them using semi-structural parameters, which we can formally write as α = θ. If the

only observable variable is inflation, i.e. yt = πt, and there is no measurement error nor intercept

in the observation equation, we have

M = 0; H =
[
0 1

]
; J = 0

The model is simple enough to have an analytical solution, which, given the restriction on ϕ, is

uniquely given by formulas (2)-(3) with the following coefficients

A = ρ; B = 1; F = − ρ

ϕ− ρ
; G = − 1

ϕ− ρ

Note that under the stated conditions ϕ− ρ > 0. We also obviously have C = F and D = G. This

solution implies that the observable variable can be written as an AR(1) process

yt = ρyt−1 −
1

ϕ− ρ
εt (52)

Having such an analytical solution, the identification analysis is straightforward and we can imme-

diately conclude that, of the three model parameters, only ρ is globally identified while ϕ and v

cannot be separately identified.

6.1.2 Calculating the Gröbner basis

To demonstrate the working of our framework, suppose now that, as it is typically the case, we do

not know the analytical solution of the model, so that A, B, C and D are just numbers. Let us

apply our framework at a generic point θ = [ 0.8 1.8 1 ]′ so that A = 0.8, B = 1, C = −0.8 and
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D = −1. The identification conditions (23)-(31) can then be written as follows

0.8T = ρ̄T

0.8T + ϕ̄ ¯̃F − 0.8 ¯̃F = 0

−T ¯̃B + 1 = 0

¯̃F ¯̃B − T ¯̃B = ϕ̄Ḡ

−0.8 = ¯̃F (53)

D̄ = Ḡ

0.64Q−Q = −1 + ( ¯̃B)2v̄

−0.64Q = ¯̃Bv̄D̄ + 1

0.64Q = (D̄)2v̄ − 1

where the last one was omitted as it becomes an identity when the dimension of Q is one. The

unknown variables are: ρ̄, ϕ̄, v̄, as well as ¯̃B, D̄, ¯̃F , Ḡ, T and Q, all of which are one-dimensional

objects. The identification conditions are hence given by a system of polynomial equations of degree

three. Finding its all solutions is not straightforward even in this simple case. We will show now

how this goal can be achieved by calculating the Gröbner basis of the ideal generated by these

polynomials.

As we mentioned in the previous section, defining a Gröbner basis involves ordering of monomials,

which allows for a unique placement of terms in each polynomial. In applications like ours, the most

convenient one is the so-called lexicographic (lex) ordering, applied to variables arranged such that

the objects of interest, which are the model parameters ρ̄, ϕ̄ and v̄, come first. The sequence in

which we listed the unknown variables in the previous paragraph meets this criterion, so we use it

here. After applying the lex ordering to our polynomials, we obtain the following Gröbner basis

0.64Q2 +Q = 0

TQ+ 0.8Q = 0

ḠQ = 0

ḠT + 0.64Q+ 1 = 0

¯̃F + 0.8 = 0 (54)

D̄ − Ḡ = 0

¯̃B + Ḡ− 0.8Q = 0

v̄ − T 2 + 0.2304Q = 0

ϕ̄− T − 0.8 = 0

ρ̄− 0.8 = 0

where all numbers showing up in the equations above are exact rational numbers (even though we
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present them using a decimal notation) as they are derived by analytical algebraic operations that

do not involve any numerical approximation.

6.1.3 Identification analysis

One important thing to note is a triangular structure of the obtained Gröbner basis. The first of

polynomials includes onlyQ, the second adds to it T , the third may additionally contain Ḡ, and so on

until the model parameters are finally added. This is exactly what makes finding all solutions of the

system of polynomial equations (54) easy, in contrast to the original set of identification conditions

(53), and we know that the solutions are exactly the same. Naturally, the particular sequence in

which the unknown variables add to this triangle is no coincidence, but simply reflects the ordering

that we have chosen. As we will show now, this often allows for straightforward conclusions on

identification of the model parameters even without having to solve for all other objects.

In our particular example, we immediately see that all possible solutions must be such that

ρ̄ = 0.8 = ρ, hence this parameter is globally identified at the θ we consider. As regards the other

two parameters, they depend on Q and T , which are fully determined by the first two equations in

(54). From the first one we obtain that Q = −1.5625 or Q = 0. The first case leads to T = −0.8

and further to ϕ̄ = 0, which violates the restriction imposed on this parameter, and hence can be

ruled out. If instead Q = 0, the second equation does not put any restriction on T , and hence v̄ and

ϕ̄ are not identified. For T = 1 we obtain θ̄ = θ, but any deviation of T from unity results in an

alternative θ̄ that is observationally equivalent to θ. This deviation can be arbitrarily small, which

means that the identification failure is local.

A useful feature of our approach is that having the Gröbner basis also allows to establish the

explicit relationship between the unidentified parameters, which (by eliminating T from the penul-

timate two equations) is v̄ − (ϕ̄ − 0.8)2 = 0. Any pair of v̄ and ϕ̄ meeting this restriction and

consistent with the underlying support for deep parameters Θ is observationally equivalent to v = 1

and ϕ = 1.8. Naturally, this conclusion perfectly matches that following from the analytical solution

given by equation (52), but we arrived at it as if we did not know the latter. It also immediately

follows that fixing either v̄ or ϕ̄ renders the model globally identified at the considered θ.

6.2 An-Schorfheide model

6.2.1 Model summary

When written in a log-linearized form, the model is given by the following equations

xt = Etxt+1 + gt − Etgt+1 −
1

τ
(Rt − Etπt+1 − Etzt+1) (55)

πt = βEtπt+1 + κ(xt − gt) (56)

Rt = ρmRt−1 + (1− ρm)[ψ1πt + ψ2(xt − gt)] + εm,t (57)

zt = ρzzt−1 + ρzggt−1 + εz,t (58)
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gt = ρggt−1 + ρgzzt−1 + εg,t (59)

There are three endogenous variables in the model: detrended output xt, inflation πt and the

interest rate Rt. They are driven by two exogenous AR(1) processes for productivity growth zt

and government spending gt, with innovations εz,t and εg,t, respectively, and by an i.i.d. monetary

policy shock εm,t. All of the i.i.d. innovations are assumed to be mutually uncorrelated and their

variances are vz, vg and vm, respectively. The 13-dimensional vector of deep parameters is hence

θ = [ τ β κ ψ1 ψ2 ρm ρz ρzg ρg ρgz vz vg vm ]′.

