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1 Introduction

The celebrated Tarski (1955)1 fixed-point theorem has found numerous applica-

tions in various disciplines, especially economics. The theorem states that an in-

creasing transformation of a complete lattice has a complete lattice of fixed points.

This result has been extended to the case of monotone correspondence in the work

of Veinott (1992) and Zhou (1994).2 In the case of Tarski’s original fixed point

theorem, the lowest fixed point is the “limit” of the sequence of iterations starting

from the lowest element of the lattice, and the highest fixed point is the “limit”

of the sequence of iterations starting from the highest element of the lattice.3 In

his two recent papers, Olszewski (2021a,b) characterized the elements of the lat-

tice which are the sharp bounds for sufficiently large iterations on an increasing

function starting from any initial point of a domain. For example, in Olszewski

(2021b), the lower bound for the sequence starting from the lowest element of this

lattice is the lowest fixed point, and the upper bound for the sequence starting

from the highest element of this lattice is the highest fixed point. Interestingly,

the upper bound in the former case and the lower bound in the latter case must

be determined as limits of the sequences obtained by iterating the limits of the

sequences of finite iterations.

In this paper, we extend the recent result of Olszewski (2021b) on order con-

tinuous functions to the case of monotone upper order hemicontinuous correspon-

dences. This is an important extension as fixed point mappings studied in many

1 See also Knaster and Tarski (1928).
2 In the Veinott-Zhou theorem, monotone means ascending in the strong set order sense.

In section two of this paper, we shall refer to such correspondences as a weakly monotone.

In addition, the Veinott-Zhou theorem requires that the correspondence is subcomplete and

sublatticed valued.
3 For example, see the results on constructive versions of Tarski’s theorem in Cousot and

Cousot (1979) and Echenique (2005). To the best of our knowledge, this paper is the first paper

in the literature to study constructive and/or iterative methods to the Veinott-Zhou theorem.
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economic settings are typically not single-valued. In the paper, we consider two

important settings for domains for our correspondences: complete lattices and σ-

complete lattices.4 In particular, we construct fixed-point lower and upper bounds

for the sequences of iterations of a weakly monotone (resp., strongly monotone)

upper order hemicontinuous correspondence F : A ⇒ A that transforms a space

A that is a complete lattice (resp., a σ-complete lattice) starting from any given

initial point a0 ∈ A.5 In both of these important cases, we construct fixed points

a∗ and a∗ such that sufficiently remote elements ak of any sequence of iterations

(ak)∞k=0 (i.e., such that ak+1 ∈ F (ak) for all k) are approximately contained be-

tween a∗ and a∗. As in Olszewski (2021b), the fixed points a∗ and a∗ are sharp

or tight, i.e., b ≤ a∗ and a∗ ≤ b if fixed points b and b are such that remote finite

iterations of F starting at a0 are approximately located between b and b.6

One might argue that extensions of fixed-point theorems from mappings to

correspondences have worked pretty well in a variety of settings. In particular,

in our setting one may consider iterations ak+1 = inf F (ak), to obtain the lower

fixed-point bound, and by considering iterations ak+1 = supF (ak), to obtain upper

fixed-point bound. This is in fact the main idea behind the Veinott-Zhou extension

of Tarski’s theorem. We show, however, this idea does not deliver the desired

extension of the main results in Olszewski (2021a,b). More specifically, it would

deliver fixed-point bounds, but they are not necessarily tight.

4 In economic applications, the difference between complete lattices and σ-complete lattices

can be important. One such example is a fixed point problem in spaces of (Borel) measurable

functions over a compact domain A ⊂ Rn, where the space possesses a least and greatest element,

and is endowed with a pointwise partial ordering. This space is generally only σ-complete. When

this space is given an almost everywhere pointwise partial ordering, its equivalence class becomes

a complete lattice (e.g., see Van Zandt (2010), lemma 5).
5 We shall be precise in our definition of an upper order hemicontinuous correspondence in

the next section of the paper.
6 It is important to note that little is known in the existing literature even about the existence

of fixed points for monotone upper order hemicontinuous correspondences that transform sigma-

complete lattices. Our arguments here verify the existence, as well as provide iterative tight fixed

point bounds from any initial a0 ∈ A.
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This paper is related to an important and large literature in economics that

applies the Tarski-Kantorovich fixed-point principle when studying the existence of

equilibria.7 The Tarski-Kantorovich Theorem says for an order continuous trans-

formation of a countably chain complete partially ordered set (CCPO) with least

(resp., greatest) elements, the supremum (resp., infimum) of iterations from the

least (resp., greatest) element of the CCPO will converge in order to the least

(resp., greatest) fixed point.8 One way of understanding the results in Olszewski

