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Abstract

We give a set of sufficient conditions for uniqueness of a time-consistent Markov
stationary consumption policy for a quasi-hyperbolic household under uncertainty.
To the best of our knowledge, this uniqueness result is the first presented in the lit-
erature for general settings, i.e. under standard assumptions on preferences, as well
as some new condition on a transition probability. This paper advocates a “gen-
eralized Bellman equation” method to overcome some predicaments of the known
methods and also extends our recent existence result. Our method also works for
returns unbounded from above. We provide few natural followers of optimal policy
uniqueness: convergent and accurate computational algorithm, monotone compar-

ative statics results and generalized Euler equation.

1 Introduction

The problem of dynamic inconsistency in sequential decision problems was introduced in
the seminal paper of Strotz (1956), further developed in the work of Phelps and Pollak
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(1968) and Peleg and Yaari (1973), and it has has played an increasingly important role
in many fields in economics (see Bernheim, Ray, and Yeltekin (2015); Chatterjee and Eyi-
gungor (2016); Drugeon and Wigniolle (2016); Echenique, Imai, and Saito (2016); Jackson
and Yariv (2014, 2015); Nakajima (2012); Sorger (2004) for some recent contributions).
The classical toolkit for analyzing such "time” consistency problems was first proposed by
Strotz (1956), emphasizing the language of recursive decision theory, where one searches
for dynamically consistent plans in sequential optimization frameworks by imposing addi-
tional constraints which are well-known to be difficult to formulate. As observed by many
researchers in subsequent discussions (e.g., Peleg and Yaari (1973) and Bernheim and Ray
(1986)), the existence of such optimal dynamically consistent plan in a class of Markovian
solutions is problematic, let alone the question of such solution uniqueness. Further, even
when such plans do exist, they can be difficult to characterize and /or compute (see Caplin
and Leahy (2006)).

As a way of circumventing these problems, Peleg and Yaari (1973) proposed a dynamic
game interpretation of the time-consistency problem. More specifically, in this view of
the problem, one envisions the decisionmaker as playing a dynamic game between one’s
current self, and each of her future "selves®, with the solution concept being a subgame-
perfect Nash equilibrium (SPNE, henceforth). But even, if the question of existence
of SPNE is resolved, the equilibrium existence or uniqueness in the particular class of
functions, namely Stationary Markov Nash Equilibria (henceforth, SMNE) is still not
guaranteed (see Bernheim and Ray (1986) and Leininger (1986))." Here, we also refer
the reader to the interesting recent work of Maliar and Maliar (2006, 2016) who motivate
why providing sharp numerical algorithms to compute (the unique) SMNE of the quasi-
hyperbolic discounting decision problem can be a difficult problem to resolve.

In this paper, we seek conditions under which a simple, stable iterative numerical
algorithm can be developed that (i) characterizes the existence of SMNE from a theoretical
perspective, (ii) provides explicit and accurate method for computing the solution, and
(iil) facilitates the characterization of monotone comparative statics. From the perspective
of the existence question, our paper is very closely related to the important papers of
Bernheim and Ray (1986) or Harris and Laibson (2001), where the authors add noise
of invariant support in an effort to develop conditions that guarantee the existence of a
time-consistent policy of locally bounded variation and/or Lipschitz for sufficiently small
amount of hyperbolic discount factor. It bears mentioning, though, there is a critical

difference between approaches in this literature, and those advocated in the present paper:

IThe works of Kocherlakota (1996) and Maskin and Tirole (2001) provide an extensive set of motiva-
tions for why one might be interested in concentrating on SMNE, as opposed to SPNE.



the methods we propose do not rely on so-called “generalized Euler equations” (as, for
example, in Harris and Laibson). Rather, in our paper, we propose a “generalized Bellman
equation”, where a new “value iteration” method is proposed. This we feel provides an
important new approach when compared to this existing literature, as it allows us to
link the stochastic games studied in Harris and Laibson (2001), with a recursive or value
function methods suggested by Strotz (1956) (and further developed by Caplin and Leahy
(2006)).

