COLLEGIUM OF ECONOMIC ANALYSIS WORKING PAPER SERIES ## Endogenous Labor Share Cycles: Theory And Evidence Jakub Growiec, Jakub Mućk and Peter McAdam Number: 2016/0015 # ENDOGENOUS LABOR SHARE CYCLES: THEORY AND EVIDENCE* #### Jakub Growiec #### Peter McAdam Warsaw School of Economics and Narodowy Bank Polski European Central Bank and University of Surrey #### Jakub Mućk Warsaw School of Economics and Narodowy Bank Polski #### **Abstract** Based on long US time series we document a range of empirical properties of the labor's share of GDP. We identify its substantial medium-to-long run, pro-cylical swings and show that most of its variance lies beyond business-cycle frequencies. We explore the extent to which these empirical regularities can be explained by a calibrated micro-founded, nonlinear growth model with normalized CES technology and endogenous labor- and capital augmenting technical change driven by purposeful directed R&D investments. We demonstrate that dynamic macroeconomic trade-offs created by arrivals of both types of new technologies can lead to prolonged swings in the labor share (and other model variables) due to oscillatory convergence to the balanced growth path as well as emergence of limit cycles via Hopf bifurcations. Both predictions are consistent with the empirical evidence. (JEL: E25, E32, O33, O41) ^{*}Acknowledgements: We thank Daron Acemoglu, Giuseppe Bertola, Nicholas Bloom, Cristiano Cantore, Dimitris Christopoulos, Łukasz Drozd, James Hamilton, Jordi Galí, Tom Holden, Loukas Karabarbounis, Dirk Krueger, Miguel León-Ledesma, Anders Warne, John Williams; and seminar participants at the 2015 SED congress, 2015 Workshop on Optimal Control and Dynamic Games, 2015 WIEM conference, 2014 CEF conference, 2014 UECE conference (Keynote address), the 3rd NBP Summer Workshop, 2014 DEGIT conference, 2014 Hurwicz Workshop; and at the universities of Aix-Marseille, Athens (Business School), Surrey (Paul Levine Festschrift) and Copenhagen, the Dallas Federal Reserve, the European Central Bank, the Central Bank of the Republic of Turkey and the Istanbul School of Central Banking for helpful comments and discussions. We thank Jouko Vilmunen for kindly providing the data on Finland. We gratefully acknowledge support from the Polish National Science Center (Narodowe Centrum Nauki) under the grant Opus 3 No. 2012/05/B/HS4/02236. The views expressed are those of the authors alone. #### 1 Introduction The proposition that labor's share of national income is stable has endured a long and chequered history. The classical economists – Smith, Ricardo, Marx – regarded labor shares as inherently variable, even in the long run. In stark contrast, the empirical observations of Cobb and Douglas (1928), Bowley (1937), Johnson (1954), Kaldor (1961) and others established the wide-spread constancy of such shares. This 'stylized' fact of stability lead to a benign neglect of the issue, only recently overturned given mounting evidence to the contrary. Our contribution to this literature is two-fold. First, we try to establish (or re-establish) the stylized facts of labor share developments. We do so exploiting a frequency domain analysis. A common view is that labor share volatility is driven by business cycles (Hansen and Prescott, 2005), in a countercyclical manner, and subject in recent decades to a secular downward trend. Our analysis however demonstrates that business cycle fluctuations account for around 20% of the variance decomposition of the labor share. Of far greater importance are 'medium' and 'long run' frequencies. Another distinguishing fact is that whilst the high frequency component of the labor share is *counter-cyclical*, the (dominant) medium-run component is strongly *pro-cyclical*. Tests also show that the medium run labor share is highly persistent relative to the short-run component. This takes us to our second contribution. Confronting these empirical features, we assess the extent to which a micro-founded endogenous growth model can account for them. The model is a generalization of Acemoglu (2003) with two R&D sectors giving rise to factor-augmenting innovations augmenting the "technology menu". We treat our model as a laboratory to assess mechanisms able to explain labor-share swings over the medium and long run.¹ Calibrating the nonlinear model on US data, we demonstrate that the interplay between endogenous arrivals of capital and labor-augmenting technologies leads to oscillatory convergence to the long-run growth path, and sometimes even to stable (self-sustaining endogenous) limit cycles.² The latter possibility (i.e., that the labor share oscillates indefinitely around a stable value) may be considered attractive in so far as it offers us a general theory of continuous labor-share movements as distinct from explanations associated to particular phenomena (e.g., reduced labor power, 'globalization', etc.) Accordingly, our objective is to bridge the knowledge gap between what we observe of factor share movements and how we might model the mechanisms responsible for those movements. Indeed, the recent decline in labor income share poses a conspic- ¹Specifically, as far as we know, even though there exists a suite of endogenous growth models allowing for non-neutral technical change, their implications for medium-to-long run swings in the labor share have not yet been analyzed. Although, more generally, that economic activity may be subject to long waves of activity has proved influential following the seminal works of Kondratieff and Schumpeter. ²Articles, applications and surveys in this vein include Kaldor (1940), Goodwin (1951, 1967), Ryder and Heal (1973), Benhabib and Nishimura (1979), Dockner (1985), Feichtinger (1992), Benhabib and Perli (1994), Ben-Gad (2003), Barnett and Ghosh (2013). uous challenge to theory. The usual macroeconomic paradigm of Cobb-Douglas production (unit elasticity of substitution, neutral technical change) coupled with isoelastic demand (leading to constant markups) leaves no room for the prolonged swings in factor shares observed in the data. Business-cycle models with variable markups or a cocktail of stochastic processes generate shares that stabilize rapidly around a constant mean (missing the high persistence and dominant low-frequency movements). Models endowed with a more general production specification (e.g., the neoclassical growth model with CES technology), on the other hand, do indicate a few critical tradeoffs; however, arguably the profession has not moved much beyond that. The literature therefore tries to explain this phenomenon as departures from these benchmarks. For instance, through the impact of non-neutral technical change (Autor et al., 2003; Acemoglu, 2003; Bentolila and Saint-Paul, 2003; Jones, 2005b; Klump et al., 2007), structural transformation within the economy (Kongsamut et al., 2001; de Serres et al., 2002; Ngai and Pissarides, 2007; McAdam and Willman, 2013), shifting rents and shocks (Blanchard, 1997; Blanchard and Giavazzi, 2003) etc. Other explanations include the rise of offshoring of labor-intensive tasks (Elsby et al., 2013); increasing female labor force participation (Buera and Kaboski, 2012); changing patterns of firm size and age (Kyyrä and Maliranta, 2008); declines in relative prices for investment goods (Karabarbounis and Neiman, 2014); greater IPP capital-intensity (Koh et al., 2016); the tendency for capital returns to exceed economic growth rates (Piketty, 2014) and so on.³ These explanations all have pros and cons of one sort or another (e.g., some explanations are tied to the value of production substitution parameters). Most of them however relate to technological changes, or can be viewed through the lens of technical developments (Boggio et al., 2010). Against this literature, we find that a micro-founded endogenous growth model à la Acemoglu (2003) – with two R&D sectors giving rise to factor-augmenting innovations – is capable of supporting a self-sustaining cycle (a limit cycle) of low-frequency oscillations. We discuss the properties of that cycle and relate them to our earlier empirical findings and the growth literature more generally. For the baseline calibration of the model that we use, these oscillations are dampened ones. However, mild perturbations of that baseline can readily produce a self-sustaining cycle; e.g., if agents are sufficiently patient (a low discount rate) and/or flexible in allocating consumption across time (a high elasticity of intertemporal substitution), the subsequent arrivals of both types of innovations can generate limit cycle behavior. The cycle reflects the tension between the two R&D sectors (acceleration in each of them has conflicting impacts on the labor share). In such a case, irrespective of the initial conditions, the economy converges to a stable cyclical path where all trendless macroeconomic variables (such as the labor share or the consumption–output ratio) oscillate indefinitely around the steady state. Such os- ³Some authors have also envisaged an interesting approach whereby the labor share described as a state variable in a model with Cobb-Douglas technology, which could be changed via purposeful spending on R&D, leading to 'factor-eliminating' technical change (Zuleta, 2008; Peretto and Seater, 2013). cillations have a predetermined frequency and amplitude. Thus the model provides a plausible mechanism which is able to reproduce the observed labor share variations, including the ongoing long downward swing. At the same time, it predicts that this swing will eventually abate and reverse. The paper proceeds as follows. Section 2 discusses some empirical properties of the US labor share. We find that the labor income share is highly persistent with a frequency decomposition skewed to the medium and long run. Section 3 discusses the model. This is an endogenous growth model with two R&D sectors giving rise to capital as well as labor augmenting
innovations augmenting the "technology menu". Section 4 calibrates the model to US data and solves the nonlinear model. Next, we consider the dynamic properties of the model around the balanced growth path (BGP) in terms of oscillatory dynamics and the possible emergence of cycles, and uncovering the key channels involved. Section 6 concludes. # 2 Empirical Evidence for Medium-to-Long Swings in the Labor Share We now explore some empirical properties of the US labor share.⁴ We are of course not the first to do so (i.e., key contributions include Blanchard (1997) for Europe; Sturgill (2012), Elsby et al. (2013), Oberfield and Raval (2015) and Koh et al. (2016) for the US; Karabarbounis and Neiman (2014) globally). Our treatment however is notable in four respects. - 1. Many such studies have concentrated on recent decades and, accordingly, have tended to emphasize the decline since the 1970s. In contrast we examine the broad historical evolution.⁵ - 2. We highlight the frequency decomposition of the labor share and, in so doing, the extent and importance of its medium-to-long run swings (or cycles). Many other contributions, by contrast, have not only concentrated on high-frequency (business-cycle) movements but have also used simple linear (or broken linear) trends to scrutinize features of the factor share. However, since Nelson and Plosser (1982) we know that assumption that some variables are stationary around a deterministic trend is too restrictive. - 3. We derive some stylized facts about the labor share (variance, auto and cross-correlations) but, crucially, we do so again across the frequency domain. ⁴For compactness, some results in this section are relegated to appendices. Codes to replicate our empirical results are available. ⁵Indeed, there was a debate in the 1950s and 1960s on the explanations for the *increasing* labor share e.g., Solow (1958), Kravis (1959), Ferguson and Moroney (1969). 4. We use our findings to motivate an endogenous growth model, which can account for and rationalize persistent fluctuations in the labor share. Our main findings are the following. Most of the labor share's variance decomposition occurs not at business-cycle frequencies but at 'medium' and 'long-run' frequencies ($\approx 80\%$). Stationarity and fractional integration tests corroborate this, showing that the labor share is highly persistent (indicative of slow mean reversion). Moreover, whilst the high frequency component of the labor share is *counter-cyclical*, the (dominant) medium-run component is strongly *pro-cyclical*. #### 2.1 The Historical Time Series of the US Labor Share The annual US labor income share is presented in **Figure 1**.