The model can be cast in form (1), with states st = [ zt gt Rt ]′, policy variables pt =

[ xt πt ]′, shocks εt = [ εz,t εg,t εm,t ]′ and matrices Γ0, Γ1, Γ2, Γ3 and Σ given by

Γ0 =


0 −τ 1 τ 0

0 κ 0 −κ 1

0 (1− ρm)ψ2 1 −(1− ρm)ψ2 −(1− ρm)ψ1

1 0 0 0 0

0 1 0 0 0

 ; Γ1 =


1 −τ 0 τ 1

0 0 0 0 β

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



Γ2 =


0 0 0

0 0 0

0 0 ρm

ρz ρzg 0

ρgz ρg 0

 ; Γ3 =


0 0 0

0 0 0

0 0 1

1 0 0

0 1 0

 ; Σ =

 vz 0 0

0 vg 0

0 0 vm



where we have multiplied equation (55) by τ so that all coefficients in the model equilibrium con-

ditions are polynomials. As a result, we do not need to define any auxiliary parameters and can

implement our identification analysis directly on the deep model parameters, i.e. α = θ.19 The

vector of observable variables is yt = [ Rt xt πt ]′ and there are no measurement errors, which

means that H = [ 03×2 I3 ] and J = [ 03×3 ].

6.2.2 Global identification failure in a locally identified model

Let us start with the following benchmark parametrization: τ = 2, β = 0.9975, κ = 0.33, ψ1 = 1.5,

ψ2 = 0.125, ρm = 0.75, ρz = 0.9, ρzg = 0.1, ρg = 0.95, ρgz = −0.075, vz = 0.09, vg = 0.36,

vm = 0.04. These values are the same as in An and Schorfheide (2007), except for ρzg and ρgz,

which are taken from Koci ↪ecki and Kolasa (2018). Calculating the Gröbner basis results in the

following set of solutions for θ̄:

19More precisely, in the original An-Schorfheide model κ is actually a semi-structural parameter, linked to the deep
model parameters via κ = τ 1−ν

νπ2ϕ
. Since ν, π and ϕ do not show up anywhere else in the model equations, including

them separately in θ instead of combining into κ trivially leads to (local) identification failure.
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0 = u2 − 1.8697u+ 0.8697

...

v̄m = 0.04

v̄g = −0.3128 + 0.6728u

v̄z = 0.1279− 0.0379u

ρ̄gz = 0.0209− 0.0959u

ρ̄g = 0.9345 + 0.0155u

ρ̄zg = 0.2415− 0.1415u (60)

ρ̄z = 0.9155− 0.0155u

ρ̄m = 0.75

ψ̄2 = 0.2516− 0.1266u

ψ̄1 = 1.3131 + 0.1869u

κ̄ = 0.4912− 0.1612u

β̄ = 0.5351 + 0.4624u

τ̄ = 2

where u is the second element of the second row in matrix T . To save space, we skip above the

equations determining the solutions for other “unknowns” in the system of identification conditions

(23)-(31) as they are not needed to arrive at identification conclusions for θ – all we need to know

is the solution for u and it is fully determined by the first equation in (60). We also report the

numbers rounded to four decimal digits, even though they are in fact arbitrarily accurate numbers.

As we can see, three structural parameters, namely τ̄ , ρ̄m and v̄m, are equal to their respective

elements of θ, at which we check identification. The remaining elements of θ̄ are parametrized by

u, which needs to be consistent with the quadratic restriction in the first equation, implying that

u = 1 or u = 0.8697. It is easy to verify that, in the former case, we get our benchmark parameter

vector θ, while the latter case results in an observationally equivalent model parametrization that

is exactly the same as that obtained by Koci ↪ecki and Kolasa (2018) with their numerical algorithm.

We have thus a formal and constructive proof that the AS model is locally but not globally identified

at θ, and that the identification failure concerns all deep parameters but τ , ρm and vm. Moreover,

looking at the Gröbner basis (60) immediately reveals that fixing any of the unidentified parameters

renders the model globally identified.

6.2.3 Local identification failure

Let us now consider the same benchmark parameter vector θ, except that we rule out any spillovers

between productivity and government spending shocks, i.e. fix ρzg = ρgz = 0. Calculating the
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Gröbner basis yields:

0 = u2 − 71.9356u

0 = uw

...

v̄m = 0.04w2

v̄g = 0.36

v̄z = 0.09 + 5.5737u

ρ̄g = 0.95

ρ̄z = 0.9− 0.0054u (61)

ρ̄m = 0.75w

0 = (ψ̄2 + 2.7682)u

0 = ψ̄2(w − 1.3333)− 3.6909 + 3.7326w

ψ̄1 = 1.5720− 0.5758ψ̄2

κ̄ = 0.33

β̄ = 0.9975

τ̄ = 2− 0.6595u

where, as before, we save space by skipping those elements of the basis that are not necessary for

our identification analysis.

Of the two roots of the first equation, only u = 0 does not violate the restrictions on the deep

model parameters. In particular, the other root implies τ < 0, so we can rule it out. If u = 0, the

second equation does not put any restrictions on w. Setting w = 1 results in θ̄ = θ, any other value

of w meeting the restrictions on the deep parameters gives an alternative parameter vector θ̄ that is

observationally equivalent to θ. The identification failure concerns exclusively ρm, ψ1, ψ2 and vm,

which is now proved in a constructive way.