Recently Chatterjee and Eyigungor (2016) propose a method to show existence of a
continuous randomized MSNE in a quasi-hyperbolic discounting model with a strictly
positive lower bound on wealth. Specifically, they show that once consumers are allowed
to randomize their investment strategies (keeping the expected investment constant) they
will endogenously choose a strategy that concavifies the expected value function. Our
approach is similar, but by attacking the problem for a stochastic games perspective, the
conditions are placed on the primitives of the stochastic game that in essence "concavifies”
the continuation expected utility exogenously. Aside from not requiring one to resort ot
lotteries, this has the additional benefit relative to Chatterjee and Eyigungor (2016) as it
allows to state simple sufficient conditions for obtaining unique Lipschitzian pure MSNE.
Therefore, our new methods nicely complement those of Chatterjee and Eyigungor (2016)
on the existence of continuous MSNE in such time consistency problems.

More specifically, under standard assumptions on preferences, and a new condition
on a transition probability that have often been applied in the existing literature on
stochastic games, we are able to develope a monotone value iteration approach to show
existence and uniqueness of time-consistent policy. Further, we are able to provide sharp
characterizations of their Lipschitzian structure, as well as their monotonicity properties.
Finally, and equally as important, as we obtain sufficient conditions for the uniqueness
of Markovian equilibrium optimal time-consistent policy on a minimal state space. It
is worth mentioning that our methods work for returns that are bounded or unbounded
above.

We are also able to construct a simple approximation scheme computing unique SMNE
value in the appropriate norm, as well as conduct monotone comparative statics with the
model parameters. These comparative statics and approximation results are important
for applied research in the field. For example, in Sorger (2004), he proposes settings
under which any twice continuously differentiable function can be supported as a policy
of a time consistent hyperbolic consumer. This result can be subsequently linked to a
Gong, Smith, and Zou (2007) text, showing that a hyperbolic discounting is not obser-

vationally equivalent to exponential discounting. However, the two models have radically



different comparative statics. Hence, our approach allows us to sort out the exact nature
of this question, and provide theoretical monotone comparative statics to clarify empirical

questions that are asked by applied researchers.

2 Main results

In the environment we study, we envision an individual decisionmaker to be a sequence
of “selves” indexed in discrete time ¢t € {0,1,...}. For a given state s; € S (where
S = [0,00)), the "self ¢” chooses a consumption ¢, € [0,s;], and leaves s, — ¢; as an
investment for future "selves”. As in effect, we rule out borrowing; also we interpret the
asset as a productive one, and refer to it as capital. These choices, together with current
state s;, determine a transition probability Q(ds;y1|s: — ¢, s¢) of a next period state.

Self t preferences are represented by a utility function given by:

e}

u(ey) + BE, Z 8 u(cy),

i=t+1

where 1 > 5> 0and 1 > 6 > 0, u is a instantaneous utility function and expectations F;
are taken with respect to a realization of a random variable s; drawn each period from a

transition distribution @ (see lonescu-Tulcea theorem).

2.1 Generalized Bellman operator

Under some natural continuity assumptions on v and @ (to be specified later), we can
define a Markovian equilibrium pure strategy to be an h € H, where H = {h : S —
S|0 < h(s) < s,his Borel measurable} that is time-consistent for the quasi-hyperbolic
consumer. That is, Markovian equilibrium pure strategy h satisfies the following pair

functional equations:

h(s) € arg m[ax] u(c) + ﬁ5/ Vi(sQ(ds'|s — ¢, s), (1)
cel0,s S

where V}, : S — R is a continuation value function for the household of "future” selves

following a stationary policy h from tomorrow on. The value in the Markovian equilibrium

for the future selves, therefore, must solve the following additional functional equation in



the continuation given as follows:

Vi(s) = u(h(s)) + 6 / Vi(5)Q(ds'|s — h(s), s).

S

Therefore, if we define the value function for the self ¢ to be:
Wi(s) := u(h(s)) + 65/ Vi(s)Q(ds'|s — h(s), s),
s
one obtains the relation

Vi(s) = %Wh(s) _

5 uls)). (2)

Equation (2) is our generalized Bellman equation. It shows a condition that any Markovian
value must satisfy to solve our original maximization problem. Element %u(h(s)) is our
adjustment to account for changing preferences. For § = 1 case equation (2) reduces to
the standard Bellman equation. Based on equation (2), we can define an operator whose

fixed points, say V*, correspond to values for some time-consistent Markov policies.