⁶ Regarding data construction, we follow Gollin (2002) by adjusting the payroll share by proprietors' income (see Appendix A.1.1). The constructed series has all the properties usually identified in the literature: (i) it appears counter-cyclical⁷, and (ii) it has declined in recent decades. Figure 1: The Annual US Labor Share, 1929-2015 Note: Shaded areas represent recessions according to the NBER chronology overlaid at quarterly frequency. Summary statistics for the annual and quarterly labor income share are given in Table B.1. However, using this long time series helps us appreciate that these two aspects are only *part* of the story: before the labor share began this decline, it showed something of an upward tendency. When examined over the entire period, the historical series arguably ⁶We additionally use quarterly series, available over 1947:1-2015:4, see Figure D.1. ⁷See Table B.3. looks part of a long cycle. Thus, although the current labor share is back to values near those in 1929, it seems indeed reasonable to expect some eventual mean reversion (as appears to be the case at the end of the sample). Moreover, according to Kaldor's (1961) stylized facts, factor shares should be stable over 'long' time periods, even if they fluctuate over the business cycle. However whilst the labor-share autoregressive parameter is largely close to but (statistically) below unity (see Table B.2), formal stationarity tests are inconclusive (see Table B.4). This ambiguity, this borderline stationarity, may reflect sample-size considerations, low test power in the presence of structural breaks or shifts, etc. Notwithstanding, many time series exhibit too much long-range dependence to be strictly classified as I(0), but are not I(1) either. The ARFIMA model is designed to represent such series. If the fractional parameter⁸ of a time series satisfies $d \in (0,0.5)$, the auto-correlations decay more slowly than those of a stationary ARMA process (i.e., hyperbolically rather than geometrically). In short, the series is stationary but with long memory: shocks to the labor share (or its determinants) take a long time to decay. This particular empirical finding (corroborated at the bottom of table B.4) is consistent with our interpretation of factor income shares as ultimately mean reverting but driven by a long cycle, and (as demonstrated below) dominated by frequency movements beyond the business cycle. #### 2.2 Spectral Analysis of Labor Income Shares Table 1 presents the estimated share of specific types of fluctuations in the total variance of the annual and quarterly series (employing three transformations). For the demeaned series, medium-frequency fluctuations are responsible for 46-50% of total volatility and the cycles mapped into the low-frequency pass are almost just as important (36-46%). Thus the total share of medium-to-long run frequencies is around 80%. As expected, de-trending the labor share series limits the contribution of low-frequency oscillations in the overall variance, and medium-term fluctuations become more important instead, with their share about 58% and 70% for the series de-trended by a linear and quadratic trend, respectively. Business-cycle fluctuations, by contrast account for only 8-29% of the total variance. Looking at the periodogram estimates for both annual and quarterly data, we also note there are two dominant frequencies of fluctuations in the US labor share: (a) medium-term cycles lasting around 30 years, and (b) the long-run stochastic trend, whose length ⁸To illustrate fractional integration, consider $(1-L)^d X_t = \epsilon_t$ where L is the lag operator, $d \in \mathbb{R}$ is the differencing parameter and ϵ_t is the stationary short memory process. If d = 1, X_t is a random walk and integrated of order one, I(1). If d = 0, X_t is white noise and weakly stationary, I(0). ⁹In tables D.2 and D.3 we test the significance of the spectral density peaks following Wei (2006). The null (alternative) hypothesis is that at given frequency there is noise (a significant cycle). The tables confirm that medium-term fluctuations are very important, relative to other ranges. Table 1: Share of Specific Frequencies in Total Variance of the Labor Share (in %) | | Annual | | | Quarterly | | | |-----------------------------|-----------|-------------|----------|-----------|------|----------| | Periodicity (in years) | ≥ 50 | 8-50 | ≤ 8 | ≥ 50 | 8-50 | ≤ 8 | | Excluding the mean | 46.2 | 45.5 | 8.4 | 36.1 | 49.8 | 14.2 | | Excluding a linear trend | 23.7 | 58.4 | 17.9 | 8.7 | 66.6 | 24.7 | | Excluding a quadratic trend | 2.9 | 69.3 | 27.8 | 1.6 | 69.2 | 29.2 | Note: the shares have been calculated using periodogram estimates. **Bold** indicates maximum value. Following Comin and Gertler (2006) we define high (periodicity below 8 years), medium (periodicity between 8 and 50 years) and low-frequency oscillations (periodicity above 50 years). reaches beyond the 80 years mark. As opposed to business-cycle models, the mechanisms present in our model are able to generate swings of either of these frequencies. #### 2.3 Stylized Facts: Labor Share's Medium-Term Fluctuations The medium and long-term component extracted from the labor share is depicted in **Figure 2**.¹⁰ The former component is responsible for a significant part of the overall volatility of the series and has an important contribution to the scale of deviation from long run trend at the turning points. Although isolating the medium- and high-frequency cycles reduces the volatility substantially, the remaining smoothed long-run trend is still hump-shaped (with a peak around the late 1950s/early 1960s). **Table 2** reports the main features of the medium and short-term component of the labor share using moments of the filtered series. Whilst volatility is similar, a stark difference is the counter-cyclical (or a-cyclical) short-run labor share, viewed against the strongly pro-cyclical medium-term component (at 0.6 or above). Indeed, many macroeconomic variables underpinning the labor share (e.g., investment, consumption, hours worked, employment) are virtually all pro-cyclical in the medium term (see **Table D.1**). Finally, note that the short-run component (i.e., that derived from first differencing or standard filtering) has relatively weak persistence (0.3 - 0.7) in comparison to the medium run component which has a persistence parameter, above 0.9. This value is relatively similar to the persistence of the raw series, which is not so surprising given our earlier conclusion that the variance decomposition of the series is dominated by its medium run frequencies. ¹⁰The choice of method for extracting the medium-term component from the data is mostly determined by the frequency domain in question. Following earlier work on medium-term cycles (e.g., Comin and Gertler (2006)), we apply the Christiano and Fitzgerald (2003) (CF) approximation of the ideal band-pass filter. The general strategy of isolating the medium-term component is the following. We transform our data into log differences and then apply the band-pass (CF) filter. Next, we cumulate the filtered data and demean. This increases filter efficiency as compared to applying the filtering procedure
directly to log levels. The extracted series represent percentage deviations from the long-run trend. Figure 2: Medium-Term Component & Long-Term Stochastic Trend of Annual US Labor Share Note: The **red**, **blue** and **black** lines represent the raw series, the medium-to-long term component and the long-run trend, respectively. Table 2: Features of Labor Share's Medium and Short-Term Components | Medium Term | σ_{LS_t} | $\sigma_{LS_t}/\sigma_{GDP_t}$ | $\rho_{LS_t,LS_{t-1}}$ | $ ho_{LS_t,GDP_t}$ | |-------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------| | Annual series | 1.518 | 0.444 | 0.939 | 0.634 | | Quarterly series | (1.285,1.722) 1.547 | 0.449 | (0.909,0.962) | (0.483,0.759) 0.583 | | | (1.445,1.652) | | (0.995,0.997) | (0.504,0.654) | | Short Term [†] | | | | | | Annual series | 0.660 | 0.431 | 0.325 | -0.098 | | quarterly series | (0.538, 0.767)
0.785 | 0.513 | (0.142, 0.502)
0.736 | (-0.316, 0.116)
-0.185 | | | (0.700, 0.869) | | (0.673, 0.795) | (-0.289, -0.076) | Note: σ_{LS_t} and $\sigma_{LS_t}/\sigma_{GDP_t}$ denotes volatility in absolute term (percentage deviation from the long-run trend) and relative term (as a ratio to the GDP's volatility). $\rho_{LS_t,LS_{t-1}}$ and ρ_{LS_t,GDP_t} stand for the first-order autocorrelation and contemporaneous co-movement, respectively. 95% bootstrapped confidence intervals (based on 5,000 replications) in parentheses. [†]We use three measures of the short run component: first-differencing, the CF filter (all fluctuations with periodicity between 2 and 8 years) and, in this table, the HP filter ($\lambda = 1600$ and $\lambda = 6.25$ for quarterly and annual series, respectively). Results for the other filtered short-run series are given in Table B.5. #### 2.4 Summary We demonstrated that movements in the labor share are dominated by medium and low frequencies. Furthermore, such movements are distinct from business-cycle fluctuations since they (and their determinants) are pro-cyclical and characterized by slow, cyclical mean reversion. These 'facts' matter for our modelling choices: to understand the fundamental dynamic underpinning labor shares, requires a framework and method that can speak to those features. Moreover, outside of the business cycle, we typically consider activity as being endogenously driven by technical progress (inter alia, Gancia and Zilibotti (2009)). And it is to such a model that we now turn. #### 3 Model The framework is a generalization of Acemoglu's (2003) model with capital and labor augmenting R&D which, in turn, draws on the earlier induced innovation literature from Kennedy (1964) onwards, as well as Romer (1990) and Jones (1999), the Dixit-Stiglitz monopolistic competition framework and so on. The distinct features of our treatment, though, are worth pointing out and are the following: - (i) our model is non-scale: both R&D functions are specified in terms of percentages of population employed in either R&D sector (as opposed to Acemoglu where the R&D functions are specified in terms of total R&D employment); - (ii) we also assume R&D workers are drawn from the same pool as production workers¹¹; - (iii) we assume more general R&D technologies which allow for mutual spillovers between both R&D sectors (cf. Li, 2000) and for concavity in capital-augmenting technical change; - (iv) in contrast to Acemoglu (2003), the BGP growth rate g in our model depends on preferences via ℓ_Y (labor in aggregate production). The tradeoff is due to drawing researchers from the same employment pool as production workers (a tradeoff not present in his model) and; - (v) we use normalized CES production functions. 12 These changes make our setup less restrictive as regards developments in factors and factor prices and, thus, make the identification of cycles more plausible.¹³ In our case ¹¹Acemoglu (2003) assumes that labor supply in the production sector is inelastic and R&D is carried out by a separate group of "scientists" who cannot engage in production labor. ¹²Normalization implies representing the production function and factor demands in consistent indexed number form. Without normalization, it can be shown that the production parameters have no economic interpretation since they are dependent on the normalization point and on the elasticity of substitution itself. This undermines estimation and comparative statics. See de La Grandville (1989) and Klump and de La Grandville (2000) for the seminal contributions, and León-Ledesma et al. (2010) for an econometric analysis. Bartelme and Gorodnichenko (2015) use the normalized function to examine the link between industry and aggregate productivity. See Cantore et al. (2014), Palivos and Karagiannis (2010) for general background on the importance of the substitution elasticity. Moreover, we confine ourselves to constant returns, consistent with much of the aggregate evidence, e.g., Basu and Fernald (1997). ¹³The literature on endogenous cycles in growth models (albeit usually conducted in systems of lower dimension than ours) has identified various discontinuities and ad-hoc mechanisms to generate cycles: e.g., non concavities, adjustment costs, delay functions, information asymmetries and stickiness, high discount rates, strong control-state interactions, etc. Our framework, being micro-founded and less restrictive along with gross complementarity between capital and labor in the aggregate CES production function, oscillations in factor shares – and other model variables – appear endogenously as an outcome of the interplay between labor and capital augmenting R&D. The cycle reflects the tension between the two R&D sectors (acceleration in each of them has conflicting impacts on the labor share). An additional departure relative to the existing literature is that we provide a full and rigorous calibration of the model based on US data. Among other dynamic properties, we can therefore assess model fit in terms of the lengths of cycles. #### 3.1 Aggregate Production Assume aggregate production is of the normalized CES form:¹⁴ $$Y = Y_0 \left(\pi_0 \left(\frac{\lambda_b}{\lambda_{b0}} \frac{K}{K_0} \right)^{\xi} + (1 - \pi_0) \left(\frac{\lambda_a}{\lambda_{a0}} \frac{L_Y}{L_{Y0}} \right)^{\xi} \right)^{\frac{1}{\xi}}$$ (1) where $\sigma = (1 - \xi)^{-1} \in (0, \infty)$ is the elasticity of factor substitution. Under normalization, benchmark values are assigned to output, capital and labor $(Y_0, K_0, L_0)^{15}$ and technology. Terms λ_a and λ_b represent the maximum degree of factor augmentation along the "technology menu" and grow as an outcome of factor augmenting R&D. Henceforth without loss of generality we set $\lambda_{b0} = 1$. Under perfect competition the capital share is determined by the margins of capital augmenting technology and the capital-output ratio, whose qualitative impact is determined by sign $\{\xi\}$: $$\pi = \pi_0 \left(\frac{\lambda_b K}{\lambda_{b0} K_0} \right)^{\xi} \left(\frac{Y}{Y_0} \right)^{-\xi}.$$ With constant returns, the labor share equals $1 - \pi$. the dimensions indicated, makes the analysis and identification of cycles accordingly, we believe, more 'plausible'. ¹⁴In terms of the distinction between 'local' and 'global' production functions (Jones, 2005b), an aggregate CES production function can be justified if new production techniques are independently and identically drawn from a Weibull distribution, Growiec (2013). See our working paper version of this article (Growiec et al., 2015) for a detailed derivation. ¹⁵Although some have also considered human capital accumulation in constructing and analyzing the labor share (key references being Krueger (1999) and Zuleta (2008)), we abstract from human capital. This was largely done for simplicity since, amongst other things, the introduction of human capital as a separate production factor raises issues of using and discriminating among different hierarchies of multilevel production functions, see León-Ledesma et al. (2012). One, though, might consider the labor inputs to be human-capital adjusted (i.e., similar to how the KLEMS database defines 'labor services'). Likewise, one can consider the labor augmenting technical progress term as capturing some of the effects of human capital on the labor input. #### 3.2 R&D We assume that new, factor augmenting innovations are created endogenously by the respective R&D sectors augmenting the technology menu by increasing the underlying parameters λ_a , λ_b : $$\dot{\lambda}_a = A \left(\lambda_a \lambda_b^{\phi} x^{\eta_a} \ell_a^{\nu_a} \right), \tag{2}$$ $$\dot{\lambda}_b = B\left(\lambda_b^{1-\omega} x^{\eta_b} \ell_b^{\nu_b}\right) - d\lambda_b,\tag{3}$$ where ℓ_a and ℓ_b are the shares (or "research intensity") of population employed in laborand capital augmenting R&D, respectively, with $\ell_a + \ell_b + \ell_Y = 1$, and $\ell_Y L = L_Y$, etc. Term $x \equiv k(\lambda_b/\lambda_a)$ is the effective capital-labor ratio where k = K/L. The terms ℓ_a, ℓ_b, ℓ_Y and x are constant along the BGP. The long-term endogenous growth engine is located in the linear labor augmenting R&D equation. To fulfill the requirement of the existence of a BGP along which the growth rates of λ_a and λ_b are constant, we assume $\eta_b \phi + \eta_a \omega \neq 0.16$ Parameters A and B capture the unit productivity of the labor- and capital augmenting R&D process, respectively. Parameter ϕ captures the spillover from capital to labor augmenting R&D. Parameter ω measures the degree of decreasing returns to scale in capital augmenting R&D. By assuming $\omega \in (0,1)$ we allow for the "standing on shoulders" effect in capital augmenting R&D, albeit we limit its scope insofar as it is less than proportional to the existing technology stock