(2021b) is that he shows that for order continuous functions that transform σ-

complete lattice, there exists a global version of the Tarski-Kantorovich theorem,

where from any element of the function’s domain, elements of the fixed point set

form tight bounds on sufficiently remote iterations. The second way of under-

standing his result is that he delivers a “local version”9 of Tarski’s theorem in the

setting of an order continuous transformation of a sigma-complete lattice.

This paper extends the result of Olszewski (2021b) to the case of correspon-

dences. In particular, we show the Tarski-Kantorovich principle holds globally

in both: setting of the original Veinott-Zhou extension of Tarski’s theorem for

complete lattices, where the correspondence is additionally assumed to be upper

order hemicontinuous, as well as in the setting of strongly monotone upper order

hemicontinuous correspondences in σ-complete lattices, where the correspondence

7 Some examples of work in economics applying the Tarski-Kantorovich Theorem include

papers on supermodular games (e.g., Van Zandt (2010), Kunimoto and Yamashita (2020), Balbus

et al. (2022)), models of production chains (Kikuchi et al., 2018), dynamic programming with

unbounded returns (e.g, Kamihigashi (2014), Becker and Rincón-Zapatero (2021)) among many

others), the existence of recursive equilibrium in dynamic stochastic growth models (e.g., Coleman

(1991), Mirman et al. (2008), Datta et al. (2018)), computing Bewley models in macroeconomics

(e.g., Li and Stachurski (2014), Açıkgöz (2018)).
8 For example, see Jachymski et al. (2000), Theorem 1, and Dugundji and Granas (1982),

p.15 for a discussion of the Tarski-Kantorovich theorem. See also Balbus et al. (2015) Theorem

1.
9 That is, he characterizes the elements of the “local lattice” which are the sharp bounds for

sufficiently large iterations on an order continuous transformation starting from any initial point

of a sigma-complete lattice.
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is additionally required to have the least and greatest element.

To obtain our results, we introduce a new notion of order continuity for mono-

tone correspondences (i.e., “upper order hemicontinuity”). Upper order hemicon-

tinuity of correspondences plays a critical role in obtaining our extensions of the

result of Olszewski (2021b). Olszewski (2021a) shows that similar ideas to those in

Olszewski (2021b) can be applied without order continuity conditions, but at the

expense of requiring transfinite arguments. Of course, the fact that such transfi-

nite constructions are required without order continuity is not surprising given the

literature on constructive characterizations of Tarski’s theorem where transfinite

arguments appear indispensable (e.g., Cousot and Cousot (1979), among others).

Similarly, in section 4 of this paper, we show the result for the upper order hemicon-

tinuous correspondences can be extended to correspondences with discontinuities

but its proof is more involved, requires transfinite constructions, and the extension

is perhaps of less interest for economists (particularly in applications).

We believe our extensions in this paper are important because most iterations

that we consider in economics (and perhaps in other areas of research) use cor-

respondences. For example, players happen to have multiple best responses in

games, including those of strategic complementarities, and consumers or produc-

ers happen to have multiple optimal bundles. Multiplicity appears when payoffs

are not concave with respect to players’ own actions, and consumers’ or producers’

choices. For example, a small reduction in an oligopolist’s price may lower its

current profits, but a larger reduction, which lowers the current profits by more,

may make other firms exit or deter subsequent entry; or in a contest with multiple

prizes whose values are convex, the increase in the expected value of prize induced

by a small increase in effort may not be worth the cost of this additional effort,

but a larger effort may result in a sufficient increase in prize to compensate for the

effort cost.
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Multi-valued best responses arise also naturally in mixed extensions of strate-

gic form games. Mixed strategies can be represented as distributions over pure

actions. When players pure actions are one-dimensional and corresponding distri-

butions are ordered using the first-order stochastic dominance, the space of such

mixed strategies is a complete lattice. Mixed extensions of games of strategic

complementarities are also games of strategic complementarities (see Echenique

(2003)). For such games, little is known10 about interior mixed strategy Nash

equilibria and our sharp fixed-point bound results make some progress.