2.2 Assumptions

Allowing for returns that are unbounded above (bounded below), let (K);en be a sequence

of increasing (in a set inclusion sense) and compact subsets of S such that, each of K;

contains 0, and S = |J K. For v : S+ R, such that for each j € R v is bounded on Kj,
=1
and j € N, let us define a seminorm (see Matkowski and Nowak (2011)):

o] := sup Jv(s)].
seK;
Put m; = ‘H‘é and define:
1oLl g
loll = "4,
— 1y
7=1
with a convention ||v|| = oo, if the series on the right hand side tends to co. By M(S) we

denote a set of real valued and Borel measurable functions on S. Consider a vector space

Vi={ve M(S):v(0)=0, and for all j € N, |[v||; < oo, and ||v|| < oo}



and denote
V"i={veV:|u|[; <m; for each j € N}.

We can now state our fundamental assumption on the primitives of the stochastic

game:
Assumption 1 Let us assume:
o u:S — Ry is continuous, increasing and strictly concave with u(0) = 0.

o for any s,i € S Q(-]i,s) = p(-|i,s) + (1 — p(-|i,$))do(-), where & is a delta Dirac

measure concentrated at point 0, while p(-|i,s) is some measure such that

— for each s € S\ {0}, i € [0,s] p(S|i,s) <1 and p(S|0,0) = 0;
— for each j € N p(Kjli,s) = p(Sli,s) if s € K; and i € [0, s];

— for each v € V™, the function

(s.0) = [ o mds]i. s
s
1S continuous, increasing and concave with 1.

o the sequence (m;);en satisfies

5sup{mj+1} < p.

JeN m;

We make a few remarks.

First, our assumptions on preferences are completely standard. That is, here, we only
mention the imposition of strict concavity of a utility function in these assumptions allows
us to restrict attention to single valued best replies in the equation (1); hence, we can study
the fixed points of a single valued operator whose fixed points generate corresponding
equilibrium values and corresponding policies in the game. It bears mentioning that a
careful reading of the proof of our main existence theorem below (Theorem 1) indicates
this assumption can be weakened if existence of MSNE is all that one seeks, as we can
also work with increasing selections from a best response correspondence (not necessarily
unique valued best replies).

Second, our assumption on a transition probability requires a few remarks. ) has the
specific form in our conditions above. We should mention that although this is a power-

ful technical assumption, the conditions are satisfied in many applications (e.g., see the
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discussion in Chassang (2010) for a particular example of this exact structure). Addition-
ally, as we assume positive returns (i.e., u(-) > 0), our assumptions above assure that the
expected continuation value is monotone in its arguments. This structure is common in
the literature. For example, a stronger version of this assumption was introduced by Amir
(1996), used in a series of papers by Nowak (see Balbus and Nowak (2008); Nowak (2006)
and references within), as well as studied extensively in the context of games of strategic
complementarities with public information in Balbus, Reffett, and Wozny (2014). We re-
fer the reader to our related paper (see Balbus, Reffett, and Wozny (2015)) for a detailed

discussion of the nature of these assumptions.

Remark 1 Observe that we do not require that p is a probability measure. A typical
example of p is: p(-|i,s) = Z}']:1 9 (i, s)n;(-|s), where n;(:|s) are measures on S and g; :
S xS —[0,1] are continuous functions (increasing and concave with i) with Z}]=1 gi(+) <
1. However there are many examples of p that cannot be expressed by a linear combination

of stochastic kernels, and still satisfy our assumptions.

Finally, we should mention that our assumption imposes that the expected value func-
tions stays concave. This is similar to a randomization technique advocated recently by
Chatterjee and Eyigungor (2016). To see the nature of this assumption in the relation
to their endogenous concavification result, observe that whenever v is not concave at the
neighbourhood of zero capital then the optimal endogenous randomization would require
choosing an atom at zero, exactly as required by our assumption. The difference here
is that our assumption is of a global nature (i.e. satisfied for any candidate, measurable
v) rather than the local one, and hence the question of pure MSNE uniqueness can be
attacked.