(Jones, 1995). We assume capital augmenting developments are subject to gradual decay at a rate d > 0, which mirrors susceptibility to obsolescence and embodied character of capital augmenting technologies, Solow (1960). This assumption is critical for the asymptotic constancy of unit capital productivity λ_b , and thus for the existence of a BGP with purely labor augmenting technical change. #### 3.2.1 Duplication Externalities A key insight of the endogenous growth literature is that R&D activity may be subject to duplication externalities (Stokey, 1995; Jones, 1995). This is captured by parameters $v_a, v_b \in (0,1]$: the higher is v the lower the extent of duplication. This negative externality may arise from many sources, e.g., patent races and patent protection. A race to secure a lucrative (e.g., medical) patent, for instance, may imply large decentralized, ¹⁶All our qualitative results also go through for the special case $\eta_a = \eta_b = 0$, which fully excludes the presence of the effective capital-labor term, x, in R&D. The current inequality condition is not required in such cases. ¹⁷There are no a priori restrictions on sign $\{\phi\}$. In our baseline calibration we assume $\phi > 0$, indicating that more efficient use of physical capital in the economy also increases the productivity of labor augmenting R&D. See Li (2000) for a thorough discussion of the role of cross-sectoral spillovers in growth models with two R&D sectors. overlapping scientific resources. Likewise, with stringent patent protection, wasteful duplication may arise since firms cannot directly build on patented technology (having first to reinvent/imitate it). On the other hand, with more patent protection, there could be less duplication because each research project gives the firm more leverage due to its patentability and the exclusion of competition. The net effect is unclear. These externalities are important in our analysis. Indeed, we are not aware of any study which distinguishes between duplication externalities in labor- and capital augmenting R&D. This raises the question of whether $v_a = v_b$, though a defensible prior, makes sense. For instance, duplication externalities could be stronger in labor augmenting R&D, in so far as there is greater scope for patent protection when the technology is embodied in capital goods and subject to obsolescence. Accordingly, we explore several $\{v_a, v_b\}$ scenarios. #### 3.2.2 Nested Forms in R&D Accumulation To put our forms in context, observe that switching off all externalities and spillovers in (2)–(3) by setting $d=\omega=\eta_a=\eta_b=0$ and $\nu_a=\nu_b=1$ retrieves the original specification of R&D in Acemoglu (2003). Moreover, compared with models which use aggregate Cobb-Douglas, equation (3) is akin to Jones' (1995) formulation of the R&D sector, generalized by adding obsolescence and the capital-labor term. Thus, setting $d=\eta_b=0$ retrieves Jones' original specification. And equation (2) is the same as in Romer (1990) but scale-free (i.e., it features a term in ℓ_b instead of $\ell_b \cdot L$) and with effective capital-labor in R&D and a direct spillover from λ_b ; setting $\phi=\eta_a=0$ retrieves the scale-free version of Romer (1990), cf. Jones (1999). #### 3.3 The Decentralized Allocation The construction of the decentralized allocation of the model draws from Romer (1990), Acemoglu (2003), and Jones (2005a). In particular, we use the Dixit-Stiglitz monopolistic competition setup and the increasing variety framework of the R&D sector. The general equilibrium is obtained as an outcome of the interplay between: households; final goods producers; aggregators of bundles of capital and labor-intensive intermediate goods; monopolistically competitive producers of differentiated capital and labor-intensive intermediate goods; and competitive capital and labor augmenting R&D firms. We discuss these agents in turn in the following subsections. $^{^{18}}$ Furthermore, Acemoglu (2003) assumes scientists to be a separate input from labor, and considers an additional case where both types of innovations are subject to decay at a rate d. #### 3.3.1 Households Assume the representative household maximizes discounted CRRA utility: $$\max \int_0^\infty \frac{c^{1-\gamma} - 1}{1 - \gamma} e^{-(\rho - n)t} dt \tag{4}$$ subject to the budget constraint: $$\dot{v} = (r - \delta - n)v + w - c,\tag{5}$$ where $\gamma > 0$ is the inverse of the intertemporal elasticity of substitution, $\rho > 0$ is the rate of time preference, n > 0 is the (exogenous) growth rate of the labor supply, and v = V/L is the household's per-capita holding of assets, $V = K + p_a \lambda_a + p_b \lambda_b$. The representative household is the owner of all capital and also holds the shares of monopolistic producers of differentiated capital and labor-intensive intermediate goods. Capital is rented at a net market rental rate equal to the gross rental rate less depreciation: $r - \delta$. Solving the household's optimization problem yields the consumption Euler equation: $$\hat{c} = \frac{r - \delta - \rho}{\gamma},\tag{6}$$ where $\hat{c} = \dot{c}/c = g$ (the per-capita growth rate). #### 3.3.2 Final Goods Producers The role of final goods producers is to generate the output of final goods (which are then either consumed by the representative household or saved and invested, leading to physical capital accumulation), taking bundles of capital and labor-intensive intermediate goods as inputs. They operate in a perfectly competitive environment, where both bundles are remunerated at market rates p_K and p_L , respectively. The final goods producers operate a normalized CES technology: $$Y = Y_0 \left(\pi_0 \left(\frac{Y_K}{Y_{K0}} \right)^{\xi} + (1 - \pi_0) \left(\frac{Y_L}{Y_{L0}} \right)^{\xi} \right)^{\frac{1}{\xi}}. \tag{7}$$ The first order condition implies that final goods producers' demand for capital and labor-intensive intermediate goods bundles satisfies, $$p_K = \pi \frac{Y}{Y_K}, \ p_L = (1 - \pi) \frac{Y}{Y_L},$$ (8) where the share term $\pi = \pi_0 \left(\frac{Y_K}{Y_{K0}} \frac{Y_0}{Y} \right)^{\xi}$ is the elasticity of final output with respect to Y_K . #### 3.3.3 Aggregators of Capital- and Labor-Intensive Intermediate Goods There are two symmetric sectors in the economy, whose role is to aggregate the differentiated (capital or labor-intensive) goods into the bundles Y_K and Y_L demanded by final goods producers. It is assumed that the differentiated goods are imperfectly substitutable (albeit gross substitutes). The degree of substitutability is captured by parameter $\varepsilon \in (0,1)$: $$Y_K = \left(\int_0^{N_K} X_{Ki}^{\varepsilon} di \right)^{\frac{1}{\varepsilon}}. \tag{9}$$ Aggregators operate in a perfectly competitive environment and decide upon their demand for intermediate goods, the price of which will be set by the respective monopolistic producers (discussed below). For capital-intensive bundles, the aggregators maximize $$\max_{X_{Ki}} \left\{ p_K \left(\int_0^{N_K} X_{Ki}^{\varepsilon} di \right)^{\frac{1}{\varepsilon}} - \int_0^{N_K} p_{Ki} X_{Ki} di \right\}, \tag{10}$$ for a continuum of measure N_K of capital-intensive intermediate goods producers. Optimization implies the following demand curve: $$X_{Ki} = x_K(p_{Ki}) = \left(\frac{p_{Ki}}{p_K}\right)^{\frac{1}{\varepsilon - 1}} Y_K^{\frac{1}{\varepsilon}}.$$ (11) Symmetrically, there is also a continuum of measure N_L of labor-intensive intermediate goods producers. The demand curve for their products satisfies, $$X_{Li} = x_L(p_{Li}) = \left(\frac{p_{Li}}{p_L}\right)^{\frac{1}{\varepsilon-1}} Y_L^{\frac{1}{\varepsilon}}.$$ (12) #### 3.3.4 Producers of Differentiated Intermediate Goods It is assumed that each of the differentiated capital or labor-intensive intermediate goods producers, indexed by $i \in [0, N_K]$ or $i \in [0, N_L]$ respectively, has monopoly over its specific variety. It is therefore free to choose its preferred price p_{Ki} or p_{Li} . These firms operate a simple linear technology, employing either only capital or only labor. For capital-intensive intermediate goods producers, the production function is $X_{Ki} = K_i$. Capital is rented at the gross rental rate r. The optimization problem is: $$\max_{p_{Ki}} (p_{Ki}X_{Ki} - rK_i) = \max_{p_{Ki}} (p_{Ki} - r)x_K(p_{Ki}). \tag{13}$$ The optimal solution implies $p_{Ki} = r/\varepsilon \ \forall i \in [0, N_K]$. This implies symmetry across all differentiated goods: they are sold at equal prices, thus their supply is also identical, $X_{Ki} = \bar{X}_K \forall i$. Given this regularity, market clearing implies: $$K = \int_0^{N_K} K_i di = \int_0^{N_K} X_{Ki} di = N_K \bar{X}_K \qquad Y_K = N_K^{\frac{1-\varepsilon}{\varepsilon}} K.$$ (14) The demand curve implies that the price of intermediate goods is linked to the price of the capital-intensive bundle as in $p_K = p_{Ki} N_K^{\frac{\varepsilon-1}{\varepsilon}} = (r/\varepsilon) \, N_K^{\frac{\varepsilon-1}{\varepsilon}}$. Symmetrically, in the labor-intensive sector, the production function is $X_{Li} = L_{Yi}$. Symmetrically, in the labor-intensive sector, the production function is $X_{Li} = L_{Yi}$. Employees are remunerated at the market wage rate w. The total labor supply is given by $L_Y = \ell_Y L = \int_0^{N_L} L_{Yi} di$. Optimization yields $p_{Li} = w/\varepsilon$. By symmetry, we also obtain: $$L_Y = \int_0^{N_L} X_{Li} di = N_L \bar{X}_L \qquad Y_L = N_L^{\frac{1-\varepsilon}{\varepsilon}} L_Y. \tag{15}$$ The respective prices satisfy $p_L = p_{Li} N_L^{\frac{\varepsilon-1}{\varepsilon}} = (w/\varepsilon) N_L^{\frac{\varepsilon-1}{\varepsilon}}$. Finally, aggregating across all the intermediate goods producers, we obtain that their total profits are equal to $\Pi_K N_K = rK\left(\frac{1-\varepsilon}{\varepsilon}\right)$ and $\Pi_L N_L = wL_Y\left(\frac{1-\varepsilon}{\varepsilon}\right)$ for capital and
labor-intensive goods respectively. Streams of profits per person in the representative household are thus $\pi_K = \Pi_K/L$ and $\pi_L = \Pi_L/L$, respectively. Hence, the total remuneration channeled to the capital-intensive sector equals $p_K Y_K = (r/\varepsilon) K = rK + \Pi_K N_K$, whereas the total remuneration channeled to the labor-intensive sector equals $p_L Y_L = (w/\varepsilon) L_Y = rL_Y + \Pi_L N_L$. Comparing these results to the optimization problem of the final goods firms leads to, $$r = \varepsilon \pi \frac{Y}{K} = \varepsilon \pi_0 \left(\frac{Y}{K}\right)^{1-\xi} \left(\frac{Y_0}{K_0}\right)^{\xi} \left(\frac{N_K}{N_{K0}}\right)^{\xi\left(\frac{1-\varepsilon}{\varepsilon}\right)},\tag{16}$$ $$w = \varepsilon (1 - \pi) \frac{Y}{L_Y} = \varepsilon (1 - \pi_0) \left(\frac{Y}{L_Y}\right)^{1 - \xi} \left(\frac{Y_0}{L_{Y0}}\right)^{\xi} \left(\frac{N_L}{N_{L0}}\right)^{\xi \left(\frac{1 - \varepsilon}{\varepsilon}\right)},\tag{17}$$ $$\frac{p_K}{p_L} = \frac{\pi}{1 - \pi} \frac{Y_L}{Y_K} = \frac{\pi}{1 - \pi} \frac{L_Y}{K} \left(\frac{N_L}{N_K}\right)^{\frac{1 - \varepsilon}{\varepsilon}} = \frac{r}{w} \left(\frac{N_L}{N_K}\right)^{\frac{1 - \varepsilon}{\varepsilon}}.$$ (18) In equilibrium, factor shares then amount to, $$\pi = \pi_0 \left(\frac{KY_0}{K_0Y}\right)^{\xi} \left(\frac{N_K}{N_{K0}}\right)^{\xi\left(\frac{1-\varepsilon}{\varepsilon}\right)}, \tag{19}$$ $$1 - \pi = (1 - \pi_0) \left(\frac{L_Y Y_0}{L_{Y0} Y}\right)^{\xi} \left(\frac{N_L}{N_{L0}}\right)^{\xi\left(\frac{1-\xi}{\varepsilon}\right)}. \tag{20}$$ Hence, the aggregate production function, obtained after incorporating all these choices into (7), and using the definitions $\lambda_b = N_K^{\frac{1-\varepsilon}{\varepsilon}}$ and $\lambda_a = N_L^{\frac{1-\varepsilon}{\varepsilon}}$, yields, $$Y = Y_0 \left(\pi_0 \left(\frac{\lambda_b K}{\lambda_{b0} K_0} \right)^{\xi} + (1 - \pi_0) \left(\frac{\lambda_a L_Y}{\lambda_{a0} L_{Y0}} \right)^{\xi} \right)^{\frac{1}{\xi}}$$ (1') which coincides with the aggregate production function (1). #### 3.3.5 Capital and Labor Augmenting R&D Firms The role of capital and labor augmenting R&D firms is to produce innovations which increase the variety of available differentiated intermediate goods (N_K or N_L), and thus indirectly also λ_b and λ_a . Patents never expire, and patent protection is perfect. R&D firms sell these patents to the representative household which sets up a monopoly for each new variety. Patent price, p_b or p_a , which reflects the discounted stream of future monopoly profits, is set at the competitive market. There is free entry to R&D. R&D firms employ labor only: $L_a = \ell_a L$ and $L_b = \ell_b L$ workers are employed in the labor- and capital augmenting R&D sectors, respectively. There is also an externality from the total physical capital stock in the economy, working through the effective capital-labor ratio in the R&D production function. Furthermore, the R&D firms perceive their production technology as linear in labor, while in fact it is concave due to duplication externalities. Incorporating these assumptions and recalling that $x = k(\lambda_b/\lambda_a)$, capital augmenting R&D firms maximize: $$\max_{\ell_b} (p_b \dot{\lambda}_b - w \ell_b) = \max_{\ell_b} ((p_b Q_K - w) \ell_b), \qquad (21)$$ where $Q_K = B\left(\lambda_b^{1-\omega} x^{\eta_b} \ell_b^{\nu_b-1}\right)$ is treated by firms as an exogenous constant in the steady state (Romer, 1990; Jones, 2005a) – though it will be determined by the respective model variables in equilibrium. Analogously, labor augmenting R&D firms maximize: $$\max_{\ell_a} (p_a \dot{\lambda}_a - w \ell_a) = \max_{\ell_a} ((p_a Q_L - w) \ell_a), \qquad (22)$$ where $Q_L = A\left(\lambda_a \lambda_b^{\phi} x^{\eta_a} \ell_a^{\nu_a - 1}\right)$ is treated as exogenous. Free entry into both R&D sectors implies $w = p_b Q_K = p_a Q_L$. Purchase of a patent entitles the holders to a per-capita stream of profits equal to π_K and π_L , respectively. While the production of any labor augmenting varieties lasts forever, there is a constant rate d at which production of capital-intensive varieties becomes obsolete. This effect is external to patent holders and thus is not strategically taken into account when accumulating the patent stock.