One can think of this failure as local since it applies to any vicinity of w = 1. This conclusion

is consistent with previous papers dealing with this version of the AS model, see e.g. Qu and

Tkachenko (2012). Importantly, however, and in contrast to any of the existing approaches to

analyze local identification (also Iskrev, 2010; Komunjer and Ng, 2011), our framework analytically

produces the whole set of parameter vectors that are observationally equivalent to the one at which

we check identification. In this example, the set is one-dimensional and can be written, after some
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rearrangement, as follows

ρ̄m = 0.75w

ψ̄1 =
−4.2211 + 3.7211w

w − 1.3333

ψ̄2 =
3.6909− 3.7326w

w − 1.3333
(62)

v̄m = 0.04w2

where w is any real number that keeps the alternative model parametrization θ̄ in the determi-

nacy (and stability) region. A similar (but numerical) concept called nonidentification curves was

proposed earlier by Qu and Tkachenko (2012) but it does not generate parametric characteriza-

tion of the whole set of observationally equivalent parameter values like (62). Having such an

explicitly defined set can be useful. For example, one can immediately see from it that our baseline

parametrization, which features a positive response of the interest rate to both inflation and output,

can be observationally equivalent to one which implies that the central bank’s reaction to output is

negative (e.g. for w = 0.8).

6.2.4 Handling indeterminacy

In the previous two parametrizations of the AS model, we have considered the parameter vectors

that imply a unique stable solution. However, our framework can also handle indeterminate cases.

To demonstrate it, let us consider the same benchmark θ as before, except that now ψ1 = 0.75, i.e.

half the previously assumed value. It can be easily verified, e.g. by checking the Blanchard-Kahn

conditions, that there are infinitely many stable equilibria under such parametrization. As shown

by Lubik and Schorfheide (2003), the full set of these equilibria are still given by equations (2) and

(3), except that the vector of shocks εt must include a sufficient number of sunspots. Moreover,

expectations of forward-looking variables become new states, and hence need to be included in

vector st. As demonstrated by Farmer et al. (2015), an equivalent characterization of indeterminate

equilibria is to redefine a subset of expectational errors as new fundamentals. This is what we do

in this example.

The order of indeterminacy in the considered model is one, so we need to pick one expectational

error. Without loss of generality, let us pick the one associated with the output gap xt. Then, the

AS model can be written as

xt = x̃t + gt − Etgt+1 −
1

τ
(Rt − Etπt+1 − Etzt+1) (63)

πt = βEtπt+1 + κ(xt − gt) (64)

Rt = ρmRt−1 + (1− ρm)[ψ1πt + ψ2(xt − gt)] + εm,t (65)

xt − x̃t−1 = ρszεz,t + ρsgεg,t + ρsmεm,t + εs,t (66)
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zt = ρzzt−1 + ρzggt−1 + εz,t (67)

gt = ρggt−1 + ρgzzt−1 + εg,t (68)

where x̃t = Etxt+1, εs,t is an i.i.d. sunspot shock with variance vs and, as evident from equation

(66), we allow for possible correlation between expectational errors and other structural shocks.

As an illustration, we check identification of this model at ρsz = ρsg = ρsm = 0.1, vs = 0.01.

Calculating the Gröbner basis implies a unique solution to our identification restrictions, i.e. θ̄ = θ.

We have hence proved that the AS model is globally identified at this indeterminate parametrization

θ. We arrive at the same conclusion also if we fix ρzg = ρgz = 0, thus confirming the outcome

obtained by Qu and Tkachenko (2017) with a numerical algorithm that searches over the parameter

space.

6.3 Smets-Wouters model

We next apply our identification framework to a variant of the widely cited medium-sized DSGE

model of Smets and Wouters (2007). The only deviation from the original model is that, following

the practice in many policy making institutions, we define the output gap in the monetary policy

rule as the deviation of output from its deterministic trend rather than from its potential level.

This allows us to leave out the flexible price block and calculate the Gröbner basis in just around

10 seconds. Without this simplification, memory requirements become prohibitively expensive and

the Gröbner basis cannot be calculated. Since the model is quite large and its full version well

documented in the literature, we describe its structure and all steps in our identification analysis in

Appendix A.6, and here we only discuss the conclusions.

By applying our identification framework, we can prove the following results. First, if none

of the 41 deep parameters in the model are fixed, the model is not locally (and hence also not

globally) identified at the posterior mean reported by Smets and Wouters (2007). Second, after

fixing two appropriately selected parameters, which are either the curvature of the Kimball goods

market aggregator or the Calvo probability for prices, and either the curvature of the Kimball labor

market aggregator or the Calvo probability for wages, the model is globally (and hence also locally)

identified.

The part of these findings that concerns local identification hence confirms the results obtained

by Iskrev (2010) and Komunjer and Ng (2011), who consider the original version of the model. The

only paper that has studied the Smets-Wouters model from a global identification perspective is Qu

and Tkachenko (2017). By applying a numerical routine that searches for observationally equivalent

parameters, they conclude that the model is globally identified after fixing the five parameters that

were originally calibrated in the original paper.20 The novel finding obtained using our framework is

that only two parameters need to be fixed to obtain global identification, at least when the flexible

price block is removed.

20The additional three parameters are the depreciation rate, steady-state wage markup and the steady-state share
of government purchases in output.
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6.4 Open economy models

We finally use our framework to study global identification in several variants of open economy

models, which has not been done before. Our departure point is the setup developed by Justiniano

and Preston (2010), which can be considered a more empirically-oriented version of the small open

economy setup by Gali and Monacelli (2005). Similarly to medium-sized closed economy DSGE

models in the spirit of Smets and Wouters (2007), the model features imperfect competition, price

rigidities, indexation and habits. It also includes two important open economy frictions, namely

incomplete international financial markets and local currency pricing in imports. The model is

estimated using eight time series, which are home and foreign output, inflation and the short-term

interest rates, as well as the terms of trade and real exchange rate.

We additionally consider several extensions to this baseline setup that have been recently em-

phasized as key to resolving several important puzzles in the open economy literature, see Itskhoki

and Mukhin (2021) and Gopinath et al. (2020). These include local currency pricing in exports,

strategic complementarities in pricing, and use of imported intermediate inputs in production sold

abroad. In Appendix A.7, we present the log-linearized equilibrium conditions of the richest version

of the open economy model, and explain how it can be reduced all the way back to the origi-

nal Justiniano-Preston setup by putting appropriate restrictions on selected parameters. We check

global identification at the parameter values calibrated and estimated for Canada (with foreign econ-

omy represented by the United States), while the additional parameters showing up in extended

versions are set to typical values from the literature. Our analysis takes about half a second for the

original (smallest) version of the model but around five minutes for its richest version.

