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Abstract

Based on long US time series we document a range of empirical properties of the labor’s share of GDP.

We identify its substantial medium-to-long run, pro-cylical swings and show that most of its variance

lies beyond business-cycle frequencies. We explore the extent to which these empirical regularities can be

explained by a calibrated micro-founded, nonlinear growth model with normalized CES technology and

endogenous labor- and capital augmenting technical change driven by purposeful directed R&D invest-

ments. We demonstrate that dynamic macroeconomic trade-offs created by arrivals of both types of new

technologies can lead to prolonged swings in the labor share (and other model variables) due to oscillatory

convergence to the balanced growth path as well as emergence of limit cycles via Hopf bifurcations. Both

predictions are consistent with the empirical evidence. (JEL: E25, E32, O33, O41)
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1 Introduction

The proposition that labor’s share of national income is stable has endured a long and

chequered history. The classical economists – Smith, Ricardo, Marx – regarded labor

shares as inherently variable, even in the long run. In stark contrast, the empirical ob-

servations of Cobb and Douglas (1928), Bowley (1937), Johnson (1954), Kaldor (1961)

and others established the wide-spread constancy of such shares. This ‘stylized’ fact of

stability lead to a benign neglect of the issue, only recently overturned given mounting

evidence to the contrary. Our contribution to this literature is two-fold.

First, we try to establish (or re-establish) the stylized facts of labor share develop-

ments. We do so exploiting a frequency domain analysis. A common view is that labor

share volatility is driven by business cycles (Hansen and Prescott, 2005), in a counter-

cyclical manner, and subject in recent decades to a secular downward trend. Our analy-

sis however demonstrates that business cycle fluctuations account for around 20% of the

variance decomposition of the labor share. Of far greater importance are ‘medium’ and

‘long run’ frequencies. Another distinguishing fact is that whilst the high frequency com-

ponent of the labor share is counter-cyclical, the (dominant) medium-run component is

strongly pro-cyclical. Tests also show that the medium run labor share is highly persistent

relative to the short-run component.

This takes us to our second contribution. Confronting these empirical features, we

assess the extent to which a micro-founded endogenous growth model can account for

them. The model is a generalization of Acemoglu (2003) with two R&D sectors giving

rise to factor-augmenting innovations augmenting the “technology menu”. We treat our

model as a laboratory to assess mechanisms able to explain labor-share swings over the

medium and long run.1 Calibrating the nonlinear model on US data, we demonstrate

that the interplay between endogenous arrivals of capital and labor-augmenting tech-

nologies leads to oscillatory convergence to the long-run growth path, and sometimes

even to stable (self-sustaining endogenous) limit cycles.2 The latter possibility (i.e., that

the labor share oscillates indefinitely around a stable value) may be considered attractive

in so far as it offers us a general theory of continuous labor-share movements as dis-

tinct from explanations associated to particular phenomena (e.g., reduced labor power,

‘globalization’, etc.)

Accordingly, our objective is to bridge the knowledge gap between what we observe

of factor share movements and how we might model the mechanisms responsible for

those movements. Indeed, the recent decline in labor income share poses a conspic-

1Specifically, as far as we know, even though there exists a suite of endogenous growth models allowing
for non-neutral technical change, their implications for medium-to-long run swings in the labor share have
not yet been analyzed. Although, more generally, that economic activity may be subject to long waves of
activity has proved influential following the seminal works of Kondratieff and Schumpeter.

2Articles, applications and surveys in this vein include Kaldor (1940), Goodwin (1951, 1967), Ryder and
Heal (1973), Benhabib and Nishimura (1979), Dockner (1985), Feichtinger (1992), Benhabib and Perli (1994),
Ben-Gad (2003), Barnett and Ghosh (2013).
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uous challenge to theory. The usual macroeconomic paradigm of Cobb-Douglas pro-

duction (unit elasticity of substitution, neutral technical change) coupled with isoelastic

demand (leading to constant markups) leaves no room for the prolonged swings in factor

shares observed in the data. Business-cycle models with variable markups or a cocktail

of stochastic processes generate shares that stabilize rapidly around a constant mean

(missing the high persistence and dominant low-frequency movements). Models en-

dowed with a more general production specification (e.g., the neoclassical growth model

with CES technology), on the other hand, do indicate a few critical tradeoffs; however,

arguably the profession has not moved much beyond that.