¹⁹ #### 3.3.6 Externality Term There is also an (optional) externality term in the capital's equation of motion. Motivated by León-Ledesma and Satchi (2015), we allow for a non-negative cost of adopting new labor-augmenting technologies: since workers (as opposed to machines) need to develop skills compatible with each new technology, it is assumed that there is an external capital cost of such technology shifts (training costs, learning-by-doing, etc.). Based on a detailed micro-founded derivation available in our working paper version (Growiec et al., 2015) we posit that new capital investments are diminished by $\zeta z_a L$, where $\zeta \geq 0$ and $z_a = g\lambda_a \frac{\pi}{\pi_0}$, and thus $\frac{z_a}{k} = \frac{g\lambda_b}{x} \frac{\pi}{\pi_0}$. #### 3.3.7 Equilibrium We define the *decentralized equilibrium* as the collection of time paths of all the respective quantities: c, ℓ_a , ℓ_b , k, λ_b , λ_a , Y_K , Y_L , $\{X_{Ki}\}$, $\{X_{Li}\}$ and prices r, w, p_K , p_L , $\{p_{Ki}\}$, $\{p_{Li}\}$, p_a , p_b such that: (1) households maximize discounted utility subject to their budget constraint; (2) profit maximization is followed by final-goods producers, aggregators and producers of capital and labor-intensive intermediate goods, and capital and labor augmenting R&D firms; (3) the labor market clears: $L_a + L_b + L_Y = (\ell_a + \ell_b + \ell_Y)L = L$; (4) the asset market clears: $V = vL = K + p_a\lambda_a + p_b\lambda_b$, where assets have equal returns: $r - \delta = \frac{\pi_L}{p_a} + \frac{\dot{p}_a}{p_b} = \frac{\pi_K}{p_b} + \frac{\dot{p}_b}{p_b} - d$; and, finally (5), such that the aggregate capital stock satisfies $$\dot{K} = Y - C - \delta K - \zeta z_a L, \qquad \Leftrightarrow \qquad \dot{k} = y - c - (\delta + n)k - \zeta z_a.$$ (23) ## 3.4 Solving for the Decentralized Allocation When solving for the decentralized allocation, we first solve analytically for the BGP of our endogenous growth model and then linearize the implied dynamical system around the BGP. #### 3.4.1 Balanced Growth Path Since Uzawa (1961) we have known that any neoclassical growth model can exhibit balanced growth only if technical change has a purely labor-augmenting representation or if production is Cobb-Douglas.²⁰ This conclusion holds for our model too. Hence, once we ¹⁹In other words, by solving a static optimization problem, capital augmenting R&D firms do not take the dynamic (external) obsolescence effect into account. ²⁰Irmen (2016) generalizes Uzawa's result to growth models allowing aggregate intermediate expenses to follow a different technology than output. presume a CES production function, the analysis of dynamic consequences of technical change, which is not purely labor augmenting, must be done outside the BGP. Along the BGP, we obtain the following growth rate of key model variables: $$g = \hat{\lambda}_a = \hat{k} = \hat{c} = \hat{y} = A(\lambda_h^*)^{\phi} (x^*)^{\eta_a} (\ell_a^*)^{\nu_a}, \tag{24}$$ where stars denote steady-state values and, as before, $\hat{q} = \dot{q}/q$ etc. Hence, ultimately long-run growth is driven by labor augmenting R&D. This can essentially be explained by the fact that labor is the only non-accumulable factor in the model, it is complementary to capital along the aggregate production function, and the labor augmenting R&D equation is linear with respect to λ_a . The following variables are constant along the BGP: y/k, c/k, Y_K/Y , Y_L/Y , ℓ_a , ℓ_b and λ_b . Stability of the last variable at the BGP signifies that, unsurprisingly, there is no capital augmenting technical change along the BGP. #### 3.4.2 Euler Equations Calculations imply that the decentralized equilibrium is associated with the following Euler equations describing the first-order conditions: $$\hat{c} = \frac{\varepsilon \pi \frac{y}{k} - \delta - \rho}{\gamma},\tag{25}$$ $$\varphi_1 \hat{\ell}_a + \varphi_2 \hat{\ell}_b = Q_1, \tag{26}$$ $$\varphi_3\hat{\ell}_a + \varphi_4\hat{\ell}_b = Q_2,\tag{27}$$ where $$\varphi_1 = \nu_a - 1 - (1 - \xi)\pi \frac{\ell_a}{\ell_Y}; \quad \varphi_4 = \nu_b - 1 - (1 - \xi)\pi \frac{\ell_b}{\ell_Y}$$ $$\varphi_2 = -(1 - \xi)\pi \frac{\ell_b}{\ell_Y}; \quad \varphi_3 = -(1 - \xi)\pi \frac{\ell_a}{\ell_Y}$$ $$Q_1 = -\varepsilon \pi \frac{y}{k} + \delta + \hat{\lambda}_a \frac{\ell_Y}{\ell_a} - \phi \hat{\lambda}_b + ((1 - \xi)\pi - \eta_a)\hat{x}$$ $$Q_2 = -\varepsilon \pi \frac{y}{k} + \delta + \hat{\lambda}_a + (\hat{\lambda}_b + d)\left(\frac{\pi}{1 - \pi} \frac{\ell_Y}{\ell_b}\right) - \hat{\lambda}_b (1 - \omega) - d + ((1 - \xi)\pi - \eta_b)\hat{x}$$ A sufficient condition for all transversality conditions to be satisfied is that $(1 - \gamma)g + n < \rho$. #### 3.4.3 Steady State of Transformed System To analyze the properties of the dynamic system around the BGP, the Euler equations and dynamics of state variables have been rewritten in terms of *stationary* variables which are constant along the BGP, i.e., in coordinates: u = (c/k), ℓ_a , ℓ_b , x, λ_b , with auxiliary variables z = (y/k), π , g. The steady state of the transformed system satisfies: $$g = \hat{\lambda}_a = \hat{k} = \hat{c} = \hat{y} = A(\lambda_h^*)^{\phi} (x^*)^{\eta_a} (\ell_a^*)^{\nu_a}$$ (28) $$\gamma g + \rho = r - \delta \tag{29}$$ $$g = z - \zeta \frac{z_a}{k} - u - (\delta + n) \tag{30}$$ $$d = B\left(\lambda_b^{-\omega} x^{\eta_b} \ell_b^{\nu_b}\right) \tag{31}$$ $$g\frac{\ell_Y}{\ell_a} = r - \delta \tag{32}$$ $$g = r - \delta + d \left(1 - \frac{\pi}{1 - \pi} \frac{\ell_Y}{\ell_h} \right) \tag{33}$$ $$r = \varepsilon
\pi z \tag{34}$$ $$\frac{\pi}{\pi_0} = \left(\frac{\lambda_b}{\lambda_{b0}}\right)^{\xi} \left(\frac{z}{z_0}\right)^{-\xi} \tag{35}$$ $$\frac{z}{z_0} = \frac{\lambda_b}{\lambda_{b0}} \left(\pi_0 + (1 - \pi_0) \left(\frac{x_0}{x} \frac{\ell_Y}{\ell_{Y0}} \right)^{\xi} \right)^{1/\xi}. \tag{36}$$ All further analysis of the decentralized allocation will be based on the numerical linearization of the 5-dimensional dynamical system of equations (3), (23) and (25)–(27), in coordinates u = (c/k), ℓ_a , ℓ_b , x, λ_b , taking (2) as given, around the unique steady state of the de-trended system (and thus, around the unique BGP of the model in original variables). #### 4 Model Calibration The calibration (see **Table 3**) follows five steps. First, several "deep" parameters are predetermined by taking values stemming from the literature: the (inverse) intertemporal elasticity of substitution, the rate of time preference, and depreciation. These first two parameters turn out to be key to generating limit cycles, for a given technology process. Table 3: Baseline Calibration: Pre-Determined Parameters | Parameter | | Value | Source/Target | |--|------------------------------|---------|--| | Preferences | | | | | Inverse Intertemporal Elasticity of Substitution | γ | 1.7500 | Barro and Sala-i-Martin (2003) | | Time Preference | ho | 0.0200 | Barro and Sala-i-Martin (2003) | | Income and Production | | | | | GDP Per-Capita Growth | g | 0.0171 | geometric average | | Population Growth rate | n | 0.0153 | geometric average | | Labor in Aggregate Production | ℓ_{Y0},ℓ_Y^* | 0.5934 | $ rac{0.5\left(\gamma+ rac{ ho}{g} ight)}{1+0.5\left(\gamma+ rac{ ho}{g} ight)}$ | | Capital Productivity | z_0, z^* | 0.3450 | geometric average | | Consumption-to-Capital | u^* | 0.2199 | geometric average | | Capital Income Share | π_0,π^* | 0.3260 | arithmetic average | | Depreciation | δ | 0.0600 | Caselli (2005) | | Factor Substitution Parameter | ξ | -0.4286 | $\Rightarrow \sigma = 0.7$, Klump et al. (2007) | | Net Real Rate of Return | $r^* - \delta$ | 0.0499 | $r^* - \delta = \gamma g + \rho$ | | Substitutability Between Intermediate Goods | ε | 0.9793 | $arepsilon = rac{r^*}{\pi^*z^*}$ | | R&D Sectors | | | | | R&D Duplication Parameters | $\nu_a = \nu_b$ | 0.7500 | see text | | Technology-Augmenting Terms | $\lambda_{a0}, \lambda_{b0}$ | 1.0000 | see text | | Technology-Augmenting Terms | λ_b^* | | $\lambda_b^* = \lambda_{b0} \frac{z^*}{z_0} \left(\frac{\pi^*}{\pi_0}\right)^{\frac{1}{\zeta}}$ | | Labor Input in R&D sectors | ℓ_Y^a, ℓ_Y^b | 0.2033 | " U " U 1 | | Effective Capital-Labor ratio [†] | x_0, x^* | 61.7900 | $x^* = x_0 \frac{\ell_Y^*}{\ell_{Y0}} \left(\frac{1}{1 - \pi_0} \left(\frac{z^*}{z_0} \frac{\lambda_{b0}}{\lambda_b^*} \right)^{\xi} - \frac{\pi_0}{1 - \pi_0} \right)^{-1/\xi}$ | Notes: $^{\dagger} x_0 = \frac{\lambda_{b0} k_0}{\lambda_{a0}} = 61.79.$ Second, we assign CES normalization parameters to match US in-sample long-run averages. This implies an average labor share of $1-\pi_0=0.66$. Following many empirical studies (Klump et al., 2007; Chirinko, 2008; Oberfield and Raval, 2015) we calibrate factors to be gross complements.²¹ However, since some other studies (e.g., Piketty, 2014; Karabarbounis and Neiman, 2014) rely on gross substitutes, we consider this in our robustness exercises. Third, we assume that a range of long-run averages from US data correspond to the model's BGP. Doing so allows us to calibrate the rates of economic and population growth, capital productivity, and the consumption-to-capital ratio. Next, with this in hand, four identities included in the system (28)–(36) yield the calibration of other parameters in a model-consistent manner: $\ell_Y^*, r^*, \lambda_b^*, x^*$ and ε . Final production employment is also set in a model-consistent manner. We agnostically assume the share $1 - \ell_Y^*$ is split equally between employment in both R&D sectors. For the model-consistent value of ℓ_Y^* , this formula leads to values close to those typically considered under the non-routine cognitive occupational group (e.g., using BLS data, Jaimovich and Siu (2012) show this ratio to be between 29% and 38% (over 1982-2012); see also Autor et al. (2003)).²² Regarding the duplication externalities in factor augmenting R&D, as earlier stated, the literature typically considers a unique R&D duplication externality. Following Jones and Williams (2000)'s single aggregate value, we set $v_a = v_b = 0.75$. The technology augmenting term λ_b^* is set in a model-consistent manner. The final step is to assign values to the remaining parameters, in particular the technological parameters of R&D equations. We do this by solving the four remaining equations in the system (28)–(36) with respect to the remaining parameters, see **Table 4**. All these parameters are within admissible ranges. For instance, Pessoa (2005) estimates values for the obsolescence parameter between 0-15%; our endogenously determined value is thus centered in that range. Comparing $\eta_a = 0.24$ with $\eta_b = 0.13$ signifies that, first of all, lab equipment (effective capital augmentation of the R&D process) assuredly matters ²¹Both quoted studies rely on consistently measured data exploiting time-series variation. Still, León-Ledesma et al. (2010) found that even studies based on long samples reported estimates of the US substitution elasticity below one. Arrow et al. (1961) found an aggregate elasticity over 1909-1949 of 0.57. Oberfield and Raval (2015) report their average estimate of the aggregate elasticity at 0.7 based on a large firm-level data set from US manufacturing, with substantial cross-sectional variation. On the other hand, literature based predominantly on cross-country variation (e.g., Piketty and Zucman, 2014; Karabarbounis and Neiman, 2014), tends to imply gross substitutability. ²²Counting the number of scientists, researchers, teachers and even patents and expenditures has long been recognised as a crude proxy for research activity. (See the "Oslo Manual" (OECD/Eurostat, 2005) for a discussion of the various R&D types, and measurement issues.) Thus, we might also choose to interpret the ℓ_a^* and ℓ_b^* values as a correction for the managerial and entrepreneurial input to production as well as learning-by-doing on the side of employees; when new technologies are implemented in production, they require significant effort and/or reorganization of the workplace, which might be considered to show up as R&D in our simplified model. Similarly, it may capture non-routine and analytical tasks in the employment spectrum which do not necessarily show up in formal research-intensive job definitions ²³This can also be justified as an average of the original constant-returns-to-scale parametrization of $\nu = 1$ (Romer, 1990) and the evidence of $\nu \approx 0.5$ provided by Pessoa (2005). for R&D productivity, and second, that it is relatively more important for inventing new labor-augmenting technologies than capital-augmenting ones. Moreover, with $\phi=0.3$, labor-augmenting R&D – the ultimate engine of long-run growth – is substantially reinforced by spillovers coming from the capital-augmenting R&D sector. On the other hand, $\omega=0.5$ means that the scope for capital-augmenting R&D is quite strongly limited by decreasing returns. Given this benchmark calibration, the steady state is a saddle point. **Table 4: Baseline Calibration: Additional Parameters** | Parameter | | Value | |---|------------------|--------| | Labor augmenting R&D | | | | Unit productivity | \boldsymbol{A} | 0.02 | | Capital-Labor in R&D exponent | η_a | 0.24 | | Capital augmenting R&D | | | | Unit productivity | В | 0.16 | | Capital-Labor in R&D exponent | η_b | 0.13 | | Degree of decreasing returns | ω | 0.50 | | Obsolescence rate | d | 0.08 | | Spillover from capital to labor augmenting tech. change | φ | 0.30 | | Technology choice externality | ζ | 115.28 | ### 5 Oscillatory Model Dynamics Given our baseline calibration, the decentralized allocation of the model exhibits endogenous, dampened oscillations of the labor share and other de-trended model variables, see **Table 5**. These are long swings, similar to the one observed throughout the 20th century in the US (recall **Figure 2**) and elsewhere (Appendix C.2) rather than business-cycle fluctuations.²⁴ Moreover, we also obtain quantitative predictions on cyclical co-movements.²⁵ It turns out that all variables except for the consumption-capital ratio u = c/k oscillate when converging to the steady state, with the same frequency of oscillations. The level of capital augmenting technology λ_b , the effective capital-labor ratio x, and labor augmenting R&D ²⁴Bear in mind that, by design, our method of analysis does not allow us to test whether the model succeeds in matching the absolute *amplitude* of cycles. This is because the analysis is carried out based on a system that has been linearized around the BGP. Then the local amplitude of oscillations is just a matter of initial conditions: if the system is started far away from the BGP then the amplitude must be large, and conversely, it will be small if the system is started close to the BGP. We do not have sufficient empirical information on the appropriate initial conditions, and moreover, the distance from BGP must be kept manageably small in the analysis for the linearized system to be a sufficiently good approximation of the full nonlinear model. ²⁵This is done by inspecting the eigenvector associated with the largest stable root of the