The striking finding of our identification analysis is that, at least when we use the above-

mentioned eight time series as observables, all the model variants prove to be globally identified.

This is despite we do not fix any of the structural parameters that are usually calibrated rather

than estimated when such models are taken to the data.

All of this suggests that, as long as one uses the standard set of observables, observational

equivalence might not be the key source of problems encountered while estimating medium-sized

open economy DSGE models. A similar conclusion has been recently reached by Adolfson et al.

(2019).

6.5 General applicability

When successfully executed, our framework can solve the identification problem in a linearized

DSGE model, proving its global identification or lack thereof, and offering some analytical charac-

terization of the identification failure in the latter case. However, as we have stressed before, our

approach has some limitations that we now briefly summarize. To implement our method, one needs

to specify the problem in a particular way, which may demand some analytical effort, especially

when the model is large. The necessary steps may involve eliminating redundant states and defining

auxiliary parameters such that the problem has a polynomial structure. In sophisticated models, the

mapping between the auxiliary and structural parameters may be complex and require numerical
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methods to analyze. Another limitation is significant computer power and memory needed to cal-

culate the Gröbner basis. As we have seen from the Smets and Wouters (2007) model example, this

may be a binding constraint for some medium-sized DSGE models and standard computing units

that are currently in use. Needless to say, this last obstacle will be losing importance if computer

performance keeps improving fast.

7 Conclusions

In this paper we have developed a comprehensive framework to analyze local and global identification

in linearized DSGE models or, more generally, dynamic linear systems with rational or model-

consistent expectations. Its main advantage is an analytical flavor, which effectively allows to prove

identification or lack thereof. The essence of our approach is application of a Gröbner basis to solve

analytically for all roots of a system of polynomial equations, which make up a formal identification

condition that we derive.

Calculation of the Gröbner bases is known to be computationally involved for large systems,

but we have shown that it can be still successfully applied to small and even some medium-sized

DSGE models. One of the conclusions that emerge from the set of studied examples is that ensuring

local identification in this class of models usually makes them also globally identified, even though

this cannot be always guaranteed. Instead, problems with estimating these models using maximum

likelihood, commonly resolved by resorting to Bayesian methods, are much more likely to stem from

misspecification or weak identification issues associated with short data series or irregularities in

the likelihood function (Al-Sadoon, 2021).

Finally, it is worth stressing that using the concept of a Gröbner basis is not the only possible

way to make use of our formal identification condition. One potentially attractive avenue to explore

is application of all-solution homotopy methods, recently brought to the attention of economists by

Kubler et al. (2014). While numerical in its nature, it may be a useful complement to the Gröbner

basis due to its computational advantage, arising from the use of parallelizability.
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Appendix

A.1 Discussion of Assumption 2

Let us denote s = n2+nk+rn+rk+ 1
2k(k+1) and S = {A,B,C,D,Σ ∈ Rs|rank(O) = rank(C) =

n} = S1 ∩ S2, where S1 = {A,B,C,D,Σ ∈ Rs| rank(O) = n} = {A,B,C,D,Σ ∈ Rs|det(O′O) ̸=
0}, S2 = {A,B,C,D,Σ ∈ Rs|rank(C) = n} = {A,B,C,D,Σ ∈ Rs| det(CC′) ̸= 0}. Evidently, both

S1 and S2 are open subsets of Rs (being the inverse image of the open set R \ {0}). Since a finite

intersection of open subsets is open, we conclude that S is open. Further, since the determinant is

a polynomial that is an analytic function of its elements, it implies that S is dense in Rs. This is

because an analytic function such as the determinant cannot be equal to 0 on an open subset of Rs

unless it is identically equal to zero. Since S is an open and dense subset of Rs, we conclude that if

Assumption 2 is valid for one θ ∈ Θ, all θ ∈ Θ such that Assumption 2 is violated form a nowhere

dense subset of Rs of measure zero.

A.2 Proof of Theorem 1

Recalling the notation introduced in the main text, let us define the infinite block Hankel matrix as

H =


Λ1 Λ2 Λ3 · · ·
Λ2 Λ3 Λ4 · · ·
Λ3 Λ4 Λ5 · · ·
...

...
...

. . .

 =



C

CA

CA2

CA3

...


[
N AN A2N A3N · · ·

]
(A.1)

Assuming stochastic minimality (Assumption 2) and using Sylvester’s rank inequality, it may be

easily shown that rank(H) = n. Suppose that two sets of deep parameters θ̄ ̸= θ generate the same

autocovariances. Looking at the Hankel matrix, this implies OAC = ŌĀC̄. By Assumption 2, it

follows that Ā = (Ō′Ō)−1Ō′OACC̄′(C̄C̄′)−1. Let us denote T = (Ō′Ō)−1Ō′O, which is nonsingular

also by Assumption 2. Since we additionally have OC = ŌC̄, we get T−1 = CC̄′(C̄C̄′)−1, hence

Ā = TAT−1. Looking at the first block row of the Hankel matrix, we have CC = C̄C̄ ⇒ C̄ = CT−1.

We have hence arrived at the first two conclusions of Theorem 1. Uniqueness of T follows from

equality Ō = OT−1 and full column rank of O.