2 Preliminaries

We start with introducing some basic definitions. A partially ordered set (or poset)

is set A equipped with a partial order ≥. For a′, a ∈ A, we say a′ is strictly higher

than a, and write a′ > a, whenever a′ ≥ a and a′ 6= a. A poset (A,≥) is a lattice if

for any a, a′ ∈ A the least upper bound of {a, a′} (denoted by a∨ a′ or sup{a, a′})

belongs to A and the greatest lower bound of {a, a′} (denoted by a∧a′ or inf{a, a′})

belongs to A. A lattice A is complete if there also exist
∨
B := supB ∈ A and∧

B := inf B ∈ A for all B ⊆ A. A lattice A is σ-complete, whenever for any

countable B ⊆ A,
∨
B and

∧
B exist and belong to A. A subset B ⊆ A is

a sublattice of A if a ∨ a′ and a ∧ a′, as defined in (A, ≥), belong to B for all

a, a′ ∈ B. A sublattice B of a lattice A is a subcomplete sublattice if for any

C ⊆ B the supremum
∨
C and the infimum

∧
C, as defined in (A,≥), exists and

belong to B.

We can compare subsets of A using set relations compatible with (A,≥). Let

2A denote the set of all subsets of A. If (A,≥) is a poset, and B,B′ ∈ 2A\{∅},

we write B′ ≥S B if for all b′ ∈ B′, b ∈ B, b′ ≥ b. If (A,≥) is a lattice, B and

10 With an exception of games of strict complementarities. See Echenique and Edlin (2004).
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B′ two nonempty subset of A, we say B′ is (Veinott)-strong set order higher than

B, denoted by B′ ≥SSO B, whenever for every b′ ∈ B′ and b ∈ B, b′ ∧ b ∈ B and

b′ ∨ b ∈ B′.

Let F : A⇒ B be a nonempty-valued correspondence, where (A,≥) and (B,≥)

are posets. We say F is strongly monotone (increasing) whenever a′ > a implies

that F (a′) ≥S F (a). Now, let (B,≥) be a lattice. We say F is weakly monotone

(increasing) whenever a′ > a implies that F (a′) ≥SSO F (a).

A sequence (ak)∞k=0 of elements of A is increasing if ak+1 ≥ ak for each k. It

is strictly increasing if ak+1 > ak for each k. Decreasing and strictly decreasing

sequences can be defined in the obvious dual manner. A monotone sequence then

is either increasing or decreasing. We say that an increasing (resp., decreasing)

sequence (ak)∞k=0 converges to a ∈ A whenever
∨
k≥0 a

k = a (resp.,
∧
k≥0 a

k =

a).11 That is, when a is the supremum (resp., infimum) of the increasing (resp.,

decreasing) sequence.

We say that a correspondence F is upper order hemicontinuous whenever it

satisfies the following condition: if any monotone sequence (ak)∞k=0 converges to a,

then any monotone sequence (bk)∞k=0 such that bk ∈ F (ak) for all k converges to

some b ∈ F (a).12 Finally, a function f : A 7→ B is order-preserving (or increasing)

on A if a ≤ a′ implies f(a) ≤ f(a′) for a, a′ in A. A function f is upward order

continuous (resp., downward order continuous) if for any increasing convergent

sequence (ak)∞k=0 with ak ∈ A, we have:

f

(∨
k∈N

ak

)
=
∨
k∈N

f(ak)

(
resp. f

(∧
k∈N

ak

)
=
∧
k∈N

f(ak)

)
.

The function f is order continuous if it is both upward and downward order con-

tinuous. Notice, if f is upward (resp., downward) order continuous, it is order

11 Notice that in definition of convergence of monotone sequences, convergence is in order, i.e.,

one can define an order topology in which the convergence takes place.
12 Notice that upper order hemicontinuity of a correspondence imposes “closure property”

relative to only monotone sequences.
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preserving (or increasing) function on A.13

3 Iterations on monotone upper order hemicontinuous

correspondences

In this section, we will generalize the results in Olszewski (2021b) on the conver-

gence of iterations of monotone (order) continuous functions to correspondences.