The literature therefore tries to explain this phenomenon as departures from these

benchmarks. For instance, through the impact of non-neutral technical change (Autor

et al., 2003; Acemoglu, 2003; Bentolila and Saint-Paul, 2003; Jones, 2005b; Klump et al.,

2007), structural transformation within the economy (Kongsamut et al., 2001; de Serres

et al., 2002; Ngai and Pissarides, 2007; McAdam and Willman, 2013), shifting rents and

shocks (Blanchard, 1997; Blanchard and Giavazzi, 2003) etc. Other explanations include

the rise of offshoring of labor-intensive tasks (Elsby et al., 2013); increasing female labor

force participation (Buera and Kaboski, 2012); changing patterns of firm size and age

(Kyyrä and Maliranta, 2008); declines in relative prices for investment goods (Karabar-

bounis and Neiman, 2014); greater IPP capital-intensity (Koh et al., 2016); the tendency

for capital returns to exceed economic growth rates (Piketty, 2014) and so on.3 These

explanations all have pros and cons of one sort or another (e.g., some explanations are

tied to the value of production substitution parameters). Most of them however relate

to technological changes, or can be viewed through the lens of technical developments

(Boggio et al., 2010).

Against this literature, we find that a micro-founded endogenous growth model à la

Acemoglu (2003) – with two R&D sectors giving rise to factor-augmenting innovations

– is capable of supporting a self-sustaining cycle (a limit cycle) of low-frequency oscil-

lations. We discuss the properties of that cycle and relate them to our earlier empirical

findings and the growth literature more generally. For the baseline calibration of the

model that we use, these oscillations are dampened ones. However, mild perturbations

of that baseline can readily produce a self-sustaining cycle; e.g., if agents are sufficiently

patient (a low discount rate) and/or flexible in allocating consumption across time (a

high elasticity of intertemporal substitution), the subsequent arrivals of both types of

innovations can generate limit cycle behavior. The cycle reflects the tension between

the two R&D sectors (acceleration in each of them has conflicting impacts on the labor

share). In such a case, irrespective of the initial conditions, the economy converges to a

stable cyclical path where all trendless macroeconomic variables (such as the labor share

or the consumption–output ratio) oscillate indefinitely around the steady state. Such os-

3Some authors have also envisaged an interesting approach whereby the labor share described as a state
variable in a model with Cobb-Douglas technology, which could be changed via purposeful spending on
R&D, leading to ‘factor-eliminating’ technical change (Zuleta, 2008; Peretto and Seater, 2013).
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cillations have a predetermined frequency and amplitude. Thus the model provides a

plausible mechanism which is able to reproduce the observed labor share variations, in-

cluding the ongoing long downward swing. At the same time, it predicts that this swing

will eventually abate and reverse.

The paper proceeds as follows. Section 2 discusses some empirical properties of

the US labor share. We find that the labor income share is highly persistent with a

frequency decomposition skewed to the medium and long run. Section 3 discusses the

model. This is an endogenous growth model with two R&D sectors giving rise to capital

as well as labor augmenting innovations augmenting the “technology menu”. Section

4 calibrates the model to US data and solves the nonlinear model. Next, we consider

the dynamic properties of the model around the balanced growth path (BGP) in terms

of oscillatory dynamics and the possible emergence of cycles, and uncovering the key

channels involved. Section 6 concludes.

2 Empirical Evidence for Medium-to-Long Swings in the

Labor Share

We now explore some empirical properties of the US labor share.4 We are of course not

the first to do so (i.e., key contributions include Blanchard (1997) for Europe; Sturgill

(2012), Elsby et al. (2013), Oberfield and Raval (2015) and Koh et al. (2016) for the US;

Karabarbounis and Neiman (2014) globally). Our treatment however is notable in four

respects.

1. Many such studies have concentrated on recent decades and, accordingly, have

tended to emphasize the decline since the 1970s. In contrast we examine the broad

historical evolution.5

2. We highlight the frequency decomposition of the labor share and, in so doing, the

extent and importance of its medium-to-long run swings (or cycles). Many other

contributions, by contrast, have not only concentrated on high-frequency (business-

cycle) movements but have also used simple linear (or broken linear) trends to

scrutinize features of the factor share. However, since Nelson and Plosser (1982) we

know that assumption that some variables are stationary around a deterministic

trend is too restrictive.