Now suppose that θ̄ ̸= θ results in the same z-spectrum Φ(z) = Φ̄(z) for all z ∈ C in an open

annulus containing the unit circle (i.e. θ̄ ≡ θ), that is

[C(zIn −A)−1...Ir]

[
BΣB′ BΣD′

DΣB′ DΣD′

]
[C(z−1In −A)−1...Ir]

′ =

[C̄(zIn − Ā)−1...Ir]

[
B̄Σ̄B̄′ B̄Σ̄D̄′

D̄Σ̄B̄′ D̄Σ̄D̄′

]
[C̄(z−1In − Ā)−1...Ir]

′ (A.2)
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Using Ā = TAT−1 and C̄ = CT−1, we obtain

[C(zIn −A)−1...Ir]

[
BΣB′ BΣD′

DΣB′ DΣD′

]
[C(z−1In −A)−1...Ir]

′

= [C(zIn −A)−1...Ir]

[
T−1B̄Σ̄B̄′T ′−1 T−1B̄Σ̄D̄′

D̄Σ̄B̄′T ′−1 D̄Σ̄D̄′

]
[C(z−1In −A)−1...Ir]

′ (A.3)

Define the Lyapunov equation evaluated at θ as P = APA′ + BΣB′, and that evaluated at θ̄ as

P̄ = ĀP̄ Ā′+ B̄Σ̄B̄′. Using Ā = TAT−1, the latter may be written as T−1P̄ T ′−1 = AT−1P̄ T ′−1A′+

T−1B̄Σ̄B̄′T ′−1. Since A is stable , P̃ = T−1P̄ T ′−1 is unique.

To proceed further, we need to use a well known lemma, see e.g. Lindquist and Picci (2015), p.

199. Let X be any symmetric n× n matrix X, then

[C(zIn −A)−1...Ir]

[
X −AXA′ −AXC ′

−CXA′ −CXC ′

]
[C(z−1In −A)−1...Ir]

′ = 0 (A.4)

Let us use this lemma and subtract (A.4) evaluated at X = P and at X = P̃ from, respectively,

the left and right-hand side of equation (A.3). Keeping in mind the Lyapunov equations, we get

[C(zIn −A)−1...Ir]

[
0 S

S′ R

]
[C(z−1In −A)−1...Ir]

′ = 0 (A.5)

where S = BΣD′ − T−1B̄Σ̄D̄′ +A(P − P̃ )C ′ and R = DΣD′ − D̄Σ̄D̄′ + C(P − P̃ )C ′.

Let ρ denote the maximum eigenvalue (in modulus) of A matrix. By Assumption 1, 0 ≤ ρ < 1.

Hence for all |z| > ρ we have (zIn − A)−1 = z−1In + z−2A + z−3A2 + · · · , and for all |z| < 1
ρ (if

ρ = 0, set 1
ρ = ∞) we have (z−1In −A)−1 = zIn + z2A+ z3A2 + · · · . Multiplying all terms yields

S′(zIn + z2A′ + z3A′2 + · · · )C ′ + C(z−1In + z−2A+ z−3A2 + · · · )S +R = 0 (A.6)

The formula (A.6) is the two-sided z-transform (or Laurent series) of the zero function, which

converges absolutely in the open annulus Λ = {z ∈ C | ρ < |z| < 1
ρ}. Since 0 =

∑∞
l=−∞ 0 · zl

for all z ∈ Λ, by uniqueness of the Laurent series it follows that all coefficients of zl, for all l,

in (A.6) must be zeros.21 Using this fact, we get R = 0 and, by stacking together (part of) the

remaining restrictions we have [C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′S = 0. By Assumption 2, the latter

yields S = BΣD′ − T−1B̄Σ̄D̄′ + A(P − P̃ )C ′ = 0. Lastly, combining the two Lyapunov equations

into one equation we have A(P − P̃ )A′− (P − P̃ ) = T−1B̄Σ̄B̄′T ′−1−BΣB′. By setting Q = P − P̃ ,
we arrive at conclusions 3)-5) of Theorem 1. Symmetry and uniqueness of Q follows from symmetry

and uniqueness of P and P̃ .

The implication in the other direction, which amounts to checking if the spectral density remains

21Putting it other way, note that since {z ∈ C||z| = 1} ⊂ Λ, all coefficients in the Laurent series f(z) =
∑∞

l=−∞ al ·zl

can be uniquely obtained as al =
1

2πi

∫
|z|=1

f(z)

zl+1 dz, for l = 0,±1,±2, .... Since in our case f(z) = 0, the result follows.
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the same if conclusions 1)-5) in Theorem 1 hold, is easy to demonstrate.22 Finally, conclusion 6)

follows immediately from equality of the first moments of observable variables.

A.3 Discussion of Assumption 3

We first show that, if DΣD′ is non-singular,23 then a sufficient condition to make Assumption 3

hold is that matrix Ψ = A−BΣD′(DΣD′)−1C is stable, i.e. its all eigenvalues are strictly less than

1 in modulus. To see it, let us additionally define M̃ = BΣB′ − BΣD′(DΣD′)−1DΣB′. Then, by

Theorem 5.4. in Katayama (2005), Assumption 3 holds if and only if, for any z ∈ C with |z| ≥ 1,

both rank[Ψ − zIn
... M̃

1
2 ] = n and rank

[
Ψ − zIn

C

]
= n. When all eigenvalues of Ψ are such that

|z| < 1, then for all z ∈ C with |z| ≥ 1, Ψ − zIn is nonsingular, i.e. rank(Ψ − zIn) = n.

Moreover, when D is nonsingular, so that Ψ = A−BD−1C, then stability of Ψ is necessary and

sufficient for Assumption 3. To see it, note that, when D is nonsingular, then M̃ = 0. Suppose that

Assumption 3 holds, but Ψ is not stable, which means that there is at least one |z| ≥ 1 such that

Ψ − zIn is singular, i.e. rank(Ψ − zIn) < n. In such a case rank[Ψ − zIn
... M̃

1
2 ] = rank[Ψ − zIn

... 0] =

rank(Ψ − zIn) = n , for all |z| ≥ 1, cannot hold. Hence we arrive at a contradiction, which implies

that Ψ must be stable.

As a matter of fact, if D is nonsingular, then stability of Ψ is equivalent to the “poor man’s”

invertibility condition in Fernández-Villaverde et al. (2007) and is almost identical to Assumption

4-S in Komunjer and Ng (2011), i.e. left-invertibility of the transfer function.24 Moreover, to the

extent that Assumption 4-S generalizes the “poor man’s” invertibility condition for the case r > k,

the condition concerning stability of Ψ can be thought of as generalizing the latter for the case

r < k.