We will state and prove our result under the following two alternative sets of

assumptions:

Assumption 1 A is a complete lattice. F : A ⇒ A is weakly monotone and upper

order hemicontinuous. Moreover, for any a ∈ A, F (a) is a subcomplete sublattice

of A.

Assumption 2 A is a σ-complete lattice. F : A ⇒ A is strongly monotone and

upper order hemicontinuous. Moreover, for any a ∈ A, the supremum and the

infimum of F (a) belongs to F (a).

Few comments are in order. First, upper order hemicontinuity turns out to

be a natural condition that is easy to check in many economic applications. For

example, in games of strategic complements (GSCs) where payoff functions are

jointly continuous in action profiles which are elements of a complete lattice, the

resulting best reply mappings for each player are upper order hemicontinuous as

a consequence of well-known maximum theorems (e.g., Berge’s theorem). Second,

per Assumption 2, for economic situations that involve uncertainty (e.g., interim

formulations of Bayesian supermodular games, stochastic supermodular games,

13 If a function is upward (resp., downward) order continuous, it is also by definition sup (resp.,

inf) preserving. So our definitions here coincide with standard definitions of order continuity (e.g.,

Dugundji and Granas (1982), p. 15).
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etc.), well-known measurable maximum theorems can be applied to show best

replies have least and greatest elements that are measurable.14 This latter fact

provides situations in economics where our new results can be applied to settings

where the domains of fixed-point mappings are σ-complete lattices.

For any given a0 ∈ A, we will first define a of pair fixed points (denoted by a∗

and a∗) of F : A ⇒ A that provide tight fixed-point bounds for all iterations of

the correspondence F .

Define the functions: F : A→ A and F : A→ A, where

F (a) :=
∧

F (a) and F (a) :=
∨

F (a).

Under Assumption 1, as well as Assumption 2, F and F are both well-defined

selections15 of F . We now present a number of lemmas. Our lemmas hold true

under Assumption 1 as well as under Assumption 2. We will therefore not explicitly

make these assumptions in the statements of the lemmas.

Lemma 1 F (resp.,F ) is downward order continuous (resp., upward order contin-

uous).

Let a1 = inf F (a0) =
∧
F (a0) and a1 = supF (a0) =

∨
F (a0) be the infimum

and the supremum of F (a0); by induction, for k = 1, 2, . . . let ak+1 and ak+1 be

the infimum of F (ak) and supremum of F (ak), i.e.

ak+1 =
∧

F (ak) and ak+1 =
∨

F (ak).

14 This latter fact follows from the fact that in such settings, by Topkis’ theorem best

replies/optimal solutions are sublatticed-valued, so via the Castaing representation of the corre-

spondence, one an show the least and greatest elements of the best replies will be measurable.

(See Castaing and Valadier (1977), Chapter 5, Van Zandt (2010), Theorem 10, or Hopenhayn

and Prescott (1992), Proposition 2). This latter fact is particularly relevant when checking in

economic applications our assumptions needed to studying iterative methods in the σ-complete

lattice case, where we assume the fixed point correspondence under consideration must possess

least and greatest elements. See for example the results that require Assumption 2 in section 3.
15 A selection of a correspondence F : A⇒ B is any function f : A→ B such that f(a) ∈ F (a)

for any a ∈ A.
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It will be convenient to define a0 and a0 as a0. Let aω = lim infk a
k and aω =

lim supk a
k. That is,

aω = lim
k

∧
l≥k

al and aω = lim
k

∨
l≥k

al.

Lemma 2 There exists a ∈ F (aω) such that a ≤ aω Similarly, there exists a ∈

F (aω) such that a ≥ aω.

If aω is a fixed point of F , then let a∗ = aω; similarly, if aω is a fixed point of F ,

then define a∗ = aω. Otherwise, under Assumption 1, let aω+1 be the supremum

of values of F (aω) that are smaller than aω, and let aω+1 be the infimum of values

of F (aω) that are greater than aω; under Assumption 2, let aω+1 be any element

of F(aω) smaller than aω, and let aω+1 be any element of F(aω) greater than aω.