Remark 2 Assumption imposed on the sequence of (m;)jen is required to prove MSNE
existence and uniqueness for unbounded (from above) returns. A special case of our as-
sumption s, when u is in fact bounded on S. In fact assumptions can be even further

weakened, if one works with bounded state space S.

2.3 MSNE uniqueness
We start with noting an important auxiliary result.
Lemma 1 V is a Banach space and || - || is its norm.

Proof: It follows from Remark 1 and Lemma 1 in Matkowski and Nowak (2011). |



It is easy to verify, that V'™ is a closed subset of V., hence by Lemma 1 a complete
metric space. Following Rincon-Zapatero and Rodriguez-Palmero (2003, 2009) we define

k—local contractions:

Definition 1 Let k € {0,1}. An operator T : V™ — V™ is k-local contraction with
modulus v € (0,1) if for each pair Vi,V € Y™

IT(V1) = TV)ll; <AV = Val

We now construct an operator 7 : V +— V by:

1-p

TV (s) = lAV(S) ~ 3

B

where the pair of operators A and B defined on space V™ are given by:

u(BV (s)),

AV(s) = max {u(c)+ﬁ§/gV(y)Q(ds’|s—c, s)},

c€[0,s]

BV (s) = argmax {u(c) + 5(5/

c€[0,s] S

V(y)Q(ds'|s — ¢, s)} )

Notice, in the above, we have defined the operator B to map between candidates for
equilibrium values V to spaces of pure strategy best replies H. So in effect, we have a pair
of operator equation we need to solve to construct equilibrium values V* € 1. Recall also
that:

TV (s) =u(BV(s)) + 5/51/(3')Q(ds’\3 — BV (s), ). (3)

For each j € N let V; be a set of all restrictions of V to K;. Endow, V; with natural

componentwise order.

Lemma 2 Let j € N, s € K;, Vi ,Vo € V;, and suppose that Vi(s') < Va(s') for each
s' € Kji1. Then BVi(s) > BVa(s), and TVi(s) < TVa(s).

Proof: To see monotonicity of B, consider a function G : [0,s] x V;41 — R

G(c,V) =u(c) + ﬁ&/SV(s’)p(dsﬂs -, 8).

Then for any V' € V; the function G(-, s, V) is supermodular.



Moreover, (¢, V) — [V (s")p(ds'|s — ¢, s) has decreasing differences. To see this fact,

observe we have the following inequalities:

0 < /S‘/g(s’)p(ds’]s—cl,s)—/SVQ(S')p(ds’|s—cg,s),
= /g\/g(s')[p(ds'|s—cl,s)—p(ds'|s—02,s)],

S %(S/)[p<d8/‘$_clas) _p(dS/’8_627$)]7

—

where Vo > Vi and ¢; > ¢;. Therefore, the function (¢, V) — G(c, V') has decreasing
differences on [0,s] x V,41. Since [0, s] is a lattice and V;1; is a poset, we obtain by
Topkis (1978) theorem that the (unique) best reply BR(V)(s) = arg max.jo G(c,V)
is decreasing on V;;;. Since A is increasing and B decreasing, by definition of 7', we

conclude that 7' is increasing. [ |

The following lemma is straightforward to prove.

Lemma 3 For each j € N,V €V, s € K; and constant k € N, we have B(V + k)(s) =
BV (s), and A(V + k)(s) = AV (s) + Bék. As a result, T(V + k)(s) = TV (s) + k.

Lemma 4 T maps V™ into itself.

Proof: Let V € V", j € N and s € K; be given. Observe that BV (s) € K;. Then by

definition of T we have

TV (s) < (1—B)m; + 5/K. V(shQ(ds'|s — BV (s),s) < (1 = B)m; +dmj1  (4)

< (L—=pB)m;+ pm; =m;.  (5)

Here, (4) follows from our assumption on the sequence of (m;);en. Since j and s were
fixed arbitrarily, (5) implies that TV (-) € V™. u

Lemma 5 T : V™ +— V™ s I-local contraction with modulus d.

Proof: Let Vi, Vo € V", j € N, s € K;, and put ko := ||V1—V2||j4+1. Then, by Assumption
1 Q(Kjs1]ls — BVi(s),s) = 1. Then by Lemma 3,

T (Vi + ko)(s) = TVi(s) + k.