3. We derive some stylized facts about the labor share (variance, auto and cross-

correlations) but, crucially, we do so again across the frequency domain.

4For compactness, some results in this section are relegated to appendices. Codes to replicate our
empirical results are available.

5Indeed, there was a debate in the 1950s and 1960s on the explanations for the increasing labor share
e.g., Solow (1958), Kravis (1959), Ferguson and Moroney (1969).
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4. We use our findings to motivate an endogenous growth model, which can account

for and rationalize persistent fluctuations in the labor share.

Our main findings are the following. Most of the labor share’s variance decomposi-

tion occurs not at business-cycle frequencies but at ‘medium’ and ‘long-run’ frequencies

(≈ 80%). Stationarity and fractional integration tests corroborate this, showing that the

labor share is highly persistent (indicative of slow mean reversion). Moreover, whilst the

high frequency component of the labor share is counter-cyclical, the (dominant) medium-

run component is strongly pro-cyclical.

2.1 The Historical Time Series of the US Labor Share

The annual US labor income share is presented in Figure 1.6 Regarding data construc-

tion, we follow Gollin (2002) by adjusting the payroll share by proprietors’ income (see

Appendix A.1.1). The constructed series has all the properties usually identified in the

literature: (i) it appears counter-cyclical7, and (ii) it has declined in recent decades.

Figure 1: The Annual US Labor Share, 1929–2015
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Note: Shaded areas represent recessions according to the NBER chronology overlaid at quarterly frequency. Summary statistics for

the annual and quarterly labor income share are given in Table B.1.

However, using this long time series helps us appreciate that these two aspects are

only part of the story: before the labor share began this decline, it showed something of an

upward tendency. When examined over the entire period, the historical series arguably

6We additionally use quarterly series, available over 1947:1-2015:4, see Figure D.1.
7See Table B.3.
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looks part of a long cycle. Thus, although the current labor share is back to values near

those in 1929, it seems indeed reasonable to expect some eventual mean reversion (as

appears to be the case at the end of the sample).

Moreover, according to Kaldor’s (1961) stylized facts, factor shares should be stable

over ‘long’ time periods, even if they fluctuate over the business cycle. However whilst

the labor-share autoregressive parameter is largely close to but (statistically) below unity

(see Table B.2), formal stationarity tests are inconclusive (see Table B.4). This ambiguity,

this borderline stationarity, may reflect sample-size considerations, low test power in the

presence of structural breaks or shifts, etc.

Notwithstanding, many time series exhibit too much long-range dependence to be

strictly classified as I(0), but are not I(1) either. The ARFIMA model is designed to

represent such series. If the fractional parameter8 of a time series satisfies d ∈ (0, 0.5),

the auto-correlations decay more slowly than those of a stationary ARMA process (i.e.,

hyperbolically rather than geometrically). In short, the series is stationary but with long

memory: shocks to the labor share (or its determinants) take a long time to decay.

This particular empirical finding (corroborated at the bottom of table B.4) is consistent

with our interpretation of factor income shares as ultimately mean reverting but driven

by a long cycle, and (as demonstrated below) dominated by frequency movements be-

yond the business cycle.

2.2 Spectral Analysis of Labor Income Shares

Table 1 presents the estimated share of specific types of fluctuations in the total variance

of the annual and quarterly series (employing three transformations). For the demeaned

series, medium-frequency fluctuations are responsible for 46− 50% of total volatility and

the cycles mapped into the low-frequency pass are almost just as important (36 − 46%).

Thus the total share of medium-to-long run frequencies is around 80%. As expected,

de-trending the labor share series limits the contribution of low-frequency oscillations

in the overall variance, and medium-term fluctuations become more important instead,

with their share about 58% and 70% for the series de-trended by a linear and quadratic

trend, respectively. Business-cycle fluctuations, by contrast account for only 8 − 29% of

the total variance.9

Looking at the periodogram estimates for both annual and quarterly data, we also

note there are two dominant frequencies of fluctuations in the US labor share: (a) medium-

term cycles lasting around 30 years, and (b) the long-run stochastic trend, whose length

8To illustrate fractional integration, consider (1 − L)d Xt = ǫt where L is the lag operator, d ∈ R is the
differencing parameter and ǫt is the stationary short memory process. If d = 1, Xt is a random walk and
integrated of order one, I (1). If d = 0, Xt is white noise and weakly stationary, I (0) .