That is, more formally:

aω+1 =
∨

F (aω) ∩ I(aω) and aω+1 =
∧

F (aω) ∩ J(aω),

with I(a) := {a′ ∈ A : a′ ≤ a} and J(a) := {a′ ∈ A : a′ ≥ a} under Assumption 1

and

aω+1 ∈ F (aω) and aω+1 < aω and aω+1 ∈ F (aω), aω+1 > aω

under Assumption 2.

By Lemma 2, F (aω)∩I(aω) 6= ∅, and the same is true for F (aω)∩J(aω). Hence,

by each of our two assumptions, both aω+1 and aω+1 are well defined elements of

F (aω) and respectively of F (aω). The following lemma follows directly from the

definition aω+1 of and aω+1.

Lemma 3 (i) If aω is a fixed point of F , then aω+1 = aω. If aω is a fixed point

of F , then aω+1 = aω.

(ii) If aω is not a fixed point of F , then aω+1 < aω. If aω is not a fixed point of

F , then aω+1 > aω.
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We can now continue our iterations starting from aω and aω. For any k we

define the following sequences (aω+k)∞k=1 and (aω+k)∞k=1 recursively as follows

aω+k+1 =
∨

F (aω+k) ∩ I(aω+k) and aω+k+1 =
∧

F (aω+k) ∩ J(aω+k).

under Assumption 1 and under Assumption 2 as follows:

aω+k+1 ∈ F (aω+k) and aω+k+1 < aω+k; aω+k+1 ∈ F (aω+k), aω+k+1 > aω+k,

unless aω+k is a fixed point, in which case aω+k+1 = aω+k (and analogously for

aω+k).

Indeed, it is a transfinite complement of the sequences ak and respectively ak.

This yields the following results:

Lemma 4 The sequences
(
aω+k

)∞
k=0

and
(
aω+k

)∞
k=0

are both well-defined. More-

over, if any aω+k0 (resp., aω+k0) is a fixed point of F , then the sequence
(
aω+k

)∞
k=k0

(resp.,
(
aω+k

)∞
k=k0

) is constant.

Lemma 5 (i) The sequence (aω+k)∞k=0 is decreasing, and its limit a∗ is a fixed point

of F ; (ii) the sequence (aω+k)∞k=0 is increasing and its limit a∗ is a fixed point of

F .

This competes our construction of fixed points a∗ and a∗. It possibly appears as

a puzzling feature of the construction that ak+1 is defined as the infimum of F (ak),

while aω+k+1 is defined under Assumption 1 as the supremum of F (aω+k)∩I(aω+k).

(A similar question concerns ak+1 and aω+k+1.) For the definition of ak+1 we had

no choice. It had to be the infimum of F (ak) to guarantee a∗ is indeed a lower

bound for the large iterations of F . In turn, if we defined aω+k+1 as the infimum of

F (aω+k), then a∗ would still be a fixed-point lower bound for the iterations of F ,

but it could not be the sharp one. This is illustrated by the following example.16

16 Actually, we originally defined aω+k+1 as the infimum of F (aω+k), which led us to incorrectly

conjecture that we had to assume strong monotonicity of F in order to generalize the results of

Olszewski (2021a,b) to correspondences.
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Example. Recall Example 1 from Olszewski (2021b) in which X is a sublattice

of R2 equipped with the coordinate-by-coordinate ordering that consists of points:

(-1,0), (0,0), (1,0), (0,1), (1,1), (2,1). Olszewski defined a mapping f : X → X

such that aω = lim inf fk(0, 1) = (0, 0), but f(0, 0) = (−1, 0).

Consider a sublattice A = X ∪ I of R2, where I = {(y, 0) : y ∈ [−4,−1]}

equipped with the coordinate-by-coordinate ordering. Extend mapping f to a

correspondence F : A ⇒ A by letting F (y, 0) = {(z, 0) : z ∈ [−4,−2]} for

y ∈ [−3,−1], and F (y, 0) = (−4, 0) for y ∈ [−4,−3).17 That is, F = f on X,

and F on I is illustrated in Figure 1, in which we identified I with the interval

[−4,−1].

If we defined aω+1 as inf F (aω) = (−4, 0), then we would obtain a∗ = (−4, 0),

and this would not be a sharp fixed point bound for the sequence (ak)∞k=0. This

sharp fixed point bound is a∗ = (−2, 0), and this a∗ is indeed obtained if aω+1 is

defined as
∨
F (aω) ∩ I(aω) = (−2, 0), as we do.