Jacobian of the system at the steady state. Table 5: Dynamics around the BGP under the Baseline Calibration | Dynamic Metric | | |--|------| | Pace of Convergence* (% per year) | 6.3% | | Length of Full Cycle [†] (years), L ^c | 52.6 | | Labor Share Cyclicality | + | Note: Pace of convergence reflects by how many % of the current distance does the system's distance to the BGP decrease per annum. * computed as $1-e^{rr}$ where rr<0 is the real part of the largest stable root; † computed as $\mathbf{L}^c=2\pi/ir$ where ir>0 is the imaginary part of two conjugate stable roots (if they exist). A '+' indicates procyclicality. employment ℓ_a are always pro-cyclical, whereas capital augmenting R&D ℓ_b is counter-cyclical. Furthermore, as long as capital and labor are gross complements ($\xi < 0$), the labor income share is also pro-cyclical.²⁶ These features of cyclical co-movement align well with the empirical evidence for the US medium-term cycle. In particular, the US labor share is indeed pro-cyclical over the medium-to-long run (despite its counter-cyclicality along the business cycle). #### 5.1 Emergence of Limit Cycles Could one plausibly expect limit cycle behavior of the labor share (and as a consequence, the growth rate and other endogenous variables) in this model? At the baseline calibration, the answer is no because (as just noted) the model exhibits *dampened* cycles, i.e., oscillatory convergence to the BGP. On the other hand, we know that limit cycles can be generated by Hopf's bifurcation theorem (Feichtinger, 1992; Kuznetsov, 2004). This states that if, when exploring the support of one of the model parameters, real parts of two stable conjugate roots of the system transversally cross zero, then the steady state loses its local stability. The ensuing bifurcation can be either *supercritical* or *subcritical*. In the supercritical case, the steady state is first a global attractor, and when it becomes locally unstable, a stable limit cycle is created around it. In the subcritical case, the stable steady state is only a local attractor surrounded by an unstable limit cycle, and when it loses stability, it becomes globally repelling. Whether the Hopf bifurcation is supercritical or subcritical, depends on the sign of the first Lyapunov coefficient at the bifurcation point.²⁷ The question then is, does any of these situations appear in our case, and if so, do they occur around an empirically plausible parameter set? To answer this, we carried out the following "multi-calibration" exercise (or BGP pre- ²⁶In our real deterministic model, that correlation is 1 (compared to 0.6 in the data, recall table 2). Introducing additional, for example nominal, frictions would be one reconciliation device. ²⁷More precisely, in the multi-dimensional case with which we are dealing here, at the point of a Hopf bifurcation the steady state ceases to be a stable focus along the stable manifold, and becomes a repelling focus instead. The considered limit cycles around the steady state are also located in the same manifold. serving sensitivity analysis). We computed the eigenvalues of the system around the steady state for different values of a particular parameter, making sure that whatever assumption on its value is made, other pre-determined parameters are held at their baseline values whereas other "free" parameters are re-calibrated in a way that the model always remains in accordance with (data-consistent) BGP characteristics. In this way, we identified model parameterizations leading to various types of local dynamics around the same BGP. Having identified the point of Hopf bifurcation, i.e., the parametrization under which the eigenvalues of the system around the steady state transversally cross zero, we computed the first Lyapunov coefficient of the system at this point.²⁸ Parameters not pinned down by the data are the key ones we investigate as regards the model's quantitative and cyclical behavior. These are essentially γ , ρ , δ , ξ , $\frac{\ell_a^*}{\ell_a^* + \ell_b^*}$ and ν_a , ν_b (respectively: inverse intertemporal substitution elasticity, discount factor, depreciation rate, aggregate production elasticity parameter, share of labor augmenting R&D at the BGP, two duplication parameters).²⁹ **Figure 3** illustrates the results of this quantitative exercise with respect to ρ (time preference), γ (inverse elasticity of intertemporal substitution) and $\frac{\ell_a^*}{\ell_a^* + \ell_b^*}$ (the share of labor augmenting R&D at the BGP). Different calibrations of the relevant parameter are marked on the horizontal axis, whereas the resulting real and imaginary parts of the eigenvalues of the dynamical system (linearized around the BGP) are plotted along the vertical. Positive (negative) real parts imply divergence (convergence). The presence of non-zero imaginary parts indicates oscillatory dynamics. Specifically, we find that: - (i) when the discount factor falls below its bifurcation value of $\rho^{\text{bif}} = 0.0061$, a *subcritical* Hopf bifurcation is obtained, with the first Lyapunov coefficient $l_1(u^*, \ell_h^*, \ell_h^*, x^*, \lambda_h^*) = 1.1 \times 10^{-6} > 0$, - (ii) when the inverse intertemporal elasticity of substitution falls below its bifurcation value of $\gamma^{\rm bif} = 0.942$, a *supercritical* Hopf bifurcation is obtained, with $l_1(u^*, \ell_a^*, \ell_h^*, x^*, \lambda_h^*) = -8.1 \times 10^{-7} < 0$, - (iii) when the steady-state ratio of labor augmenting R&D to total R&D employment falls below $\left(\frac{\ell_a^*}{\ell_a^* + \ell_b^*}\right)^{\text{bif}} = 0.425$, a *subcritical* Hopf bifurcation is obtained, with $l_1(u^*, \ell_a^*, \ell_b^*, \chi^*, \lambda_b^*) = 5.0 \times 10^{-7} > 0$. It follows that stable limit cycles can appear in this model when individuals, *ceteris* paribus, are sufficiently willing to intertemporally substitute consumption (low γ). In ²⁸Apart from the eigenvalues and eigenvectors, computing the first Lyapunov coefficient also requires a numerical approximation of second and third order partial derivatives of the system at the steady state (Kuznetsov, 2004). Matlab codes for the "multi-calibration" exercise as well as computing the first Lyapunov coefficient are available from the authors upon request. ²⁹Although results for parameters (δ , η_a , ν_b , ν_a) are relegated to Appendix E as they do not in themselves produce qualitative changes in model dynamics, see figure E.5. Figure 3: Emergence of Limit Cycles via Hopf Bifurcations Note: Vertical lines indicate the baseline calibration. such a case, their consumption smoothing motive is too weak to compensate for the fluctuations in the labor share as well as the degree of capital augmentation λ_b , caused by the simultaneous arrivals of capital augmenting developments (subject to gradual depreciation) and changes in the pace of (continued) labor augmenting technical change. Although both these changes are productivity-enhancing, they are destabilizing due to their opposing impacts on the labor share. Long swings in economic activity are then perpetuated. Moreover, note that all three bifurcation values are in the ballpark of empirically plausible ones. To generate a stable limit cycle in factor shares (as well as other model variables), it suffices that the household is just slightly more willing to intertemporally substitute consumption than under log preferences. And although the bifurcation value of the time preference rate is rather low in the baseline case, it should be noted that with $\gamma = 1$ (log preferences), the bifurcation value with respect to ρ appears already around 0.019, which is very close to its baseline value. #### 5.2 Node-focus Bifurcations In addition to Hopf bifurcations, another interesting type of sudden changes in model dynamics can be observed: a "node-focus" bifurcation. If, manipulating one of the model parameters, two stable real eigenvalues collide and become complex conjugates, then the pattern of steady-state convergence changes from monotonic to oscillatory (see **Figure E.6** in the appendix). These arise for manipulations in parameters ξ (related to the substitution elasticity) and η_b (the capital-labor exponent capital augmenting R&D). When ξ becomes sufficiently large (and already above zero implying gross factor substitutability), then the imaginary parts of two conjugate stable roots hit zero, so that oscillatory dynamics are eliminated. Under gross complementarity, the magnitude of input complementarity generally increases the frequency of observed oscillations.³⁰ Oscillatory dynamics also prevail only if η_b is sufficiently low, and the lower it is, the higher the oscillation frequency. A fully analogous result is also found when manipulating $\frac{\ell_a^*}{\ell_a^* + \ell_b^*}$ (the share of labor augmenting R&D in total R&D at the BGP). When this share is sufficiently high (above 90%), dampened oscillations disappear in favor of monotonic convergence. #### 5.3 On the Value of the Elasticity of Substitution Whether the substitution elasticity exceeds unity or not is important for the prevalence of oscillatory convergence to the BGP and emergence of Hopf bifurcations. Departing from our benchmark, we now repeat our analysis assuming $\sigma=1.25$ following Karabarbounis and Neiman (2014), see **Table 6**. We still obtain the oscillatory convergence result, although the pace of convergence is now somewhat shorter than before, but the cycle length is a highly counterfactual 144 years. In addition, in contrast to our earlier empirical and model-based analysis (sections 2 and 5), the labor share is now counter-cyclical. Hence, the case for our original assumption of gross complements seems to be strengthened. Table 6: Dynamics around the BGP under the Baseline
Calibration for $\xi = 0.2$ ($\sigma = 1.25$) | Dynamic Metric | | |--|-------| | Pace of Convergence (% per year) | 5.2% | | Length of Full Cycle (years), L ^c | 144.0 | | Labor Share Cyclicality | | A '-' indicates counter-cyclicality. Finally, results are now more in favor of an emergence of limit cycles. Bifurcation values are now closer to our baseline calibration, and the bifurcation is now supercritical in both cases (not just in the case of γ). $^{^{30}}$ Finally, as far as manipulations in ξ are concerned, we also observe a further phenomenon. Namely, in the range of gross substitutability there exists a critical value of ξ when a real root switches its sign. At this point a *generalized saddle-node bifurcation* appears, due to which the steady state loses its stability (but without creating any limit cycles). - (i) Bifurcation with respect to the discount rate: $\rho^{\text{bif}} = 0.00766$, $l_1 = -2.45 \times 10^{-7} < 0$ \Rightarrow supercritical bifurcation \Rightarrow emergence of limit cycle. - (ii) Bifurcation with respect to the intertemporal elasticity of substitution in consumption: $\gamma^{\rm bif} = 1.04092$, $l_1 = -7.31 \times 10^{-7} < 0 \Rightarrow {\rm supercritical\ bifurcation} \Rightarrow {\rm emergence\ of\ limit\ cycle}$. #### 5.4 Labor Share Cycles and Duplication Externalities We now isolate the effect of variations in the magnitude of duplication externalities on model dynamics. We scrutinize the impact of these particular parameters, and not others, for three reasons. First, based on the literature we infer substantial uncertainty in their value. Second, our detailed analysis, delegated to the appendix, revealed that the model dynamics depend critically on the value of the latter of these two parameters, ν_b , but less so on other uncertain parameters, such as e.g., η_a , η_b (Figure E.3). Finally, given our interest in the labor income share, it makes sense to concentrate on parameters whereby endogenous R&D growth is directly affected by labor flows. **Table 7** looks at the consequences of varying the ν 's (symmetrically and asymmetrically) in terms of the implied pace of convergence to the BGP and cycle length. These variations around the baseline typically lead to dampened cycles, and occasionally to monotonic convergence. The final column takes all parameters as given, including the particular ν pairings, and varies γ and ρ separately until a Hopf bifurcation (if it exists) is identified. #### 5.4.1 Symmetric Duplication Our results suggest cycle length, \mathbf{L}^c , is increasing with the magnitude of duplication externalities (i.e., it is decreasing with $\nu_a = \nu_b$): $$\left. \frac{\partial \mathbf{L}^c}{\partial \nu_a} \right|_{\nu_a = \nu_b} < 0.$$ Our baseline case ($\nu_a = \nu_b = 0.75$, indicated by the red rectangle in the table) implies a cycle length of 52 years. At the extremes, however, this can change to, e.g., over 98 years or around 30 years (recalling section 2.2, this is the dominant frequency of medium-term oscillations present in the US data). The intuition behind this result is the following. As duplication externalities fall (the ν values rise), the return from labor flows into each of the R&D sectors becomes higher and the gestation period for new ideas to "come on-stream" is accordingly reduced; thus cycle length shortens. At $\nu_a = \nu_b = 0.75$ Hopf bifurcations arise if the households' consumption smoothing motive is less strong than in the baseline ($\gamma = 0.94$ vs. 1.75) or if the society becomes Table 7: Dynamic Model Properties: Duplication Externalities | Base Calibration | ν_b/ν_a | Pace of Convergence | ergence Cycle Length | | Conditional on ν_a , ν_h^{\dagger} | | |------------------------|---------------|---------------------|----------------------|-------------------|--|--| | with | | (% Per Annum) | (Years) | $\gamma^{ m bif}$ | $ ho^{ m bif}$ $^{\circ}$ | | | Symmetric Duplication | | | | | | | | $ u_a = u_b = 0.1$ | 1 | 4.84% | Monotonic | 0.9237 | 0.0059 | | | $\nu_a = \nu_b = 0.5$ | 1 | 5.58% | 97.62 | 0.9534 | 0.0064 | | | $\nu_a = \nu_b = 0.75$ | 1 | 6.30% | 52.65 | 0.9430 | 0.0062 | | | $\nu_a = \nu_b = 0.9$ | 1 | 9.44% | 29.45 | No Hopf | No Hopf | | | Asymmetric Duplication | | | | | | | | $\nu_a=0.9, \nu_b=0.1$ | 0.1 | 4.32% | Monotonic | No Hopf | No Hopf | | | $\nu_a=0.9, \nu_b=0.5$ | 0.6 | 9.93% | 67.35 | No Hopf | No Hopf | | | $\nu_a=0.9, \nu_b=0.9$ | 1 | 9.44% | 29.45 | No Hopf | No Hopf | | | $\nu_a=0.5, \nu_b=0.9$ | 1.8 | 4.53% | 54.55 | 1.0794 | 0.0086 | | | $\nu_a=0.1, \nu_b=0.9$ | 9.0 | 4.05% | 72.31 | 1.0864 | 0.0090 | | Note: The labor share and the per-capita growth rate at the BGP in the decentralized allocation are exactly matched to the long-run US averages (0.6739, 0.0171 respectively) for each parametrization, and thus are not shown. ^f Following a BGP-preserving sensitivity analysis. "Monotonic" indicates monotonic convergence to the steady state; otherwise there are dampened oscillations along the convergence path towards the steady state. "No Hopf" indicates that for given ν_a, ν_b , Hopf bifurcations cannot be obtained for any γ or ρ . more patient ($\rho = 0.006$ vs. 0.02). Again, this makes sense. If the representative