A.4 Proof of Proposition 1

By definition Λ0 − CPC ′ = DΣD′, N − APC ′ = BΣD′, P − APA′ = BΣB′. Let us write those

equations in the form of the following symmetric matrix[
P −APA′ N −APC ′

N ′ − CPA′ Λ0 − CPC ′

]
=

[
BΣB′ BΣD′

DΣB′ DΣD′

]
(A.7)

On the other hand, by Assumption 2 we have Ā = TAT−1 and C̄ = CT−1. This implies Λl =

CAl−1N = C̄Āl−1N̄ = CAl−1T−1N̄ , for l > 0. Using assumption rank(O) = n, we conclude that

N̄ = TN . Hence, for all θ̄, we can write an analogous symmetric matrix[
P̃ −AP̃A′ N −AP̃C ′

N ′ − CP̃A′ Λ0 − CP̃C ′

]
=

[
T−1B̄Σ̄B̄′T ′−1 T−1B̄Σ̄D̄′

D̄Σ̄B̄′T ′−1 D̄Σ̄D̄′

]
(A.8)

22A similar note also applies to the proofs of Propositions 1 and 2 to be presented below.
23Non-singularity of DΣD′ is also imposed by Komunjer and Ng (2011) as Assumption 4-NS.
24Assumption 4-S in the case of nonsingular D is equivalent to the statement that all eigenvalues of A − BD−1C

are less than or equal to 1 in modulus.
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where P̃ = T−1P̄ T ′−1. To proceed, we will need the following lemma

Lemma 1. Let Assumptions 1 and 3 hold. Then W = AWA′ +KΣaK
′ has a unique solution with

respect to W . In addition P = W + Π, where P = E(sts
′
t) and Π is the solution to the Riccati

equation (8).

Proof. Since Π = AΠA′+BΣB′−KΣaK
′ and P = APA′+BΣB′, we have P −Π = A(P −Π)A′+

KΣaK
′. Since A is stable by Assumption 1 and KΣaK

′ is unique (because Π is unique),W = P−Π

is also unique.

Using Lemma 1, we can rewrite (A.7) and (A.8) as[
W −AWA′ N −AWC ′

N ′ − CWA′ Λ0 − CWC ′

]
=

[
AΠA′ −Π+BΣB′ AΠC ′ +BΣD′

CΠA′ +DΣB′ CΠC ′ +DΣD′

]
(A.9)

and

[
W̃ −AW̃A′ N −AW̃C ′

N ′ − CW̃A′ Λ0 − CW̃C ′

]
=

[
AΠ̃A′ − Π̃ + T−1B̄Σ̄B̄′T ′−1 AΠ̃C ′ + T−1B̄Σ̄D̄′

CΠ̃A′ + D̄Σ̄B̄′T ′−1 CΠ̃C ′ + D̄Σ̄D̄′

]
(A.10)

where W̃ = T−1W̄T ′−1 and Π̃ = T−1Π̄T ′−1. Using (A.9), we can equivalently write the equation

for W as W = AWA′+(N −AWC ′)(Λ0−CWC ′)−1(N −AWC ′)′. Evaluating the latter at θ̄, after

some simple algebra, we can show that W̃ = AW̃A′ + (N − AW̃C ′)(Λ0 − CW̃C ′)−1(N − AW̃C ′)′.

By Lemma 1, we conclude that W̃ =W .

Hence, the right hand sides of (A.9) and (A.10) are equal, and K̄ = TK, Σ̄a = Σa. Moreover,

AQ∗A′−Q∗ = T−1B̄Σ̄B̄′T ′−1−BΣB′, where Q∗ = Π− Π̃. However, since P =W +Π, P̃ = W̃ +Π̃

and W̃ =W , we have Q∗ = Π− Π̃ = P − P̃ = Q. Hence the additional conclusion 3) from Theorem

1 reappears automatically.

A.5 Proof of Proposition 2

Let us consider the following matrix[
In −V
0 Ir

][
P −APA′ N −APC ′

N ′ − CPA′ Λ0 − CPC ′

][
In 0

−V ′ Ir

]
(A.11)

where V = (N − APC ′)(Λ0 − CPC ′)−1. Clearly, using expression (A.7) and the fact that, by

Assumption 4, rank

[
B

D

]
= r, the inner matrix in (A.11) has rank r, and the whole matrix (A.11)

has also rank r. Multiplying all terms in (A.11) we have[
Z 0

0 Λ0 − CPC ′

]
(A.12)
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where Z = P − APA′ − (N − APC ′)(Λ0 − CPC ′)−1(N − APC ′)′. Using Assumption 4, we have

rank(Λ0 − CPC ′) = rank(DΣD′) = r and

r = rank

[
P −APA′ N −APC ′

N ′ − CPA′ Λ0 − CPC ′

]
= r + rank(Z) (A.13)

It follows Z = 0 i.e. P solves the equation for W . By Lemma 1, we conclude that P = W , hence

Π = 0. Proceeding similarly we can get an analogous result for any other θ̄, which leads us to the

finding that P̃ =W . Since W = W̃ (see the proof of Proposition 1), we get Π̃ = 0.

We conclude that not only the right hand sides of (A.9) and (A.10) are equal, but we can also

put Π = Π̃ = 0. As a result, we arrive at[
BΣB′ BΣD′

DΣB′ DΣD′

]
=

[
T−1B̄Σ̄B̄′T ′−1 T−1B̄Σ̄D̄′

D̄Σ̄B̄′T ′−1 D̄Σ̄D̄′

]
(A.14)

From (A.14), it follows quite easily that B̄ = TBU , D̄ = DU and Σ̄ = U−1ΣU ′−1, for some (unique)

nonsingular k × k matrix U .