9In tables D.2 and D.3 we test the significance of the spectral density peaks following Wei (2006). The
null (alternative) hypothesis is that at given frequency there is noise (a significant cycle). The tables confirm
that medium-term fluctuations are very important, relative to other ranges.
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Table 1: Share of Specific Frequencies in Total Variance of the Labor Share (in %)

Annual Quarterly
Periodicity (in years) ≥ 50 8-50 ≤ 8 ≥ 50 8-50 ≤ 8

Excluding the mean 46.2 45.5 8.4 36.1 49.8 14.2
Excluding a linear trend 23.7 58.4 17.9 8.7 66.6 24.7
Excluding a quadratic trend 2.9 69.3 27.8 1.6 69.2 29.2

Note: the shares have been calculated using periodogram estimates. Bold indicates
maximum value. Following Comin and Gertler (2006) we define high (periodicity
below 8 years), medium (periodicity between 8 and 50 years) and low-frequency os-
cillations (periodicity above 50 years).

reaches beyond the 80 years mark. As opposed to business-cycle models, the mechanisms

present in our model are able to generate swings of either of these frequencies.

2.3 Stylized Facts: Labor Share’s Medium-Term Fluctuations

The medium and long-term component extracted from the labor share is depicted in

Figure 2.10 The former component is responsible for a significant part of the overall

volatility of the series and has an important contribution to the scale of deviation from

long run trend at the turning points. Although isolating the medium- and high-frequency

cycles reduces the volatility substantially, the remaining smoothed long-run trend is still

hump-shaped (with a peak around the late 1950s/early 1960s).

Table 2 reports the main features of the medium and short-term component of the

labor share using moments of the filtered series. Whilst volatility is similar, a stark dif-

ference is the counter-cyclical (or a-cyclical) short-run labor share, viewed against the

strongly pro-cyclical medium-term component (at 0.6 or above). Indeed, many macroe-

conomic variables underpinning the labor share (e.g., investment, consumption, hours

worked, employment) are virtually all pro-cyclical in the medium term (see Table D.1).

Finally, note that the short-run component (i.e., that derived from first differencing

or standard filtering) has relatively weak persistence (0.3 − 0.7) in comparison to the

medium run component which has a persistence parameter, above 0.9. This value is

relatively similar to the persistence of the raw series, which is not so surprising given

our earlier conclusion that the variance decomposition of the series is dominated by its

medium run frequencies.

10The choice of method for extracting the medium-term component from the data is mostly determined
by the frequency domain in question. Following earlier work on medium-term cycles (e.g., Comin and
Gertler (2006)), we apply the Christiano and Fitzgerald (2003) (CF) approximation of the ideal band-pass
filter.The general strategy of isolating the medium-term component is the following. We transform our
data into log differences and then apply the band-pass (CF) filter. Next, we cumulate the filtered data
and demean. This increases filter efficiency as compared to applying the filtering procedure directly to log
levels. The extracted series represent percentage deviations from the long-run trend.
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Figure 2: Medium-Term Component & Long-Term Stochastic Trend of Annual US Labor Share
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Note: The red, blue and black lines represent the raw series, the medium-to-long term component and the long-run trend, respec-

tively.

Table 2: Features of Labor Share’s Medium and Short-Term Components

Medium Term σLSt
σLSt

/σGDPt
ρLSt,LSt−1

ρLSt,GDPt

Annual series 1.518 0.444 0.939 0.634
(1.285,1.722) (0.909,0.962) (0.483,0.759)

Quarterly series 1.547 0.449 0.996 0.583
(1.445,1.652) (0.995,0.997) (0.504,0.654)

Short Term†

Annual series 0.660 0.431 0.325 -0.098
(0.538, 0.767) (0.142, 0.502) (-0.316, 0.116)

quarterly series 0.785 0.513 0.736 -0.185
(0.700, 0.869) (0.673, 0.795) (-0.289, -0.076)

Note: σLSt
and σLSt

/σGDPt
denotes volatility in absolute term (percentage deviation from the long-run trend) and relative term (as

a ratio to the GDP’s volatility). ρLSt ,LSt−1
and ρLSt ,GDPt

stand for the first-order autocorrelation and contemporaneous co-movement,

respectively. 95% bootstrapped confidence intervals (based on 5,000 replications) in parentheses. †We use three measures of the short

run component: first-differencing, the CF filter (all fluctuations with periodicity between 2 and 8 years) and, in this table, the HP

filter (λ = 1600 and λ = 6.25 for quarterly and annual series, respectively). Results for the other filtered short-run series are given in

Table B.5.