household gives a high weight to future generations (low ρ), it is willing to invest substantial resources in physical capital and both R&D types. R&D, however, incurs the cost of obsolescence of capital augmenting technologies. Furthermore, under CES technology, this shift in labor allocation affects the labor share, and also propagates via the mutual R&D spillovers and the effective capital-labor terms. If, ultimately, the consumption-smoothing motive is weak enough (low γ), these destabilizing effects are not countered by lowering R&D employment or savings, which leads to endogenous cycles. #### 5.4.2 Asymmetric Duplication As before, with weak duplication externalities in labor augmenting R&D (large v_a), there is no limit cycle for any corresponding capital augmenting value. Again this is intuitive. The balanced growth path is driven by labor augmenting technologies alone. The more smoothly labor augmenting ideas are being produced, the closer at any point is the economy to its balanced growth path, and thus less amenable to limit cycles. A corollary of this can be seen when $v_b/v_a > 1$ (representing the case of "labor-biased duplication", when duplication externalities are stronger in labor augmenting R&D). Here the economy is far away from balanced technical growth in the sense that the capital augmenting R&D sector is less constrained by duplication than its labor equivalent. The possibility for waves of innovation and thus excessively fast replacement and obsolescence of existing ideas is then more likely to produce exaggerated cycles. In such cases, the consumption smoothing preferences consistent with a limit cycle are still below the baseline value but now closer to and marginally above log preferences. Note finally that although our study does not intend to match the frequency of medium-to-long swings exactly, we still view the R&D-based endogenous growth model with CES production as a viable explanation for the hump-shaped trend of the labor share observed in the US throughout the twentieth century. In fact, if one argued that in our 83-year time series of the US labor share, we observe only a half of a full swing, then the model could match that exactly if the imaginary parts of stable roots were around 0.04 which could be obtained e.g., for somewhat lower duplication parameters v_a and v_b , a higher capital-labor R&D exponent η_b or lower η_a , etc. #### 6 Conclusions The contribution of the article has been (i) to document that the labor share exhibits medium-to-long run, pro-cyclical swings suggestive of a long cycle, and; (ii) assess the extent to which a endogenous growth model can account for those regularities. The model implies oscillatory behavior of factor shares along the convergence path to the BGP. This is due to the interplay between arrivals of capital augmenting developments (subject to gradual depreciation) and changes in the pace of (continued) labor augmenting technical change. The model delivers plausible implications regarding the co-movement of other variables along the labor share swings. Under certain parametrizations, the model gives rise to Hopf bifurcations, leading to self-sustaining limit cycles of reasonable length. These parameterizations are within an empirically-plausible neighborhood, such as to suggest that the framework considered *naturally* gives rise to endogenous factor cycles, rather than in identifying special cases. The formalization of endogenous cycles in factor shares is an important insight since mainstream economists have either emphasized the historical stability of factor shares, or else focused on particular episodes of drifting shares. However, long data sets which are now becoming available uncover that, before their recent decline, shares have often in fact been trending upward for decades (as we might expect of a bounded series). Our model features endogenous mechanisms able to account for both tendencies. For competing theories, it is a challenge to do so. Our framework also points to additional lines of inquiry. First, typically in endogenous growth models a research subsidy is recommended to align the decentralized allocation with the socially optimal one.³¹ In our framework it may be worth investigating ³¹Although note that in variety expansion models the decentralized steady-state growth rate may well whether such a subsidy would (or should) also have cyclical characteristics, or whether such a subsidy could be feasibly created. If that subsidy were skewed more towards one
factor augmenting technology than another, what would be the distributional and cyclical consequences? Second, discussion of labor share declines have often gone hand-in-hand with those on 'globalization' which is often interpreted as a widening of the pool of available labor. But it could also relate to the extent to which ideas can be protected and accessed, i.e., to duplication externalities. Such externalities played a prominent role in our analysis. Thus our model can provide a platform to discuss those broader issues as rooted in technological developments. Finally, we have refrained from any welfare-based statements. The model laid out here is insufficient for such analysis. But one could envisage analysis aimed at defining whether the cycles (be they convergent or sustained) are or are not welfare enhancing, and thus whether public intervention is warranted. Interestingly Atkinson (2015) lists a number of proposals for reducing inequality trends, the first of which is that "The direction of technical change should be an explicit concern of policy-makers". Political agents, moreover, may take a view on the desirability of economic volatility and the length of and distributional consequences of economic cycles. We leave these for subsequent discussion. #### References Acemoglu, D. (2003). Labor-and Capital-Augmenting Technical Change. *Journal of the European Economic Association* 1, 1–37. Arrow, K., H. B. Chenery, B. S. Minhas, and R. M. Solow (1961). Capital-Labor Substitution and Economic Efficiency. *Review of Economics and Statistics* 43, 225–250. Atkinson, A. B. (2015). *Inequality: What can be done?* Harvard University Press. Autor, D. H., F. Levy, and R. J. Murnane (2003). The Skill Content Of Recent Technological Change: An Empirical Exploration. *Quarterly Journal of Economics* 118(4), 1279–1333. Barnett, W. A. and T. Ghosh (2013). Bifurcation Analysis of an Endogenous Growth Model. *Journal of Economic Asymmetries* 10, 53–64. Barro, R. J. and X. X. Sala-i-Martin (2003). Economic Growth. MIT Press. Bartelme, D. and Y. Gorodnichenko (2015). Linkages and Economic Development. NBER Working Papers 21251, National Bureau of Economic Research, Inc. Basu, S. and J. Fernald (1997). Returns to Scale in U.S. Manufacturing: Estimates and Implications. *Journal of Political Economy* 105(2), 249–283. Ben-Gad, M. (2003). Fiscal Policy and Indeterminacy in Models of Endogenous Growth. *Journal of Economic Theory* 108, 322–344. exceed the socially optimal one if we control for the gains from specialization in the production functions where the expansion of varieties matters (see Bénassy (1998)). - Bénassy, J.-P. (1998). Is there always too little research in endogenous growth with expanding product variety? *European Economic Review* 42(1), 61–69. - Benhabib, J. and K. Nishimura (1979). The Hopf bifurcation and the existence and stability of closed orbits in multiscctor models of optimal economic growth. *Journal of Economic Theory* 21, 421–444. - Benhabib, J. and R. Perli (1994). Uniqueness and Indeterminacy: On the Dynamics of Endogenous Growth. *Journal of Economic Theory 63*, 113–142. - Bentolila, S. and G. Saint-Paul (2003). Explaining Movements in the Labor Share. *Contributions to Macroeconomics 3*. - Blanchard, O. and F. Giavazzi (2003). Macroeconomic Effects of Regulation and Deregulation in Goods and Labor Markets. *Quarterly Journal of Economics* 118, 879–908. - Blanchard, O. J. (1997). The medium run. *Brookings Papers on Economic Activity* 28(2), 89–158. - Boggio, L., V. Dall'Aglio, and M. Magnani (2010). On Labour Shares in Recent Decades: A Survey. *Rivista Internazionale di Scienze Sociali* 118(3), 283–333. - Bowley, A. L. (1937). *Wages and Income in the United Kingdom Since 1860*. Cambridge: Cambridge University Press. - Buera, F. J. and J. P. Kaboski (2012). The Rise of the Service Economy. *American Economic Review* 102(6), 2540–69. - Cantore, C., M. A. León-Ledesma, P. McAdam, and A. Willman (2014). Shocking Stuff: Technology, Hours and Factor Augmentation. *Journal of the European Economic Association* 12, 108–128. - Caselli, F. (2005). Accounting for Cross-Country Income Differences. In P. Aghion and S. Durlauf (Eds.), *Handbook of Economic Growth*. North-Holland. - Chirinko, R. S. (2008). σ : The Long and Short of It. *Journal of Macroeconomics* 30, 671–686. - Christiano, L. J. and T. J. Fitzgerald (2003). The band pass filter. *International Economic Review* 44(2), 435–465. - Cobb, C. W. and P. H. Douglas (1928). A Theory of Production. *American Economic Review 18*, 139–165. - Comin, D. and M. Gertler (2006). Medium-term business cycles. *American Economic Review* 96(3), 523–551. - de La Grandville, O. (1989). In Quest of the Slutsky Diamond. *American Economic Review 79*, 468–481. - de Serres, A., S. Scarpetta, and C. de la Maisonneuve (2002). Sectoral Shifts in Europe and the United States: How They Affect Aggregate Labour Shares and the Properties of Wage Equations. Working paper, OECD Economics Department WP 326. - Dockner, E. J. (1985). Local stability analysis in optimal control problems with two state variables. In G. Feichtinger (Ed.), *Optimal Control Theory and Economic Analysis Vol.* 2, pp. 89–103. Amsterdam: North-Holland. - Elsby, M., B. Hobijn, and A. Sahin (2013). The Decline of the U.S. Labor Share. *Brookings Papers on Economic Activity* 47(2), 1–63. - Feichtinger, G. (1992). Limit Cycles in Dynamic Economic Systems. *Annals of Operations Research* 37, 313–344. - Ferguson, C. E. and J. R. Moroney (1969). The sources of change in labor's relative share: A neoclassical analysis. *Southern Economic Journal* 35(4), 308–322. - Gancia, G. and F. Zilibotti (2009). Technological Change and the Wealth of Nations. *Annual Review of Economics* 1(1), 93–120. - Gollin, D. (2002). Getting Income Shares Right. Journal of Political Economy 110, 458–474. - Gomme, P. and P. Rupert (2007). Theory, measurement and calibration of macroeconomic models. *Journal of Monetary Economics* 54(2), 460–497. - Goodwin, R. M. (1951). The non-linear Accelerator and the persistence of business cycles. *Econometrica* 19, 1–17. - Goodwin, R. M. (1967). A Growth Cycle. In C. H. Feinstein (Ed.), *Socialism, Capitalism and Economic Growth*, pp. 54–58. Cambridge: Cambridge University Press. - Growiec, J. (2013). A Microfoundation for Normalized CES Production Functions with Factor-Augmenting Technical Change. *Journal of Economic Dynamics and Control* 37, 2336–2350. - Growiec, J., P. McAdam, and J. Muck (2015). Endogenous labor share cycles: theory and evidence. Working Paper Series 1765, European Central Bank. - Hansen, G. D. and E. C. Prescott (2005). Capacity constraints, asymmetries, and the business cycle. *Review of Economic Dynamics* 8(4), 850–865. - Irmen, A. (2016). A Generalized Steady-State Growth Theorem. *Macroeconomic Dynamics*, forthcoming. - Jaimovich, N. and H. E. Siu (2012). The Trend is the Cycle: Job Polarization and Jobless Recoveries. NBER Working Papers 18334, National Bureau of Economic Research, Inc. - Jalava, J., M. Pohjola, A. Ripatti, and J. Vilmunen (2006). Biased Technical Change and Capital-Labour Substitution in Finland, 1902-2003. *The B.E. Journal of Macroeconomics* 6(1), 1–20. - Johnson, D. G. (1954). The functional distribution of income in the United States,1850–1952. *Review of Economics and Statistics* 36, 175–185. - Jones, C. I. (1995). R&D-Based Models of Economic Growth. *Journal of Political Economy* 103, 759–84. - Jones, C. I. (1999). Growth: With or Without Scale Effects? *American Economic Review 89*(2), 139–144. - Jones, C. I. (2005a). Growth and Ideas. In P. Aghion and S. Durlauf (Eds.), *Handbook of Economic Growth*. North-Holland. - Jones, C. I. (2005b). The Shape of Production Functions and the Direction of Technical Change. *Quarterly Journal of Economics* 120, 517–549. - Jones, C. I. and J. C. Williams (2000). Too Much of a Good Thing? The Economics of Investment in R&D. *Journal of Economic Growth* 5(1), 65–85. - Kaldor, N. (1940). A model of the trade cycle. Economic Journal 50, 78–92. - Kaldor, N. (1961). Capital Accumulation and Economic Growth. In L. A. Lutz and D. C. Hague (Eds.), *The Theory of Capital*, pp. 177–222. Palgrave Macmillan. - Karabarbounis, L. and B. Neiman (2014). The Global Decline of the Labor Share. *Quarterly Journal of Economics* 129(1), 61–103. - Kennedy, C. (1964). Induced bias in innovation and the theory of distribution. *Economic Journal* 74, 541–547. - Klump, R. and O. de La Grandville (2000). Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions. *American Economic Review* 90, 282–291. - Klump, R., P. McAdam, and A. Willman (2007). Factor Substitution and Factor Augmenting - Technical Progress in the US. Review of Economics and Statistics 89, 183–192. - Koh, D., R. Santaeulàlia-Llopis, and Y. Zheng (2016). Labor Share Decline and Intellectual Property Products Capital. Working Paper. Available at https://sites.google.com/site/dongyakoh/IPP-and-USLaborShare-short.pdf?attredirects=0&d=1. - Kongsamut, P., S. Rebelo, and D. Xie (2001). Beyond Balanced Growth. *Review of Economic Studies* 68(4), 869–82. - Kravis, I. (1959). Relative Income Shares in Fact and Theory. *American Economic Review* 5(2), 917–949. - Krueger, A. (1999). Measuring Labor's Share. American Economic Review 89(2), 21-45. - Kuznetsov, Y. A. (2004). Elements of Applied Bifurcation Theory (3rd Edition). Springer. - Kyyrä, T. and M. Maliranta (2008). The Micro-Level Dynamics of Declining Labour Share: Lessons from the Finnish Great Leap. *Industrial and Corporate Change 17*, 1146–1172. - León-Ledesma, M. A., P. McAdam, and A. Willman (2010). Identifying the Elasticity of Substitution with Biased Technical Change. *American Economic Review* 100, 1330–1357. - León-Ledesma, M. A., P. McAdam, and A. Willman (2012). Aggregation, the Skill Premium and the Two-Level Production Function. In O. de La Grandville (Ed.), *Economic