A.6 Identification of the Smets-Wouters model

The considered model is made of the following 24 equations:

yt = α1it + (1− α1 − gy)ct +ϖzt + εgt (A.15)

ct = α2ct−1 + (1− α2)Etct+1 + α3(lt − Etlt+1)− α4(rt − Etπt+1 + εbt) (A.16)

it = α5it−1 + (1− α5)Etit+1 + α6qt + εit (A.17)

qt = α7Etqt+1 + (1− α7)Etrkt+1 − (rt − Etπt+1 + εbt) (A.18)

yt = ϕp [ϖk
s
t + (1−ϖ)lt + εat ] (A.19)

kst = kt−1 + zt (A.20)

ψzt = (1− ψ)rkt (A.21)

rkt = −(kst − lt) + wt (A.22)

kt = α8kt−1 + (1− α8)it + α9ε
i
t (A.23)

µpt = ϖ(kst − lt) + εat − wt (A.24)

πt = α10πt−1 + α11Etπt+1 − α12µ
p
t + εpt (A.25)

µwt = wt − σllt − α13ct + (α13 − 1)ct−1 (A.26)

wt = α5wt−1 + α14πt−1 + (1− α5)Et(wt+1 + πt+1)− α15πt − α16µ
w
t + εwt (A.27)

r̃t = ρrt − r∆yyt (A.28)
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rt = r̃t−1 + (1− ρ)rππt + [(1− ρ)ry + r∆y]yt + εrt (A.29)

εat = ρaε
a
t−1 + ηat (A.30)

εbt = ρbε
b
t−1 + ηbt (A.31)

εgt = ρgε
g
t−1 + ρgaη

a
t + ηgt (A.32)

εit = ρiε
i
t−1 + ηit (A.33)

εrt = ρrε
r
t−1 + ηrt (A.34)

εpt = ε̃pt−1 + ηpt (A.35)

ε̃pt = ρpε̃
p
t−1 + (ρp − µp)η

p
t (A.36)

εwt = ε̃wt−1 + ηwt (A.37)

ε̃wt = ρwε̃
w
t−1 + (ρw − µw)η

w
t (A.38)

and the covariance matrix of shocks, denoted by ηt with appropriate superscripts, is Σ = diag([va

vb vg vi vr vp vw]).

Compared to the original paper by Smets and Wouters (2007), we define the output gap in the

monetary policy feedback rule as the deviation of output from its deterministic trend rather than

from its hypothetical level in the absence of nominal rigidities and markup shocks. Additionally,

to fit the model to our identification framework, and in particular to meet Assumption 2, we use

a state-space representation of the ARMA processes for markup shocks and rewrite the monetary

policy rule using an appropriately defined auxiliary variable. See Supplement to Komunjer and Ng

(2011) and Koci ↪ecki and Kolasa (2018) for more details.

There are 41 deep parameters in the model, i.e. θ = [γ π l β δ gy σc λ φ ϕp ϖ ψ ιp ξp εp σl

ϕw ιw ξw εw ρ rπ ry r∆y ρa ρb ρg ρr ρr ρp ρw ρga µp µw va vb vg vr vr vp vw]
′.25 While writing the

model equations above using the semi-structural parameters, we have defined the following objects:

α1 = (γ−1+δ)ϖ
β−1γσc−1+δ

, α2 = λγ−1

1+λγ−1 , α3 = (1−ϖ)(σc−1)
ϕwσc(1+λγ−1)(1−α1−gy) , α4 = 1−λγ−1

(1+λγ−1)σc
, α5 = 1

1+βγ1−σc , α6 =
1

(1+βγ1−σc )φγ2
, α7 = βγ−σc(1− δ), α8 = (1− δ)γ−1, α9 = (1−α8)(1+βγ

1−σc)φγ2, α10 =
ιp

1+βγ1−σc ιp
,

α11 = βγ1−σc

1+βγ1−σc ιp
, α12 =

(1−βγ1−σcξp)(1−ξp)
(1+βγ1−σc ιp)ξp[(ϕp−1)εp+1]

, α13 = 1
1−λγ−1 , α14 = ιw

1+βγ1−σc , α15 = 1+βγ1−σc ιw
1+βγ1−σc ,

α16 = (1−βγ1−σcξw)(1−ξw)
(1+βγ1−σc )ξw[(ϕw−1)εw+1]

. Applying them substitutes the following elements of θ: β, δ, σc, λ,

φ, ιp, ξp, εp, ϕw, ιw, ξw, εw. The vector of semi-structural parameters is then α = [α1 ... α16 γ π l

gy ϕp ϖ ψ σl ρ rπ ry r∆y ρa ρb ρg ρr ρr ρp ρw ρga µp µw va vb vg vr vr vp vw]
′, and hence has four

elements more than θ. This is because we do not take into account all cross-equation restrictions

implied by the model’s deep parameters while defining α. This means that, if our identification

25The notation follows exactly Smets and Wouters (2007), except that (i) we replace α with ϖ as the former is
already reserved in our paper to denote the vector of semi-structural parameters, (ii) we denote the steady state levels
of inflation and labor simply as π and l, i.e. without bars, as these we use to indicate the observationally equivalent
alternative parameter values, and (iii) we use variance v rather than standard deviation σ to measure shock volatility
as the latter are obviously identified only up to a sign.
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conditions generate any ᾱ ̸= α, we will need to check if it is consistent with some θ̄ ∈ Θ. Since

the Smets-Wouters model is estimated using non-demeaned data, we can use first moments to our

identification analysis, associated with restriction M̄ = M in our identification conditions derived

in Section 4. This implies in particular γ̄ = γ, π̄ = π and l̄ = l, as these parameters determine

average growth in output, inflation and labor, respectively, all of which are observable. Since these

three parameters are identified from the first moments, we can treat them as fixed while deriving

the identification conditions.

Calculating the Gröbner basis associated with this identification problem at the posterior mean

reported in Smets and Wouters (2007), and for the seven observable variables that they use, reveals

that the only solution to the system (23)-(31) is such that ᾱ = α, which formally proves that all

semi-structural parameters that show up in equations (A.15)-(A.38) and in the shock covariance

matrix Σ are globally identified. To formulate the conclusions about the deep parameters, one needs

to examine the analytical links between α and θ listed above. This is relatively straightforward,

especially if we take into account that γ is identified from the first moments. In particular, for given

γ, α2 uniquely determines λ, then α4 pins down σc, α7 determines δ, while α5 pins down β . This

further allows to obtain uniquely φ from α6, ϕw from α3, ιp from α11, and ιw from α14. Out of the

remaining four deep parameters, ξp and εp are linked only to α12 while ξw and εw show up only in

the definition of α16, and hence they are not identified. To achieve identification, one needs to fix

one parameter in each of these two pairs.