2.4 Summary

We demonstrated that movements in the labor share are dominated by medium and low

frequencies. Furthermore, such movements are distinct from business-cycle fluctuations

since they (and their determinants) are pro-cyclical and characterized by slow, cyclical
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mean reversion. These ‘facts’ matter for our modelling choices: to understand the fun-

damental dynamic underpinning labor shares, requires a framework and method that

can speak to those features. Moreover, outside of the business cycle, we typically con-

sider activity as being endogenously driven by technical progress (inter alia, Gancia and

Zilibotti (2009)). And it is to such a model that we now turn.

3 Model

The framework is a generalization of Acemoglu’s (2003) model with capital and labor

augmenting R&D which, in turn, draws on the earlier induced innovation literature from

Kennedy (1964) onwards, as well as Romer (1990) and Jones (1999), the Dixit-Stiglitz mo-

nopolistic competition framework and so on. The distinct features of our treatment,

though, are worth pointing out and are the following:

(i) our model is non-scale: both R&D functions are specified in terms of percentages

of population employed in either R&D sector (as opposed to Acemoglu where the R&D

functions are specified in terms of total R&D employment);

(ii) we also assume R&D workers are drawn from the same pool as production work-

ers11;

(iii) we assume more general R&D technologies which allow for mutual spillovers be-

tween both R&D sectors (cf. Li, 2000) and for concavity in capital-augmenting technical

change;

(iv) in contrast to Acemoglu (2003), the BGP growth rate g in our model depends on

preferences via ℓY (labor in aggregate production). The tradeoff is due to drawing re-

searchers from the same employment pool as production workers (a tradeoff not present

in his model) and;

(v) we use normalized CES production functions.12

These changes make our setup less restrictive as regards developments in factors and

factor prices and, thus, make the identification of cycles more plausible.13 In our case

11Acemoglu (2003) assumes that labor supply in the production sector is inelastic and R&D is carried
out by a separate group of “scientists” who cannot engage in production labor.

12Normalization implies representing the production function and factor demands in consistent indexed
number form. Without normalization, it can be shown that the production parameters have no economic
interpretation since they are dependent on the normalization point and on the elasticity of substitution
itself. This undermines estimation and comparative statics. See de La Grandville (1989) and Klump and
de La Grandville (2000) for the seminal contributions, and León-Ledesma et al. (2010) for an econometric
analysis. Bartelme and Gorodnichenko (2015) use the normalized function to examine the link between
industry and aggregate productivity. See Cantore et al. (2014), Palivos and Karagiannis (2010) for general
background on the importance of the substitution elasticity. Moreover, we confine ourselves to constant
returns, consistent with much of the aggregate evidence, e.g., Basu and Fernald (1997).

13The literature on endogenous cycles in growth models (albeit usually conducted in systems of lower
dimension than ours) has identified various discontinuities and ad-hoc mechanisms to generate cycles: e.g.,
non concavities, adjustment costs, delay functions, information asymmetries and stickiness, high discount
rates, strong control-state interactions, etc. Our framework, being micro-founded and less restrictive along
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with gross complementarity between capital and labor in the aggregate CES production

function, oscillations in factor shares – and other model variables – appear endogenously

as an outcome of the interplay between labor and capital augmenting R&D. The cycle

reflects the tension between the two R&D sectors (acceleration in each of them has con-

flicting impacts on the labor share).

An additional departure relative to the existing literature is that we provide a full and

rigorous calibration of the model based on US data. Among other dynamic properties,

we can therefore assess model fit in terms of the lengths of cycles.

3.1 Aggregate Production

Assume aggregate production is of the normalized CES form:14

Y = Y0

(

π0

(

λb

λb0

K

K0

)ξ

+ (1 − π0)

(

λa

λa0

LY

LY0

)ξ
)

1
ξ

(1)

where σ = (1 − ξ)−1 ∈ (0, ∞) is the elasticity of factor substitution. Under normalization,

benchmark values are assigned to output, capital and labor (Y0, K0, L0)15 and technology.