A similar puzzling feature may concern the definition of aω+k+1 and aω+k+1

under Assumption 2. However, for strongly monotone F is, if aω+k is not a fixed

point of F , then supF (a) ≤ inf F (aω+k) for all a ∈ F (aω+k). So, no element of

F (aω+k) can be a fixed point possibly except inf F (aω+k). Thus, by defining aω+k+1

in the way in which we do, we can be sure that we will not “jump down” over any

fixed point.

We can now state and prove the following key result.

Proposition 1 Both under Assumption 1 or under Assumption 2, the following

statements hold true: (i) An increasing sequence

(∧
l≥k

al

)∞
k=0

converges to aω ≥ a∗,

and for any sequence (ak)∞k=0 such that ak+1 ∈ F (ak) for all k, we have that(∧
l≥k

al

)∞
k=0

≤ ak. A decreasing sequence

(∨
l≥k

al

)∞
k=0

converges to aω ≤ a∗, and

17 Note that F (−1, 0) = {(z, 0) : z ∈ [−4,−2]}, while f(−1, 0) = (−1, 0) in Olszewski (2021b).
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Figure 1: The graph correspondence F | I from Example 1.

for any sequence (ak)∞k=0 such that ak+1 ∈ F (ak) for all k, we have that ak ≤(∨
l≥k

al

)∞
k=0

.

(ii) Suppose that b is fixed point of F for which there exist an increasing se-

quence (bk)∞k=1 such that limk b
k ≥ b, and for any sequence (ak)∞k=0 such that

ak+1 ∈ F (ak), we have that bk ≤ ak for all k, then b ≤ a∗. Suppose that b is

fixed point of F for which there exist an decreasing sequence (b
k
)∞k=1 such that

limk b
k ≤ b, and for any sequence (ak)∞k=0 such that ak+1 ∈ F (ak), we have that

ak ≤ b
k

for all k, then b ≥ a∗.

Proof: We will prove the theorem for a∗; the proof for a∗ is analogous. Part (i)

follows directly from the definitions and previous results. We will prove part (ii).

Since bl ≤ al for all l,
∧
l≥k

bl ≤
∧
l≥k

al; and since the sequence (bk)∞k=1 is increasing,

bk =
∧
l≥k

bl, therefore limk b
k ≤ limk

∧
l≥k

al = aω. Thus, b ≤ aω. This completes

the proof if a∗ = aω. If not, then aω is not a fixed point and b < aω. Recall

13



b ∈ F (b), and aω+1 ∈ F (aω). Under Assumption 1, b ∨ aω+1 ∈ F (aω) because

F (b) ≤SSO F (aω). Since b < aω, and by Lemma 5, aω+1 < aω, we have that

b ∨ aω+1 ≤ aω. This implies that b ∨ aω+1 ∈ F (aω) ∩ I(aω). Since aω+1 is the

greatest element of this set, hence b ∨ aω+1 ≤ aω+1. So b ≤ aω+1. Under Assump-

tion 2, b ≤ aω+1 because b ≤ aω, so the strong monotonicity of F implies b ≤

supF (b) ≤ inf F (aω) ≤ aω+1. We show b ≤ aω+k for any k, and consequently

b ≤ a∗. We have proven this thesis for k = 1 and suppose it is the case for some k.

The proof is complete if aω+k is a fixed point, because by Lemma 4, aω+k+1 = aω+k.

If aω+k is not a fixed point, b < aω+k, and b ∨ aω+k+1 ∈ F (aω+k). Moreover,

b∨ aω+k+1 ∈ I(aω+k), hence b∨ aω+k+1 ∈ F (aω+k)∩ I(aω+k). Since aω+k+1 was de-

fined as the greatest element of this set under Assumption 1, b∨ aω+k+1 ≤ aω+k+1,

consequently b ≤ aω+k+1. Under Assumption 2, b ≤ aω+k+1 because b ≤ aω+k,

so strong monotonicity of F implies that b ≤ supF (b) ≤ inf F (aω+k) ≤ aω+k+1.

Thus, b ≤ aω+k for any k, and also b ≤ a∗.