9



Further by Lemma 2,
TVa(s) — dko =T(Va — ko)(s) < TVi(s) < T(Va+ ko)(s) = TVa(s) + dko.

Hence, |T'Vi(s)—TV5(s)| < dky. The proof is complete, since s € K is chosen arbitrary. ®

For any fixed point V* of an operator 7', this value function corresponds to a stationary,
time-consistent Markov policy h* = BV* € H. Equip the space of pure strategies H with

a pointwise partial order. In this case, we obtain our main result:

Theorem 1 (Uniqueness of MSNE) Let assumption 1 hold. Then, then there is a
unique value V* € V™ and corresponding unique time-consistent Markov policy MSNE
h* € H. Moreover, for any V € V™ we have

lim ||T*V — V*|| = 0. (6)
t—00
Proof: Observe that from Lemma 1 (V,|| -||) is a Banach space, hence (V|| - ||) is

complete metric space. Furthermore, by Lemma 4 T maps V™ into itself, and by Lemma
5 T is 1-local contraction with modulus §. As a result, by Theorem of Rincon-Zapatero
and Rodriguez-Palmero (2003, 2009) or Matkowski and Nowak (2011) 7" is a contraction
with respect to the metric space (V™,||-||). From standard Banach Contraction Principle
there is unique fixed point of 7' V* € V™ and (6) holds. [ |

Theorem 1 is the central result of our paper. It is important for many reasons. First, it
guarantees existence of time-consistent pure strategy equilibrium value V* and policy h*.
Second, it asserts that such value and policy is unique, where the uniqueness result holds
within a class of unbounded (from above) or bounded measurable value functions. This in
turn implies: sequences generated by operator T are converging to VV* in the appropriate
norm topology.

Such a strong characterization of time-consistent policies is obtained due to two central
assumptions: concentrating on Markovian policies and the mixing assumption imposed
on ). Without these assumptions, our results would be substantially weaker. That is,
the operator T' is a Bellman type operator and expresses the time-consistency problem
recursively for Markovian policies. However, generally if assumption 1 is not satisfied,

the mapping 7" does not have the useful properties of similar Bellman-type operators

10



applied in the study of optimal economies®. Finally, although under assumption 1 T is a
contraction, the useful properties concerning equilibrium A* characterization do not follow
from standard arguments used in Stokey, Lucas, and Prescott (1989). For this reason, we

present the result further characterizing the time consistent equilibrium policy functions.

Theorem 2 (Monotonicity of policies) Assume 1, and consider a time-consistent pol-
icy h*. If p(+|i, s) is constant with s, for any i, then the optimal time-consistent policy

h* 1s increasing and Lipschitz with modulus 1.

Proof: Let h* = BV™* for V* = TV*. Consider the function
G(e,s, V™) = u(e) + 55/ V*(s)p(ds'|s — ).
s

Observe G is supermodular in ¢ on a lattice [0, s|, and the feasible action set [0, s] is in-
creasing in the Veinott’s strong set order. Moreover, by concavity of i — [ V*(s")p(ds'7)
we conclude G has increasing differences with (¢, s). By Topkis (1978) theorem argument
maximizing h* is increasing with s on S.

Similarly, if ¢ denotes investment, we also can rewrite this problem as:

H(i,s,V*) =u(s — 1) + 55/ V*(s")p(ds'|i),
s
where H is supermodular with the choice variable i on a lattice [0, s], and, again, the set
[0, 5] is increasing in the Veinott’s strong set order. Again, by concavity of u, we conclude
that H has increasing differences with (4, s). Therefore, again, by Topkis (1978) theorem,
the optimal solution ¢* is increasing with s on S.
Clearly i*(s) = s — h*(s). Finally as both h* and ¢* are increasing on S hence h* and

*

1* are Lipschitz with modulus 1. [ |

Notice the results in the above theorem are also important, as they extend the re-
sult reported in Harris and Laibson (2001) on Lipschitz continuity of equilibrium to a
broader scope of quasi-hyperbolic discount factors. They also provide strong structural

characterizations time consistent Markov policies.