Terms λa and λb represent the maximum degree of factor augmentation along the “tech-

nology menu” and grow as an outcome of factor augmenting R&D. Henceforth without

loss of generality we set λb0 = 1. Under perfect competition the capital share is de-

termined by the margins of capital augmenting technology and the capital-output ratio,

whose qualitative impact is determined by sign{ξ}:

π = π0

(

λbK

λb0K0

)ξ ( Y

Y0

)−ξ

.

With constant returns, the labor share equals 1 − π.

the dimensions indicated, makes the analysis and identification of cycles accordingly, we believe, more
‘plausible’.

14In terms of the distinction between ‘local’ and ‘global’ production functions (Jones, 2005b), an ag-
gregate CES production function can be justified if new production techniques are independently and
identically drawn from a Weibull distribution, Growiec (2013). See our working paper version of this
article (Growiec et al., 2015) for a detailed derivation.

15Although some have also considered human capital accumulation in constructing and analyzing the
labor share (key references being Krueger (1999) and Zuleta (2008)), we abstract from human capital.
This was largely done for simplicity since, amongst other things, the introduction of human capital as a
separate production factor raises issues of using and discriminating among different hierarchies of multi-
level production functions, see León-Ledesma et al. (2012). One, though, might consider the labor inputs
to be human-capital adjusted (i.e., similar to how the KLEMS database defines ‘labor services’). Likewise,
one can consider the labor augmenting technical progress term as capturing some of the effects of human
capital on the labor input.
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3.2 R&D

We assume that new, factor augmenting innovations are created endogenously by the

respective R&D sectors augmenting the technology menu by increasing the underlying

parameters λa, λb:

λ̇a = A
(

λaλ
φ
b xηaℓ

νa
a

)

, (2)

λ̇b = B
(

λ1−ω
b xηbℓ

νb
b

)

− dλb, (3)

where ℓa and ℓb are the shares (or “research intensity”) of population employed in labor-

and capital augmenting R&D, respectively, with ℓa + ℓb + ℓY = 1, and ℓYL = LY, etc.

Term x ≡ k(λb/λa) is the effective capital-labor ratio where k = K/L. The terms ℓa, ℓb, ℓY

and x are constant along the BGP. The long-term endogenous growth engine is located in

the linear labor augmenting R&D equation. To fulfill the requirement of the existence of a

BGP along which the growth rates of λa and λb are constant, we assume ηbφ+ ηaω 6= 0.16

Parameters A and B capture the unit productivity of the labor- and capital augment-

ing R&D process, respectively. Parameter φ captures the spillover from capital to labor

augmenting R&D.17 Parameter ω measures the degree of decreasing returns to scale in

capital augmenting R&D. By assuming ω ∈ (0, 1) we allow for the “standing on shoul-

ders” effect in capital augmenting R&D, albeit we limit its scope insofar as it is less than

proportional to the existing technology stock (Jones, 1995).

We assume capital augmenting developments are subject to gradual decay at a rate

d > 0, which mirrors susceptibility to obsolescence and embodied character of capital

augmenting technologies, Solow (1960). This assumption is critical for the asymptotic

constancy of unit capital productivity λb, and thus for the existence of a BGP with purely

labor augmenting technical change.

3.2.1 Duplication Externalities

A key insight of the endogenous growth literature is that R&D activity may be subject

to duplication externalities (Stokey, 1995; Jones, 1995). This is captured by parameters

νa, νb ∈ (0, 1]: the higher is ν the lower the extent of duplication. This negative exter-

nality may arise from many sources, e.g., patent races and patent protection. A race

to secure a lucrative (e.g., medical) patent, for instance, may imply large decentralized,

16All our qualitative results also go through for the special case ηa = ηb = 0, which fully excludes the
presence of the effective capital-labor term, x, in R&D. The current inequality condition is not required in
such cases.

17There are no a priori restrictions on sign{φ}. In our baseline calibration we assume φ > 0, indicating
that more efficient use of physical capital in the economy also increases the productivity of labor augment-
ing R&D. See Li (2000) for a thorough discussion of the role of cross-sectoral spillovers in growth models
with two R&D sectors.
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overlapping scientific resources. Likewise, with stringent patent protection, wasteful du-

plication may arise since firms cannot directly build on patented technology (having first

to reinvent/imitate it). On the other hand, with more patent protection, there could be

less duplication because each research project gives the firm more leverage due to its

patentability and the exclusion of competition. The net effect is unclear.