Proposition 1 captures formally the intuition that a∗ and a∗ are tight fixed-

point bounds between which sufficiently large iterations of F are located.

Remark. In Proposition 1, we could alternatively require the sequence (bk)∞k=1 to

be decreasing, and the sequence (b
k
)∞k=1 to be increasing. (Recall that we define no

other convergent sequences.) Then, (aω+k)∞k=0 would be such a decreasing sequence

for a∗, and
(
aω+k

)∞
k=0

would be such an increasing sequence for a∗. The hypothesis

of Proposition 1 would still hold true, because bk ≤ ak for all k implies that

b ≤ lim
k
bk ≤ lim inf

k
ak = aω.

Then, the arguments analogous to those from the proof of Proposition 1 yield

b ≤ aω+k for all k, which implies that b ≤ a∗. The proof that b ≥ a∗ is analogous.
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4 Iterations on discontinuous correspondences

One may wonder whether Proposition 1 can be extended to discontinuous weakly

monotone correspondences, or whether the result for mappings from Olszewski

(2021a) can be extended to correspondences. There are two possible extensions.

First, one may ask if there exist tight fixed-point bounds for sequences of finite

iterations starting from an arbitrary point of a lattice. The answer to this question

is negative, even for mappings, as the following example shows.

Example. Let A = [0, 1) ∪ {2 − 1/n : n = 1, 2, . . .} ∪ {2, 3} with the lattice

structure inherited from the reals. Let f : A→ A be given by f(a) = a for a from

[0, 1), f(a) = 2−1/(n+1) for a = 2−1/n, and f(a) = 3 for a = 2, 3. Points a < 1

and a = 3 are the fixed points of mapping f . For a0 = 1, the sequence of finite

iterations an = fn(a0) = 2− 1/(n+ 1) is increasing and converges to a = 2. Thus,

a = 3 is the tight fixed-point upper bound for this sequence of iterations, and any

a < 1 is a fixed-point lower bound. This implies that the tight fixed-point lower

bound does not exist.

The result from Olszewski (2021a) can be extended, but the cost of relaxing our

continuity conditions is that we must introduce transfinite sequences. In addition,

we must restrict attention to iterating a correspondence that transforms a com-

plete lattice A. More precisely, the following result can be obtained by minimally

modifying the proof from Olszewski (2021a).

Let α > |A|, where |A| stands for the cardinality of A, be a cardinal number.

For every a0 = a0 = a0 ∈ A, and every weakly monotone correspondence F : A⇒

A, say that (aβ)β<α is a sequence of transfinite iterations of F if:

aβ ∈ F (aβ−1) if β has a predecessor β − 1;

and
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∨
γ<β

∧
γ≤δ<β

aδ ≤ aβ ≤
∧
γ<β

∨
γ≤δ<β

aδ if β is a limit ordinal.

In addition, distinguish two special sequences of transfinite iterations

aβ =:


inf F (aβ−1) if β has a predecessor β − 1∨

γ<β

∧
γ≤δ<β

aδ if β is a limit ordinal.
(1)

and

aβ =:


supF (aβ−1) if β has a predecessor β − 1∧

γ<β

∨
γ≤δ<β

aδ if β is a limit ordinal.
(2)

Proposition 2 Suppose that (A,≤) is a complete lattice, and F : A ⇒ A is a

weakly monotone correspondence such that F (a) has the smallest and the greatest

element for all a ∈ A. Let α > |A| be a regular cardinal number.18 Then, for

any a0 = a0 ∈ A, there exist β, β < α such that aβ = aβ for all β ≤ β < α, and

aβ = aβ for all β ≤ β < α. In particular, aβ and aβ are fixed points of F .

Moreover, aβ is the greatest fixed point a of F with the property that a ≤ aβ for

sufficiently large β < α and for all sequences of transfinite iterations (aβ)β<α, and

aβ and the smallest fixed point a of F with the property that aβ ≤ a for sufficiently

large β < α and for all sequences of transfinite iterations (aβ)β<α.

It is possible to obtain a somewhat stronger result than Proposition 2, which

requires a somewhat more involved proof. However, since transfinite sequences are

unlikely to be of interest for economists, we will not present and discuss this result

in this paper.