2Tt suffices to change 6—Dirac measure with some other nontrivial one in assumption 1 and equilibrium
uniqueness results would not hold. In such a case one could show Markov-equilibrium existence using
topological arguments but with no hope of uniqueness. Also equilibrium computation would become
substantially complicated (see Maliar and Maliar, 2006, 2016).
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2.4 Monotone comparative statics

Next, motivated by the indeterminacy result in Gong, Smith, and Zou (2007); Maliar and
Maliar (2006) (as well as concerns about the possible econometric estimation), we now
consider a parameterized version of our optimization problem in the previous section of
the paper. For a partially ordered set © |, with 8 € © a typical element, define the unique
MSNE as hy. We make the following assumption.

Assumption 2 Let us assume:

e u does not depend on 6 and obeys Assumption 1.

e For any s,i € S and 6 € © let Q(-|i,s,0) = (1 — p(-|i,s,0))d0(:) + p(+|7, s,0), where
for each 0 p(-|i, s,0) obeys Assumption 1;

e For eachV €V we have (z 0) = [¢V(s')p(ds'|i, s,0) has decreasing differences with
(4,0) and § — [,V (s')p(ds'|i, s, 0) is decreasmg on ©.

Lemma 6 Let ¢ : S x © — R be a function such that ¢(-,0) € V for each 6 € O, and
o(s,-) is decreasing for each s € S. Then 0 — Ty(¢(+,0))(s) is a decreasing function.

Proof: It is easy to see that for all V€ V, a mapping 0 € © — Ay(V) is a decreasing
function. It follows immediately from Assumption 2. We show that By(V') is increasing
in . For each s € S, let us define

G(c,V,0) :=u(c) + B5LV(3')p(ds'|s —¢,s,0).
Suppose that ¢; < ¢ < s. Then by Assumption 2, the
Gles, V,0) — Gler, V. 0) = ulca) — u(cr) +55/v p(ds]s — 1, 5, 0) 55/ p(ds']s — ¢, 5,0)
is increasing in 6. Hence by Topkis (1978) BVp(V') must be increasing in 6. By Assump-

tion 2 and Lemma 2 V € V — By(V) is decreasing. As a result, By(¢(+,0)) is increasing
in 6. Furthermore, 6 — Ty(¢(+,0))(s) is decreasing function for any s € S. [ |

We Assumption 2 in place, we can now prove our main result on monotone comparative

statics for extremal time consistent equilibrium policies.
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Theorem 3 (Monotone comparative statics) Let Assumption 2 be satisfied. Then

mapping 0 — hy s increasing on ©.

Proof: Observe that by Theorem 1 V,(s) = lim 7}(0)(s), where 0 is a zero function. By
n—oo

Lemma 6 T(0)(-) € V and this expression is decreasing in §. Consequently all 7;'(0)(s)

satisfy all conditions of Lemma 6 and hence Vj*(s) decreases in . To finish the proof,

observe that hy(-) = Bp(V})(-) and hence by Lemma 6, hy is increasing in 6. [

2.5 Existence of a Generalized Euler Equation

Since Harris and Laibson (2001), many researchers have applied the so-called "generalized
Euler equation” approach to solving dynamic/stochastic games. We now provide sufficient
conditions for the existence of a unique differentiable MSNE, and state the version of the
generalized Euler equation that characterizes MSNE that is implied by this unique MSNE.

For V e V, let Fy(i) := (6 [V (s')Q(ds'|i), where Q(:|i) denotes transition Q(:|i,s)

that is independent on s. We start with the following assumption.
Assumption 3 Assume that
o u is twice continuously differentiable,

e for any a.e. differentiable V, function Fy is twice continuously differentiable on

S\ {0},
o lim. ,ou'(c) = 0o and lim;_,o I}, (i) = oo,
e there exists d > 0 s.t. |u”(s)| > d or |F{/(s)| > d for any s € S.

Clearly, the Inada type conditions are assumed to obtain interior solution while the
uniform bound d on second derivatives to apply the local/global Implicit function theorem.

The next remark discusses the class of stochastic transitions that satisfy our conditions.