These externalities are important in our analysis. Indeed, we are not aware of any

study which distinguishes between duplication externalities in labor- and capital aug-

menting R&D. This raises the question of whether νa = νb, though a defensible prior,

makes sense. For instance, duplication externalities could be stronger in labor augment-

ing R&D, in so far as there is greater scope for patent protection when the technology is

embodied in capital goods and subject to obsolescence. Accordingly, we explore several

{νa, νb} scenarios.

3.2.2 Nested Forms in R&D Accumulation

To put our forms in context, observe that switching off all externalities and spillovers

in (2)–(3) by setting d = ω = ηa = ηb = 0 and νa = νb = 1 retrieves the original

specification of R&D in Acemoglu (2003).18 Moreover, compared with models which use

aggregate Cobb-Douglas, equation (3) is akin to Jones’ (1995) formulation of the R&D

sector, generalized by adding obsolescence and the capital-labor term. Thus, setting

d = ηb = 0 retrieves Jones’ original specification. And equation (2) is the same as

in Romer (1990) but scale-free (i.e., it features a term in ℓb instead of ℓb · L) and with

effective capital-labor in R&D and a direct spillover from λb; setting φ = ηa = 0 retrieves

the scale-free version of Romer (1990), cf. Jones (1999).

3.3 The Decentralized Allocation

The construction of the decentralized allocation of the model draws from Romer (1990),

Acemoglu (2003), and Jones (2005a). In particular, we use the Dixit-Stiglitz monopolistic

competition setup and the increasing variety framework of the R&D sector. The general

equilibrium is obtained as an outcome of the interplay between: households; final goods

producers; aggregators of bundles of capital and labor-intensive intermediate goods;

monopolistically competitive producers of differentiated capital and labor-intensive in-

termediate goods; and competitive capital and labor augmenting R&D firms. We discuss

these agents in turn in the following subsections.

18Furthermore, Acemoglu (2003) assumes scientists to be a separate input from labor, and considers an
additional case where both types of innovations are subject to decay at a rate d.
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3.3.1 Households

Assume the representative household maximizes discounted CRRA utility:

max
∫

∞

0

c1−γ − 1

1 − γ
e−(ρ−n)tdt (4)

subject to the budget constraint:

v̇ = (r − δ − n)v + w − c, (5)

where γ > 0 is the inverse of the intertemporal elasticity of substitution, ρ > 0 is the rate

of time preference, n > 0 is the (exogenous) growth rate of the labor supply, and v = V/L

is the household’s per-capita holding of assets, V = K + paλa + pbλb. The representative

household is the owner of all capital and also holds the shares of monopolistic producers

of differentiated capital and labor-intensive intermediate goods. Capital is rented at a

net market rental rate equal to the gross rental rate less depreciation: r − δ. Solving the

household’s optimization problem yields the consumption Euler equation:

ĉ =
r − δ − ρ

γ
, (6)

where ĉ = ċ/c = g (the per-capita growth rate).

3.3.2 Final Goods Producers

The role of final goods producers is to generate the output of final goods (which are

then either consumed by the representative household or saved and invested, leading to

physical capital accumulation), taking bundles of capital and labor-intensive intermedi-

ate goods as inputs. They operate in a perfectly competitive environment, where both

bundles are remunerated at market rates pK and pL, respectively.

The final goods producers operate a normalized CES technology:

Y = Y0

(

π0

(

YK

YK0

)ξ

+ (1 − π0)

(

YL

YL0

)ξ
)

1
ξ

. (7)

The first order condition implies that final goods producers’ demand for capital and

labor-intensive intermediate goods bundles satisfies,

pK = π
Y

YK
, pL = (1 − π)

Y

YL
, (8)

where the share term π = π0

(

YK
YK0

Y0
Y

)ξ
is the elasticity of final output with respect to YK.
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3.3.3 Aggregators of Capital- and Labor-Intensive Intermediate Goods

There are two symmetric sectors in the economy, whose role is to aggregate the dif-

ferentiated (capital or labor-intensive) goods into the bundles YK and YL demanded by

final goods producers. It is assumed that the differentiated goods are imperfectly substi-

tutable (albeit gross substitutes). The degree of substitutability is captured by parameter

ε ∈ (0, 1):

YK =

(

∫ NK

0
Xε

Kidi

)
1
ε

. (9)

Aggregators operate in a perfectly competitive environment and decide upon their de-

mand for intermediate goods, the price of which will be set by the respective monopo-

listic producers (discussed below).