Growth and Development (Frontiers of Economics and Globalization, Volume 11)*, pp. 417–436. CUP. - León-Ledesma, M. A. and M. Satchi (2015). Appropriate Technology and the Labour Share. Discussion paper kdpe 15/05, Department of Economics, University of Kent. - Li, C.-W. (2000). Endogenous vs. Semi-endogenous Growth in a Two-R&D-Sector Model. *Economic Journal* 110(462), C109–22. - McAdam, P. and A. Willman (2013). Medium run redux. Macroeconomic Dynamics 17, 695–727. - Nelson, C. R. and C. I. Plosser (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. *Journal of Monetary Economics* 10(2), 139–162. - Ngai, L. R. and C. A. Pissarides (2007). Structural Change in a Multisector Model of Growth. *American Economic Review* 97(1), 429–443. - Oberfield, E. and D. Raval (2015). Micro Data and Macro Technology. *Econometrica*, forthcoming. OECD/Eurostat (2005). *Oslo Manual*. OECD Publishing. - Palivos, T. and G. Karagiannis (2010). The Elasticity Of Substitution As An Engine Of Growth. *Macroeconomic Dynamics* 14(5), 617–628. - Peretto, P. and J. Seater (2013). Factor-Eliminating Technical Change. *Journal of Monetary Economics* 60, 459–473. - Pessoa, A. (2005). Ideas' driven growth: the OECD evidence. *Portuguese Economic Journal* 4(1), 46–67. - Piketty, T. (2014). *Capital in the Twenty-First Century*. Harvard University Press. Translated from French by Arthur Goldhammer. - Piketty, T. and G. Zucman (2014). Capital is Back: Wealth-Income Ratios in Rich Countries, 1700-2010. *Quarterly Journal of Economics* 129(3), 1255–1310. - Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy 98, S71–S102. - Ryder, H. E. and G. M. Heal (1973). Optimum Growth with Intertemporally Dependent Preferences. *Review of Economic Studies* 40(1), 1–33. - Solow, R. M. (1958). A skeptical note on the constancy of relative shares. *American Economic Review* 48(4), 618–31. - Solow, R. M. (1960). Investment and technical progress. In K. Arrow, S. Karlin, and P. Suppes (Eds.), *Mathematical Methods in the Social Sciences*, pp. 89–104. Stanford University Press. - Stokey, N. L. (1995). R&D and Economic Growth. Review of Economic Studies 62(3), 469-89. - Sturgill, B. (2012). The relationship between factor shares and economic development. *Journal of Macroeconomics* 34(4), 1044–1062. - Uzawa, H. (1961). Neutral Inventions and the Stability of Growth Equilibrium. *Review of Economic Studies 28*, 117–124. - Wei, W. S. (2006). *Time Series Analysis: Univariate and Multivariate Methods*. Pearson Addison Wesley, 2nd edition. - Zuleta, H. (2008). Factor Saving Innovations and Factor Income Shares. *Review of Economic Dynamics* 11(4), 836–851. # ONLINE APPENDIX FOR "ENDOGENOUS LABOR SHARE CYCLES: THEORY AND EVIDENCE" #### Jakub Growiec Warsaw School of Economics and Narodowy Bank Polski #### Jakub Mućk Warsaw School of Economics and Narodowy Bank Polski #### Peter McAdam European Central Bank and University of Surrey ### **A** Data Construction #### A.1 Labor Share The broadly used approach in measuring the labor share is simply dividing Compensation of Employees (CE) by GDP. But that does not take incomes of the self-employed into consideration. Unfortunately, labor income of the self-employed is published jointly with the capital income. Since Gollin (2002) a number of adjustments have been proposed. We incorporate one of the most detailed ways in the measuring the labor share, suggested by Gomme and Rupert (2007), which takes into consideration the unknown (self-employed) income. The starting point is the assumption that the proportion of the unknown labor (capital) income to the total unknown income is the same as the ratio of known labor (capital) to the total known income. The unknown income (AI) is the sum of Proprietors' Income (PI), Business Current Transfer Payments (BCTP), Statistical Discrepancy (SDis) and Taxes on Production (Tax) reduced by Subsidies (Sub) (AI = PI + Tax - Sub + BCTP + SDis). On the other hand, known capital income (*UCI*) consists of Rental Income (RI), Current Surplus of Government Enterprises (GE), Net Interests (NI) and Corporate Profits (CP). Including UCI to Compensation of Employees (CE) and consumption of fixed capital (DEP) we derive total unambiguous income (UI) and can calculate the portion of UCI to UI: $\kappa = \frac{UCI + DEP}{UI}$. Having κ , it is easy to obtain ambiguous capital income (ACI) which equals $AC \cdot \kappa$. Finally, we derive labor share income as one minus capital income share: $$LS = 1 - \frac{UCI + DEP + ACI}{GDP} = 1 - \kappa.$$ GDP and Consumption of fixed capital (*DEP*) are taken from NIPA [*Table 1.7.5*] and the remaining series are taken from NIPA [*Table 1.12*]. #### A.2 Macroeconomic Variables GDP - Gross Domestic Product in billions of chained (2005) dollars, BEA NIPA Table 1.6. **Capital stock to product** (K_t/Y_t) - ratio of non-residential private fixed assets stock in current billions of dollars to GDP also in current billions of dollars, series taken from BEA NIPA Table 1.5 and BEA Fixed Assets Table 4.1, respectively. **Consumption** (C_t) - consumption of non-durable goods and services in current billions of dollars deflated by the implicit GDP deflator, series taken from BEA NIPA Table 1.5 and 1.6. **Investment** (I_t) - sum of non-residential private fixed investment and consumption of durable goods in current billions of dollars deflated by the implicit GDP deflator, series taken from BEA NIPA Table 1.5 and 1.6. Consumption to product ratio (C_t/Y_t) - ratio of consumption of non-durable goods and services in current billions of dollars to GDP also in current billions of dollars, series taken from BEA #### NIPA Table 1.5. **Investment to product ratio** (I_t/Y_t) - ratio of consumption of durable goods and non-residential private fixed investment in current billions of dollars to GDP also in current billions of dollars, series taken from BEA NIPA Table 1.5. The share of the R&D expenditures in Gross Domestic Product (RD_t/GDP_t) is ratio of total spending on research and development sector divided by GDP, both series in current millions of dollars, taken from National Science Foundation and BEA NIPA Table 1.5, respectively. The share of the non-federal R&D expenditures in Gross Domestic Product (RD_t^{NF}/GDP_t) is ratio of non-federal spending on research and development sector divided by GDP, both series in current millions of dollars, taken from National Science Foundation and BEA NIPA Table 1.5, respectively. **R&D expenditures** (RD_t) – Research and development expenditures in constant millions of dollars, series taken from National Science Foundation. **Non-federal R&D expenditures** (RD_t^{NF}) – Non-federal research and development expenditures in constant millions of dollars, series taken from National Science Foundation. **Skill premium** (w_t^S/w_t^U) - composition adjusted college/high school log weekly wage ratio, series taken from Acemoglu and Autor (2011). **Labor productivity** ($LaborProd_t$) - Real output per hour in non-farm business sector, index (2009=100), BLS Series No. OPHNFB. **Employment** L_t - Employment in non-farm business sector, index (2009=100), BLS Series No. PRS85006013. **Aggregate hours** $L_t \times h_t$ - Aggregate hours in non-farm business sector, index (2009=100), BLS Series No. HOANBS Consumption to capital stock C_t/K_t - ratio of consumption of non-durable goods and services in current billions of dollars to non-residential private fixed assets stock also in current billions of dollars, series taken from BEA NIPA Table 1.5 and BEA Fixed Assets Table 4.1, respectively. # B Some Simple Time Series Properties for the US Labor Share # **B.1** Descriptive Statistics **Table B.1: Labor Share: Summary Statistics** | | Annual | Quarterly | |-----------|-------------|-----------------| | Mean | 0.655 | 0.649 | | Max | 0.706 | 0.691 | | Min | 0.607 | 0.600 | | Std. Dev. | 0.021 | 0.020 | | Obs. | 87 | 276 | | | (1929-2015) | (1947:1-2015:4) | # **B.2** Persistence and Cyclicality To scrutinize the persistence of the labor share, we assume that it follows an autoregressive process: $$y_t = \mu + \rho_y y_{t-1} + error_t$$ where the drift term μ captures the long-run mean, $\mu/(1-\rho_y)$, $\rho_y \neq 1$. Our interest focuses on the value of ρ_y (the persistence parameter). **Table B.2** demonstrates that the labor share is a highly persistent, slowly adjusting series (with ρ_y around 0.8-0.9 and over 0.9 for annual and quarterly series, respectively). As can be seen, these high persistence values are robust to the inclusion of a linear or quadratic trend.³² Finally **Table B.3** shows the counter-cyclicality of the raw labor share data using regression on a recession dummy, *NBER*. Table B.2: AR(1) Model Estimates for the Labor Share | | | Annual | | | Quarterly | | |---------------|----------|----------|----------|----------|-----------|----------| | | (1) | (2) | (3) | (1) | (2) | (3) | | | (1) | (2) | (3) | (1) | (2) | (3) | | $\hat{ ho_y}$ | 0.924*** | 0.799*** | 0.761*** | 0.977*** | 0.940*** | 0.927*** | | $\rho_y = 1$ | [0.072] | [0.000] | [0.000] | [0.056] | [0.004] | [0.001] | Note: Superscripts ***, ** and * denote the rejection of null about parameter's insignificance at 1%, 5% and 10% significance level, respectively. Probability values in squared brackets. Specifications: (1): $y_t = \mu + \rho_y y_{t-1} + error_t$ (2): $y_t = \mu + \rho_y y_{t-1} + \beta_1 t + error_t$ (3): $y_t = \mu + \rho_y y_{t-1} + \beta_1 t + \beta_2 t^2 + error_t$ ³²Although, naturally, these alternative forms relax the assumption about the uniqueness of the labor share's equilibrium level. Table B.3: Counter-Cyclicality of Labor Share Series | | (1) | (2) | (3) | (4) | |---------------------|-----------|-----------|-------------|-------------| | Annual | | | | | | $\hat{\mathcal{D}}$ | 0.00997** |
0.00380** | 0.00292* | 0.00299^* | | Quarterly | | | | | | $\hat{\mathcal{D}}$ | 0.00299* | 0.00092 | 0.00107^* | 0.00120* | Notes: NBER = 1 if the economy is in a recession as identified by the NBER chronology and 0 otherwise. Specifications: - (1): $y_t = \mu + \mathcal{D} \times NBER_t + error_t$ - (2): $y_t = \mu + \mathcal{D} \times NBER_t + \rho_y y_{t-1} + error_t$ - (3): $y_t = \mu + \mathcal{D} \times NBER_t + \rho_y y_{t-1} + \beta_1 t + error_t$ - (4): $y_t = \mu + \mathcal{D} \times NBER_t + \rho_y y_{t-1} + \beta_1 t + \beta_2 t^2 + error_t$. # **B.3** Stationarity The next step consists in verifying stationarity of the labor share series. The regressions shown in **Table B.4** are performed in levels with an intercept. The results for the intercept-plus-trend case are available on request, although given our subject matter, the former case is more definitionally consistent. The tests are denoted as ADF = Augmented Dickey Fuller; ERS DF-GLS = Elliott-Rothenberg-Stock (1996), Dickey-Fuller GLS; PP = Philips-Perron; KPSS = Kwiatkowski-Phillips-Schmidt-Shin (1992); ERS = Elliott-Rothenberg-Stock (1996) point-optimal unit root; multiple Ng-Perron (2001) tests. Descriptions of these tests can be readily found in econometrics textbooks. The null in each case is that the series has a unit root (except for the KPSS test which has stationarity as the null). In each case the number of lags in the stationarity equation is determined by Schwartz Information criteria. In the Philips-Perron and KPSS methods, we use the Bartlett Kernel as the spectral estimation method and Newey-West bandwidth selection. ARFIMA models estimated by ML, with robust 95% confidence intervals given under the central estimate of fractional integration parameter \hat{d} . **Table B.4: Labor Share: Stationarity Tests** | | Ann | ual | Quarterly | | | |------------------|----------------|------------|----------------|----------------|--| | | | $CV_{5\%}$ | | $CV_{5\%}$ | | | ADF | [0.063] | - | [0.321] | _ | | | ERS DF-GLS | -1.117 | -1.940 | -0.170 | -1.940 | | | PP | [0.368] | _ | [0.292] | _ | | | KPSS | 0.816 | 0.463 | 1.401 | 0.463 | | | ERS | 4.480 | 3.070 | 24.400 | 3.200 | | | Ng-Perron | | | | | | | \overline{MZa} | -2.010 | -8.100 | -0.287 | -8.100 | | | MZb | -0.980 | -1.980 | -0.159 | -1.980 | | | MSB | 0.487 | 0.230 | 0.557 | 0.230 | | | MPT | 11.930 | 3.170 | 20.924 | 3.170 | | | ARFIMA (0,d,0) | 0.494 | | ARFIMA (0,d,0) | 0.499 | | | | (0.488, 0.499) | | | (0.498, 0.499) | | | ARFIMA (1,d,0) | 0.439 | | ARFIMA (2,d,0) | 0.191 | | | | (0.374,0.505) | | · | (-0.067,0.449) | | Note: Squared brackets indicate probability values, $CV_{5\%}$ denotes the 5% critical value of the relevant test, and 95% confidence intervals for the ARFIMA differencing parameter are given in brackets. #### **B.4** Additional Results for Short-Run Labor Share Features Here we look at two additional filtering methods for the short-run labor share series. These results are parallel to those of table 2 in the main text. We use three methods: the HP filter (as before) plus simple first differencing of the raw labor share series and filtering using CF. Results are relatively similar over the methods: the relative variance of the annual (quarterly) series is around 0.4(0.55), the degree of persistence is 0.3(0.7) for the last two methods) and there is no sign of significant cyclicality (although the point estimates are negative). Table B.5: Main features of the labor share's short-run component | | σ_{LS_t} | $\sigma_{LS_t}/\sigma_{GDP_t}$ | $ ho_{LS_t,LS_{t-1}}$ | $ ho_{LS_t,GDP_t}$ | | | | | |-------------------|--|--------------------------------|-----------------------|--------------------|--|--|--|--| | first-differenced | | | | | | | | | | annual series | 0.986 | 0.453 | 0.282 | -0.020 | | | | | | | (0.854, 1.122) | | (0.028, 0.522) | (-0.284, 0.232) | | | | | | quarterly series | 0.588 | 0.658 | -0.072 | -0.292 | | | | | | | (0.511, 0.672) | | (-0.246, 0.121) | (-0.458, -0.107) | | | | | | | HP-filter | ed | | | | | | | | annual series | 0.660 | 0.486 | 0.325 | -0.098 | | | | | | | (0.538, 0.771) | | (0.135, 0.495) | (-0.303, 0.111) | | | | | | quarterly series | 0.785 | 0.513 | 0.736 | -0.185 | | | | | | | (0.704, 0.870) | | (0.673, 0.795) | (-0.289, -0.074) | | | | | | CF-fi | iltered (periodicit | y below 8 yea | ars) | | | | | | | annual series | 0.638 | 0.419 | 0.242 | -0.021 | | | | | | | (0.516, 0.746) (0.022, 0.433) (-0.218, 0.17 | | | | | | | | | quarterly series | | | | | | | | | | - | 0.751 | 0.493 | 0.714 | -0.133 | | | | | | | $(0.668, 0.837) \qquad (0.649, 0.776) (-0.245, -0.020)$ | | | | | | | | **Note:** σ_{LS_t} and $\sigma_{LS_t}/\sigma_{GDP_t}$ denotes volatility in absolute term (percentage deviation from the long-run trend) and relative term (as a ratio to the GDP's volatility). $\rho_{LS_t,LS_{t-1}}$ and ρ_{LS_t,GDP_t} stand for the first-order autocorrelation and contemporaneous comovement with product, respectively. ### C Results for Other Countries To strengthen the empirical points we make in Section 2, we shall argue that data for other developed economies support our main points as well. It turns out that, despite slight definitional changes, time-series properties of the labor share in Finland (1900-2003), the