Remark 3 A class of measures Q satisfying assumption 3 was provided by Amir (1996),
i.e. Q(-|1) = (1—g(2))m(-)+g(i)na(-) for twice continuously differentiable function g : S —
[0, 1] satisfying Inada condition. In particular, a class of transitions satisfying additionally
assumption 1 can be a special case allowing ny to be a delta Dirac concentrated at point
0. Finally, Amir (1997) characterizes a class of measures QQ satisfying assumption 3, if
associated cdf q(s|i) is twice continuously differentiable with i with integrable derivatives

for any s € S.
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We first prove a Lemma that shall be used in the sequel:

Lemma 7 Assume 1 and 3 and that V' exists. Then, BV (-), AV (), and consequently
TV (-) is continuously differentiable on (0,00).

Proof: Clearly
AV (z) := max (u(c) + Fy(z — ¢)).

c€[0,x]
As wu is strictly concave, and F' is weakly concave, by Assumption 3 BV (-) is a unique

maximizer satisfying

u'(BV(x)) = Fy,(x — BV (x)).

Equivalently iy (x) := x — BV (z) is a maximizer of ¢ € [0, z| — u(z—1i)+ Fy (7). Moreover,
BV (z) € (0,x) for each x > 0. Given our strict concavity and smoothness conditions,
the local implicit function theorem imply 4y and h are locally continuously differentiable
on the interior of [0, z|, for each Z. As iy and h is also continuous, by the global Implicit
Function Theorem (see Phillips (2012), Lemma 2), we conclude that the optimal choices:

h and iy are differentiable on (0, 00). u

Theorem 4 Under assumption 1 and 3 MSNE policy h* and MSNE value V* are differ-

entiable on (0, 00).

Proof: By Theorem 1 7™(0) = V*. By Lemma 7 all 7"(0) are differentiable on (0, co).
Denote i"(x) := x — B(T"(0))(x), it is increasing, hence x — BV*(z) is an increasing func-
tion. Then by Lebesgue Theorem (see Theorem 17.12 in Hewitt and Stromberg (1965)),
there is a Lebesgue null set N, such that for x € S\ N i* has a finite derivative. Hence
BV*, and consequently V* has derivative on all x ¢ N. Since V*(z) = T'V*(x), hence by

Lemma 7 V* is twice continuously differentiable for z > 0. [ ]

Suppose i* is a differentiable MPNE investment, i.e. i*(s) := s — h*(s). to simplify
notation we drop * from V* and i*. Additionally, by ¢(-|¢) denote a cdf associated with
measure () (such that assumption 3 is satisfied). Similarly to Harris and Laibson (2001)
or Judd (2004) we can now write the generalized Euler equations characterizing MSNE

investment :

(s —i(s)) = 55 / V(') dg(s']i(s)). (7)
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Then:
V@:w@—wmr4w»+w®§évmmMﬂw» ®)

1

Using the Fundamental Theorem of the Integral Calculus for Riemann-Stieltjes integrals
(see Hewitt and Stromberg (1965) Theorem 18.19 or Amir (1997), Theorem 3.2) we have:

4
di Js

vmwwm:—/wwwwmw,

S

where ¢'(s'|i) = £q(s'|7). Now integrating equation (8):

d

[t = ina=tendiis o [ o) |5 [viansiio] disias

S

Denote I(z) := <& [ V(s')dg(s'|z). Then:

di

I(2) = /S W (s — i(s))(1 — '(3))q (s|2)ds + 0 / I(i(s))i'(s)q (s])ds.

S

From equation (7):

—mw=Lw@—umu—u@wmmw+%/ﬁ%—uﬁv@dem

S

Now, to obtain the generalized Euler equation, we can rewrite equation (7):

u'(z —i(z)) = —55/7/(8 —i(s))(1 = 7'(s))q'(s]i(x))ds — 5/U'(8 —i(s))i'(s)q (s|i(x))ds

S s

1
= 85 [ (s = (s + (5~ DI (sl

S
The above equation is a stochastic counterpart of the Harris and Laibson (2001) or Judd
(2004) generalized Euler equation. Recall, our application of Lebesgue differentiation
theorem for Riemann-Stieltjes integrals is satisfied for absolutely continuous functions, a
class including functions of bounded variation studied in the original construction of the
generalized Euler equation by Harris and Laibson (2001). We further relate this result

below when we discuss our results in relationship with the existing literature.
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3 Relating the results to the literature

Equilibrium non-existence and/or multiplicity of equilibria have constituted a significant
challenge for applied economists who sought to study models where dynamic consistency
failures play a key role (see e.g. Maliar and Maliar, 2016). These issues have been equally
as challenging for researchers that seek to identify tractable numerical approaches to
computing SMNE in these (and related) dynamic games (e.g., see the discussion in Krusell
and Smith (2003) or Judd (2004)).