18 A regular cardinal number α is defined by the following property: No set of cardinality α

can be represented as the union of a family of subsets such that each subset from the family has

a cardinality smaller than α, and the family itself is of a cardinality smaller than α.
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5 Appendix

Proof of Lemma 1. Assume 1. Since F is weakly monotone, F and F are both

weakly increasing. Indeed, if a′ < a′′ then F (a′) ∧ F (a′′) ∈ F (a′). As a result,

F (a′) ≤ F (a′) ∧ F (a′′).

Hence F (a′)∧F (a′′) = F (a′) and consequently F (a′) ≤ F (a′′). Similarly we prove

the monotonicity of F . The argument under Assumption 2 is straightforward. We

prove the upward continuity of F . Its proof is the same under Assumption 1 or

Assumption 2. Let (ak)∞k=1 be an increasing sequence in A such that a =
∨
k∈N a

k.

Let bk := F (ak). We conclude that bk ∈ F (ak) for any k ∈ N, and bk is increasing.

Let b :=
∨
bk. Since bk belongs to F (ak) and the sequence (bk)∞k=1 is increasing, b

belongs to F (a) by upper hemicontinuity of F . Hence, F (a) ≤ b. On the other

hand, F (a) ≥ bk for any k. It follows from the definition of bk and the monotonic-

ity of F . Hence b ≤ F (a). Together with F (a) ≤ b, we have b = F (a), and hence

the upward continuity. We omit a similar proof that F is downward continuous.

Proof of Lemma 2. We will prove the claim for aω; the proof for aω is analogous.

The sequence

(∧
l≥k

al

)∞
k=0

is an increasing sequence whose supremum is aω. Let

bk = F

(∧
l≥k

al

)
. By Lemma 1, we know F is an increasing function, hence bk is

increasing as well. In addition, since from Lemma 1, F is upward continuous, we

conclude that

a :=
∨
k∈N

bk = F (aω) ∈ F (aω).

To finish the proof, we must show that a ≤ aω. Since
∧
l≥k

al ≤ al for all l ≥ k, we

have that bk ≤ al+1 for all l ≥ k by the monotonicity of F and the definition of
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al+1. So, bk ≤
∧

l≥k+1

al ≤ aω, which gives that a = limk b
k ≤ aω.

Proof of Lemma 4. We will show the hypothesis for the sequence
(
aω+k

)∞
k=0

; the

proof for the sequence
(
aω+k

)∞
k=0

is analogous. That is, we will show by induction

that aω+k+1 is well-defined for any k ≥ 0, and if aω+k is a fixed point, then aω+k+1 =

aω+k.

For k = 0, this holds true by Lemma 3. Suppose that aω+k is a fixed point

of F for some k > 0. Then aω+k ∈ F (aω+k) ∩ I(aω+k) 6= ∅, so aω+k+1 is well-

defined by Assumption 1. In addition, aω+k must be
∨
F (aω+k) ∩ I(aω+k). Hence

aω+k+1 = aω+k by the definition of aω+k+1. Under Assumption 2, aω+k+1 is defined

as aω+k.

Suppose now that aω+k is not a fixed point of F . By induction hypothesis

aω+k−1 is neither a fixed point of F , because then aω+k = aω+k−1 would also be a

fixed point. Hence aω+k−1 > aω+k. By Assumption 1, F (aω+k) ≤SSO F (aω+k−1).

Take any a′ ∈ F (aω+k). Since aω+k ∈ F (aω+k−1), it must be that a′ ∧ aω+k ∈

F (aω+k) and obviously a′ ∧ aω+k ∈ I(aω+k). As a result F (aω+k) ∩ I(aω+k) 6= ∅.

Thus, aω+k+1 is well-defined. Under Assumption 2, aω+k+1 is defined as an arbi-

trary element of F (aω+k) smaller than aω+k. Such an element exists by Lemma 2.

So, aω+k+1 is well-defined.

Proof of Lemma 5. We will prove this lemma for a∗; the proof for a∗ is analogous.

By construction and Lemma 4,
(
aω+k

)∞
k=0

is a well-defined and decreasing sequence.

Let a∗ be its limit. Since aω+k+1 ∈ F (aω+k) for all k, by taking a limit as k →∞

and applying the upper hemicontinuity of F we have a∗ ∈ F (a∗).
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