UK (1855-2010), and France (1896-2008) are broadly in line with our main set of findings for the US. In order to explore the main features of the labor share in Finland we use the data set compiled by Jalava et al. (2006). At the first sight, the long-run trajectory of the Finnish labor share index appears markedly different in comparison to the US labor share (see figure C.1). However, if we consider only the postwar sample then a hump-shaped tendency is again well-identified, with the peak in the beginning of 1980s. Our results for the UK and France are from Piketty (2014). The UK labor share (see figure C.2) exhibits substantial medium- and long-run variability and its general pattern since 1920s is very similar to the one of the US: a clear upward swing until around 1975, followed by a period of gradual decline. Importantly, for the UK we also observe gradual decline of the labor share in 1855–1916, in line with our interpretation that this variable can be subject to long cycles. Evidence for France (figure C.3) is less clear-cut (the data may be subject to a structural break in the 1940s). Table C.6 shows the estimates of spectral density for the Finnish, British, and French labor share. We find that when the labor share is only demeaned, its volatility is dominated by low-frequency oscillations. De-trending the series by subtracting a linear or quadratic trend limits the importance of the cycles with lowest frequencies in favor of the medium-term component. In that case, medium-run fluctuations are responsible for more than 65 % of overall variance in Finland and France, and more than 45% in the UK. The latter result for the UK stems from the fact that the data period since 1855 allows us to identify more than one swing in the time series, which thus becomes badly fitted with any quadratic trend. We conclude that the medium- and long-run swings are a very important not only for the US labor share, but also for few notable European ones. Finally, we also confirm on the basis of Jalava et al. (2006) data that the medium-term component of the labor share in Finland has also been highly persistent and pro-cyclical. Hence, the behavior of the Finnish labor share in the medium run is quite similar to the US counterpart (compare tables C.7 and 2); it even exhibits stronger pro-cyclicality. Figure C.1: Labor share in Finland The **red**, **blue** and **black** lines represent the raw series, the medium-to-long term component and the long-run trend, respectively. The data on the Finish labor share are taken from Jalava et al. (2006). Figure C.2: Labor share in the UK Figure C.3: Labor share in France Note: The **red**, **blue** and **black** lines represent the raw series, the medium-to-long term component and the long-run trend, respectively. The data on the British and French labor share are taken from Piketty (2014). Figure C.4: Labor share in the UK (left panel) and France (right panel) from the 1950s The red, blue and black lines represents for raw, medium-term component and long-run trend, respectively. Table C.6: Share of specific frequencies in the observed variance (in %) | Periodicity (in years) | ≥ 50 | 8-50 | ≤ 8 | |-----------------------------|------|-------------|------| | | | Finland | | | excluding the mean | 79.5 | 16.5 | 4.0 | | excluding a linear trend | 15.3 | 72.1 | 12.6 | | excluding a quadratic trend | 12.9 | 73.4 | 12.7 | | | | UK | | | excluding the mean | 66.3 | 25.9 | 7.9 | | excluding a linear trend | 42.0 | 45.1 | 12.9 | | excluding a quadratic trend | 41.5 | 45.5 | 13.0 | | | | France | | | excluding the mean | 35.6 | 49.9 | 14.5 | | excluding a linear trend | 16.9 | 65.9 | 17.2 | | excluding a quadratic trend | 14.0 | 68.2 | 17.8 | Note: the shares have been calculated using periodogram estimates. **Bold** indicates maximum value. Table C.7: Features of Labor Share's Medium-Term Component in Finland | | σ_{LS_t} | $\sigma_{LS_t}/\sigma_{GDP_t}$ | $ \rho_{LS_t,LS_{t-1}} $ | ρ_{LS_t,GDP_t} | |---------------|-----------------|--------------------------------|--------------------------|---------------------| | Annual series | 5.590 | 0.886 | 0.927 | 0.673 | | | (4.522,6.500) | | (0.882,0.953) | (0.531,0.766) | # D Additional Empirical Results Figure D.1: The Quarterly Labor Share, Its Medium-Term Component and Long-Term Trend Note: The **red**, **blue** and **black** lines represent the raw series, the medium-to-long term component and the long-run trend, respectively. Table D.1: Characteristics of annual medium-term component of selected macroeconomic variables and cross-correlation
with the labor share, $|\tau| \in [0, 10]$ | | Correla | | | labor sh | | Mediı | ım-term | charact | eristics | |-------------------------|-------------------------------|----------------------------------|-----|--------------------------------|-----|--------------------------------------|-----------------------------|-----------------------------|-------------------------------| | | ρ_{LS_t,x_t} | Max $ \rho_{LS_{t+\tau},x_t} $ | | Min $ ho_{LS_{t+ au},x_t}$ | | σ_{x_t} | $\sigma_{x_t}/\sigma_{y_t}$ | $\rho_{x_t,x_{t-1}}$ | $ ho_{y_t,x_t}$ | | K_t/Y_t | -0.46 | 0.67 | 9 | -0.83 | -4 | 5.79 | 1.69 | 0.97 | -0.55 | | C_t | (-0.64, -0.26)
0.66 | (0.52, 0.78)
0.68 | -1 | (-0.9, -0.73)
-0.51 | -10 | (4.94, 6.52)
2.53 | 0.74 | (0.95, 0.98)
0.96 | (-0.7, -0.37)
0.95 | | I_t | (0.53, 0.77)
0.35 | (0.54, 0.79)
0.52 | -2 | (-0.63, -0.38)
-0.66 | -10 | (2.14, 2.86)
6.44 | 1.88 | (0.93, 0.97)
0.92 | (0.93, 0.96) | | C_t/Y_t | (0.15, 0.53)
-0.38 | (0.34, 0.66)
0.54 | -10 | (-0.77, -0.5)
-0.66 | -3 | (5.45, 7.29)
1.32 | 0.39 | (0.88, 0.95)
0.93 | (0.74, 0.86)
-0.78 | | I_t/Y_t | (-0.54, -0.19)
0.02 | (0.33, 0.7)
0.46 | 8 | (-0.78, -0.5)
-0.57 | -9 | (1.12, 1.51)
4.22 | 1.24 | 0.91 | (-0.85, -0.69)
0.41 | | RD_t/Y_t | (-0.21, 0.24)
-0.22 | (0.18, 0.68)
0.69 | -9 | (-0.72, -0.36)
-0.64 | 4 | (3.5, 4.89)
11.69 | 3.42 | (0.86, 0.95)
0.96 | (0.23, 0.57)
-0.08 | | RD_t^{NF}/Y_t | (-0.38, -0.04)
-0.02 | (0.53, 0.81)
0.59 | -8 | (-0.74, -0.51)
-0.67 | 5 | (9.59, 13.55)
6.4 | 1.87 | (0.93, 0.98)
0.94 | (-0.3, 0.15)
-0.03 | | RD_t | (-0.23, 0.19)
-0.04 | (0.38, 0.74)
0.59 | -8 | (-0.78, -0.51)
-0.56 | 4 | (5.37, 7.38)
11.8 | 3.45 | (0.91, 0.96)
0.96 | (-0.26, 0.21)
0.19 | | RD_t^{NF} | (-0.24, 0.16)
0.27 | (0.36, 0.74)
0.63 | -3 | (-0.7, -0.4)
-0.51 | 5 | (9.94 <i>,</i> 13.51)
7.11 | 2.08 | (0.94, 0.98) 0.95 | (-0.04, 0.41)
0.43 | | w_t^S/w_t^U | (0.05, 0.47) | (0.47, 0.74)
0.84 | -3 | (-0.67, -0.32)
-0.8 | 9 | (6, 8.16)
2.96 | 0.87 | (0.92, 0.97)
0.97 | (0.24, 0.6)
0.48 | | Labor Prod _t | (0.38, 0.71)
0.34 | (0.74, 0.91)
0.5 | 3 | (-0.93, -0.6)
-0.56 | -10 | (2.38, 3.49) 3.05 | 0.89 | (0.94, 0.98)
0.97 | (0.26, 0.67)
0.64 | | L_t | (0.16, 0.51)
0.35 | (0.28, 0.67)
0.48 | -2 | (-0.7, -0.37)
-0.44 | -8 | (2.77, 3.27)
2.88 | 0.84 | (0.95, 0.98)
0.92 | (0.48, 0.78)
0.47 | | $L_t imes h_t$ | (0.17, 0.51)
0.38 | (0.3, 0.64)
0.67 | -3 | (-0.65, -0.18)
-0.35 | 10 | (2.36, 3.41) | 0.91 | (0.88, 0.95) 0.92 | (0.33, 0.59) | | C_t/K_t | (0.2, 0.54)
0.44 | (0.56, 0.77) | -4 | (-0.56, -0.08)
-0.7 | 9 | (2.53, 3.7)
5.58 | 1.63 | (0.87, 0.95)
0.97 | (0.47, 0.67) | | | (0.24, 0.62) | (0.7, 0.87) | | (-0.8, -0.54) | | (4.71, 6.34) | | (0.95, 0.98) | (0.3, 0.65) | **Note:** ρ_{y_t,x_t} and ρ_{LS_t,x_t} denote the contemporaneous cross-correlation for series x_t with output and the labor share. $\rho_{LS_{t+\tau},x_t}$ reflects to the correlation of variable x_t with labor share lagged by k period. For the labor share the highest and the lowest cross-correlation with each series are reported. $\rho_{x_t,x_{t-1}}$ and σ_{x_t} denote the first-order autocorrelation and standard deviation from the long-run trend, respectively. Table D.2: P-values from the F signal test – Annual series | Cycle length | Excluding | | | | | |--------------|--------------------|--------------------|--------------------|--|--| | (in years) | Mean | Linear trend | Quadratic trend | | | | 87.00 | [0.000] | [0.000] | [0.293] | | | | 43.50 | 0.015 | [0.014] | [0.137] | | | | 29.00 | [0.000] | [0.00.0] | [0.00.0] | | | | 21.75 | [0.412] | [0.782] | [0.441] | | | | 17.40 | 0.263 | [0.193] | [0.136] | | | | 14.50 | [0.214] | [0.395] | [0.196] | | | | 12.43 | [0.396] | [0.513] | [0.415] | | | | 10.88 | [0.335] | [0.056] | [0.013] | | | | 9.67 | [0.366] | [0.148] | [0.061] | | | | 8.70 | [0.828] | [0.447] | [0.272] | | | | 7.91 | [0.294] | [0.206] | [0.112] | | | | 7.25 | [0.693] | [0.808] | [0.703] | | | | 6.69 | [0.635] | [0.326] | [0.184] | | | | 6.21 | [0.734] | [0.418] | [0.266] | | | | 5.80 | [0.736] | [0.379] | [0.218] | | | | 5.44 | [0.877] | [0.595] | [0.452] | | | | 5.12 | [0.940] | [0.713] | [0.593] | | | | 4.83 | [0.996] | [0.902] | [0.851] | | | | 4.58 | [0.979] | [0.996] | [0.992] | | | | 4.35 | [0.962] | [0.910] | [0.870] | | | | 4.14 | [0.918] | [0.841] | [0.759] | | | | 3.95 | [0.967] | [0.989] | [0.980] | | | | 3.78 | [0.999] | [0.942] | [0.911] | | | | 3.63 | [0.900] | [0.694] | [0.566] | | | | 3.48 | [0.913] | [0.759] | [0.650] | | | | 3.35 | [0.972] | [0.980] | [0.972] | | | | 3.22 | [0.984] | [0.888] | [0.832] | | | | 3.11 | [0.900] | [0.816] | [0.733] | | | | 3.00 | [0.987] | [0.904] | [0.856] | | | | 2.90 | [0.985] | [0.921] | [0.880] | | | | 2.81 | [0.997] | [0.951] | [0.924] | | | | 2.72 | [0.999] | [0.962] | [0.941] | | | | 2.64 | [0.996] | [0.978] | [0.967] | | | | 2.56 | [0.988] | [0.944] | [0.914] | | | | 2.49 | [0.995] | [0.955] | [0.931] | | | | 2.42 | [0.997] | [0.975] | [0.961] | | | | 2.35
2.29 | [0.996] | [0.949] | [0.922]
[0.906] | | | | 2.29 | [0.984] | [0.938]
[0.999] | | | | | | [0.992] | L J | [0.998] | | | | 2.18
2.12 | [0.998]
[0.981] | [0.957]
[0.902] | [0.934]
[0.853] | | | | 2.12 | [0.981] | [0.952] | [0.833] | | | | 2.07 | [0.988] | [0.954] | [0.931] | | | | 2.02 | [0.774] | [0.500] | [0.551] | | | Table D.3: P-values from the F signal test – Quarterly series | Cycle length | Excluding | | | | | | |--------------|-----------|--------------|-----------------|--|--|--| | (in years) | Mean | Linear trend | Quadratic trend | | | | | 69.00 | [0.000] | [0.000] | [0.112] | | | | | 34.50 | [0.000] | [0.000] | [0.000] | | | | | 23.00 | [0.000] | [0.000] | [0.000] | | | | | 17.25 | [0.000] | [0.000] | [0.000] | | | | | 13.80 | [0.037] | [0.073] | [0.025] | | | | | 11.50 | [0.280] | [0.044] | [0.017] | | | | | 9.86 | [0.005] | [0.000] | [0.000] | | | | | 8.63 | [0.371] | [0.919] | [0.866] | | | | | 7.67 | [0.020] | [0.001] | [0.000] | | | | | 6.90 | [0.213] | [0.001] | [0.000] | | | | | 6.27 | [0.479] | [0.794] | [0.741] | | | | | 5.75 | [0.302] | [0.018] | [0.008] | | | | | 5.31 | [0.507] | [0.830] | [0.806] | | | | | 4.93 | [0.538] | [0.802] | [0.782] | | | | | 4.60 | [0.352] | [0.446] | [0.394] | | | | | 4.31 | [0.238] | [0.164] | [0.127] | | | | | 4.06 | [0.868] | [0.989] | [0.988] | | | | | 3.83 | [0.823] | [0.758] | [0.715] | | | | | 3.63 | [0.855] | [0.396] | [0.336] | | | | | 3.45 | [0.864] | [0.326] | [0.268] | | | | | 3.29 | [0.524] | [0.440] | [0.380] | | | | | 3.14 | [0.766] | [0.573] | [0.532] | | | | | 3.00 | [0.737] | [0.809] | [0.778] | | | | | 2.88 | [0.871] | [0.840] | [0.812] | | | | | 2.76 | [0.797] | [0.810] | [0.778] | | | | | 2.65 | [0.826] | [0.938] | [0.928] | | | | | 2.56 | [0.798] | [0.662] | [0.615] | | | | | 2.46 | [0.817] | [0.887] | [0.869] | | | | | 2.38 | [0.906] | [0.730] | [0.691] | | | | | 2.30 | [0.677] | [0.404] | [0.346] | | | | | 2.23 | [0.626] | [0.516] | [0.462] | | | | | 2.16 | [0.872] | [0.924] | [0.911] | | | | | 2.09 | [0.849] | [0.886] | [0.871] | | | | | 2.03 | [0.743] | [0.420] | [0.368] | | | | # E Additional Quantitative Results We shall now provide a few additional quantitative results based on the model considered in the main text. # E.1 Impact of Parameter Variation on Labor Share at the BGP **Figure E.1** presents the impact of varying selected model parameters, holding other ones constant, on the BGP level of the labor share. All panels can be interpreted through the lens of equations (A.1) and (A.2): $$\frac{\pi}{\pi_0} = \left(\frac{\lambda_b k}{\lambda_{b0} k_0}\right)^{\xi} \left(\frac{y}{y_0}\right)^{-\xi} \quad \Rightarrow \quad \hat{\pi} = \xi(\hat{\lambda}_b + \hat{k} - \hat{y}),\tag{A.1}$$ $$\frac{\pi}{1-\pi} = \frac{\pi_0}{1-\pi_0} \left(\frac{x}{x_0} \frac{\ell_{Y0}}{\ell_Y} \right)^{\xi} \quad \Rightarrow \quad \hat{\pi} = \xi (1-\pi)(\hat{x} - \hat{\ell}_Y). \tag{A.2}$$ As agents become less patient (higher ρ), R&D intensity falls, as does the labor share. Similar reasoning pertains to the inverse elasticity of substitution γ . That the result $\frac{\partial (1-\pi)}{\partial \eta_b} > 0 \mid \sigma < 1$ arises from the usual property that, under gross complements, improvements in capital augmenting technical change are labor biased; analogously $\frac{\partial (1-\pi)}{\partial \eta_a} < 0 \mid \sigma < 1$. Likewise, we have under gross complements: $\frac{\partial (1-\pi)}{\partial \nu_a} > 0$, $\frac{\partial (1-\pi)}{\partial \nu_b} < 0$. If capital depreciates faster, the capital (labor) share rises (falls). Note that the lack of dependence of the BGP on ξ in the decentralized allocation follows from CES normalization (Klump and de La Grandville, 2000), coupled with the fact that we have calibrated the normalization constants to the BGP of the decentralized allocation.³³ This choice of point of normalization allows us to perfectly isolate changes in model dynamics (eigenvalues of the linearized system) due to changes in the elasticity of substitution from changes in the steady state location. ³³For the decentralized steady state of the calibrated model to be completely insensitive to changes in the elasticity of substitution, one requires two assumptions. First, the CES production function is normalized. Second, it is normalized exactly at the steady state (so that $x^* = x_0$,
$\ell_Y^* = \ell_{Y0}$, etc.) We do exactly that, thanks to which we isolate changes in model dynamics (eigenvalues) from changes in the steady state location, in a very clean way. It can be related to the findings of Klump and de La Grandville (2000) who isolated changes in the curvature of the production function from changes in unit factor productivity. For other choices of normalization constants, the BGP of the calibrated model would be sensitive to changes in the elasticity of substitution. Figure E.1: Dependence of the Equilibrium Labor Share on the Model Parametrization Figure E.2: Comparing Balanced Growth Paths: Dependence on the Time Preference. Figure E.3: Comparing Balanced Growth Paths: Dependence on the Intertemporal Elasticity of Substitution in Consumption. Figure E.4: Comparing Balanced Growth Paths: Dependence on ν_b . Figure E.5: Additional Bifurcation Figures Figure E.6: "Node-focus" Bifurcations