Krusell, Kuruscu, and Smith (2002) propose a generalized Euler equation method for a
version of a hyperbolic discounting consumer, and additionally obtain explicit solution for
logarithmic utility and Cobb-Douglas production examples. Per the latter result, this is
only an example, which is well-known to not be robust to small variations of the primitive
economic data. Next Harris and Laibson (2001) and Judd (2004) proposes a generalized
Euler equation approach to analyze smooth time-consistent policies and proposes a per-
turbation method for calculating them. The problem with this argument is providing
sufficient conditions under which at any point in the state space, the generalized Eu-
ler equations represent a sufficient first order theory for an agent’s value function in the
equilibrium of the game. Concentrating on non-smooth policies, Krusell and Smith (2003)
define a step function equilibrium, and show its existence and resulting indeterminacy of
steady state capital levels. Further, in a deterministic setting, general existence result
of optimal policies under quasi-geometric discounting can be provided using techniques
proposed by Goldman (1980). The problem that this situation raises is that the multi-
plicity and indeterminacy of dynamic equilibrium makes using such models very difficult
in applied work (for example).

To circumvent some of these mentioned predicaments authors also added noise to
the decision problems or relevant dynamic games. Specifically, in a (recursive) decision
approach, by adding noise (making payoff discountinities negligible) Caplin and Leahy
(2006) prove existence of recursively optimal plan for a finite horizon decision problem
and general utility functions. Similarly Bernheim and Ray (1986) show that by adding
enough noise to the dynamic game (to smooth discontinuities away) existence of SMNE
is guaranteed. Such stochastic game approach was later developed by Harris and Laibson
(2001) who characterize the set of smooth SMNE by (generalized) first order conditions.

In the related paper Balbus, Reffett, and Wozny (2015) propose a similar stochastic
game method for studying MSNE policies of the more general quasi-hyperbolic discounting
game. Based on their generalization of the Tarski-Kantorovitch fixed point theorem they

are able to show existence of the MSNE for the case of bounded returns in a wide range
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of problems, and they provide an approximate pointwise the extremal MSNE values.
The question of approximating actually SMNE/MSNE that support such values remains
a substantial problem in this work. In this paper, aside from relaxing conditions on the
boundedness of period return functions, our generalized Bellman method provides a simple
algorithm for computing both unique equilibrium value and unique MSNE.

Additionally, recently Balbus and Wozny (2016) provided an APS type method for
analysing non-stationary Markovian policies of the quasi-hyperbolic discounting game
numerically using set approximation techniques. One issue with this method is its inability
to characterize the set of non-stationary Markovian policies that support the equilibrium
value correspondence in the game.

Finally, in an interesting recent paper, Chatterjee and Eyigungor (2016) prove a ex-
istence result in randomized MSNE policies, and discuss when such equilibria exist in a
class of continuous functions. As compared to our paper, note that apart from differ-
ences in assumptions (endogenous vs. exogenous concavification of the expected value
function), our results differ in many important dimensions. Firstly, our existence result
concerns pure strategies, rather then randomized policies. Second, our uniqueness result
is satisfied relative to a wide class a class of bounded, measurable value functions, not just
continuous values. This fact, when added with a version of our existence result proven
in Balbus, Reffett, and Wozny (2015) (Theorem 5) can be used to show existence of con-
tinuous (pure) MSNE. Finally, notice our assumption on stochastic transition probability
for the game requires an atom at zero asset level. This condition has a flavour of the
nonexistence of a lower bound of wealth, the assumption that was shown by Chatterjee
and Eyigungor (2016) to be a critical source of problems with continuous (pure) MSNE

existence.
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