A.7 Identification of open economy models

The richest version of the considered open economy model is given by the following 22 equations:

(1 + h)α1ct = α1Etct+1 + hα1ct−1 + (gt − Etgt+1)− (it − Etπt+1) (A.39)

(1−ϖ) [(1− ω)ct + ωxt] = yt − (1−ϖ)ηϖst +ϖλp∗H,t −ϖy∗t (A.40)

st − st−1 = πF,t − πH,t (A.41)

qt = ψF,t + (1−ϖ)st (A.42)

πH,t − δHπH,t−1 = β(EtπH,t+1 − δHπH,t) + α2 [(1− γH)mct + γHϖst] (A.43)

mct = φyt − (1 + φ)zt − φωxt +ϖst + (1− ω)α1(ct − hct−1) (A.44)

πF,t − δFπF,t−1 = β(EtπF,t+1 − δFπF,t) + α4 [(1− γF )ψF,t − γF (1−ϖ)st] + cpt (A.45)

πt = πH,t +ϖ(st − st−1) (A.46)

(it − Etπt+1)− (i∗t − Etπ
∗
t+1) = Etqt+1 − qt − χat − ϕt (A.47)

βat = at−1 + β[yt − (1− ω)ct − ωxt +ϖp∗H,t] (A.48)

ĩt = ψiit − (1− ψi)ψ∆yyt − (1− ψi)ψeqt (A.49)

39



it = ĩt−1 + (1− ψi)ψππt + (1− ψi)(ψy + ψ∆y)yt + (1− ψi)ψe(qt − π∗t + πt) + ηmt (A.50)

π∗H,t − δ∗HπH,t−1 = β(Etπ
∗
H,t+1 − δ∗HπH,t) + α3

[
(1− γ∗H)(mct − qt −ϖst)− p∗H,t

]
(A.51)

π∗H,t = p∗H,t − p∗H,t−1 + π∗t (A.52)

(1 + φ)(yt − zt) + (1− ω)α1(ct − hct−1) = ωφxt (A.53)

zt = ρzzt−1 + ηzt (A.54)

gt = ρggt−1 + ηgt (A.55)

cpt = ρcpcpt−1 + ηcpt (A.56)

ϕt = ρϕϕt−1 + ηϕt (A.57) π∗t

y∗t

i∗t

 = AV

 π∗t−1

y∗t−1

i∗t−1

+

 ηπ
∗

t

ηy
∗

t

ηi
∗
t

 (A.58)

and the covariance matrix of shocks denoted by ηt with appropriate superscripts is

Σ =

[
ΣM 0

0 ΣV

]
ΣM = diag([ vm vz vg vcp vϕ ]) ΣV =

 vπ∗ vπ∗y∗ vπ∗i∗

vπ∗y∗ vy∗ vy∗i∗

vπ∗i∗ vy∗i∗ vi∗


(A.59)

where AV and ΣV are 3× 3 matrices with, respectively, foreign VAR coefficients and the covariance

structure of VAR innovations. Note that AV contains 9 independent elements, while the number of

independent elements in ΣV is 6. As in the case of the Smets-Wouters model described in section

A.6, the monetary policy rule is written using an appropriately defined auxiliary variable to meet

Assumption 2.

There are 47 deep parameters in the model, i.e. θ = [h σ ϖ ω η λ φ β δH ξH γH δ∗H ξ∗H γ∗H
δF ξF γF χ ψi ψπ ψy ψ∆y ψe ρz ρg ρcp ρϕ vm vz vg vcp vϕ vπ∗ vy∗ vi∗ vπ∗y∗ vπ∗i∗ vy∗i∗ vec(AV )’]

′.

While writing the model equations we define α1 = σ
1−h , α2 = (1−ξH)(1−βξH)

ξH
, α3 =

(1−ξ∗H)(1−βξ∗H)
ξ∗H

and α4 =
(1−ξF )(1−βξF )

ξF
. Using these auxiliary definitions eliminates σ, ξH , ξ

∗
H and ξF , respectively,

so that the vector of semi-structural parameters is α = [h ϖ ω η λ φ β δH γH δ∗H γ∗H δF γF χ ψi

ψπ ψy ψ∆y ψe ρz ρg ρcp ρϕ vm vz vg vcp vϕ vπ∗ vy∗ vi∗ vπ∗y∗ vπ∗i∗ vy∗i∗ vec(AV )’ α1 α2 α3 α4]
′,

which also has 47 elements. Note that the mapping from α to θ is straightforward, so by solving

the identification problem for the former we immediately obtain the outcome for the latter.

Compared to the original Justiniano-Preston setup, the equilibrium conditions (A.39)-(A.58)

feature several additional structural parameters.26 These are: ω, which is the share of intermediate

26Otherwise, the notation here follows exactly Justiniano and Preston (2010), except that (i) we replace α with ϖ
as the former is already reserved in our paper to denote the vector of semi-structural parameters, (ii) we replace the
Calvo probabilities θ with ξ as the former we use to denote the vector of deep parameters, (iii) we use variance v
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inputs in output, γH ,γ
∗
H , γF , which controls the degree of strategic complementarity in domestic,

export and import pricing, and ξ∗H , which measures the degree of price stickiness in export sales.

We first analyze global identification for the model described in Justiniano and Preston (2010),

which obtains by setting ω = γH = γ∗H = γF = 0 and replacing the Phillips curve for exports (A.51)

with the law of one price for domestic production −ϖst = p∗H,t + qt. We check identification at

the point corresponding to the posterior median estimated by these authors for Canada, see Table

I in their paper. We next move to extensions, adding successively the new features until we reach

the full version described above. For all of these models, we find that the only solution to our

identification conditions (23)-(31) is such that ᾱ = α, and hence (after restricting each ξH , ξ
∗
H and

ξF to lie in the unit interval) θ̄ = θ.

rather than standard deviation sd to measure shock volatility, thus avoiding the need to impose an additional sign
restriction.
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