For capital-intensive bundles, the aggregators maximize

max
XKi

{

pK

(

∫ NK

0
Xε

Kidi

)
1
ε

−
∫ NK

0
pKiXKidi

}

, (10)

for a continuum of measure NK of capital-intensive intermediate goods producers. Opti-

mization implies the following demand curve:

XKi = xK(pKi) =

(

pKi

pK

)
1

ε−1

Y
1
ε

K . (11)

Symmetrically, there is also a continuum of measure NL of labor-intensive intermedi-

ate goods producers. The demand curve for their products satisfies,

XLi = xL(pLi) =

(

pLi

pL

)
1

ε−1

Y
1
ε

L . (12)

3.3.4 Producers of Differentiated Intermediate Goods

It is assumed that each of the differentiated capital or labor-intensive intermediate goods

producers, indexed by i ∈ [0, NK] or i ∈ [0, NL] respectively, has monopoly over its

specific variety. It is therefore free to choose its preferred price pKi or pLi. These firms

operate a simple linear technology, employing either only capital or only labor.

For capital-intensive intermediate goods producers, the production function is XKi =

Ki. Capital is rented at the gross rental rate r. The optimization problem is:

max
pKi

(pKiXKi − rKi) = max
pKi

(pKi − r)xK(pKi). (13)

The optimal solution implies pKi = r/ε ∀i ∈ [0, NK]. This implies symmetry across all

differentiated goods: they are sold at equal prices, thus their supply is also identical,
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XKi = X̄K∀i. Given this regularity, market clearing implies:

K =
∫ NK

0
Kidi =

∫ NK

0
XKidi = NKX̄K YK = N

1−ε
ε

K K. (14)

The demand curve implies that the price of intermediate goods is linked to the price of

the capital-intensive bundle as in pK = pKiN
ε−1

ε
K = (r/ε) N

ε−1
ε

K .

Symmetrically, in the labor-intensive sector, the production function is XLi = LYi.

Employees are remunerated at the market wage rate w. The total labor supply is given

by LY = ℓYL =
∫ NL

0 LYidi. Optimization yields pLi = w/ε. By symmetry, we also obtain:

LY =
∫ NL

0
XLidi = NLX̄L YL = N

1−ε
ε

L LY. (15)

The respective prices satisfy pL = pLiN
ε−1

ε
L = (w/ε) N

ε−1
ε

L .

Finally, aggregating across all the intermediate goods producers, we obtain that their

total profits are equal to ΠK NK = rK
(

1−ε
ε

)

and ΠLNL = wLY

(

1−ε
ε

)

for capital and

labor-intensive goods respectively. Streams of profits per person in the representative

household are thus πK = ΠK/L and πL = ΠL/L, respectively. Hence, the total remu-

neration channeled to the capital-intensive sector equals pKYK = (r/ε)K = rK + ΠK NK,

whereas the total remuneration channeled to the labor-intensive sector equals pLYL =

(w/ε) LY = rLY + ΠLNL.

Comparing these results to the optimization problem of the final goods firms leads

to,

r = επ
Y

K
= επ0

(

Y

K

)1−ξ (Y0

K0

)ξ ( NK

NK0

)ξ( 1−ε
ε )

, (16)

w = ε(1 − π)
Y

LY
= ε(1 − π0)

(

Y

LY

)1−ξ ( Y0

LY0

)ξ ( NL

NL0

)ξ( 1−ε
ε )

, (17)

pK

pL
=

π

1 − π

YL

YK
=

π

1 − π

LY

K

(

NL

NK

)
1−ε

ε

=
r

w

(

NL

NK

)
1−ε

ε

. (18)

In equilibrium, factor shares then amount to,

π = π0

(

KY0

K0Y

)ξ ( NK

NK0

)ξ( 1−ε
ε )

, (19)

1 − π = (1 − π0)

(

LYY0

LY0Y

)ξ ( NL

NL0

)ξ( 1−ε
ε )

. (20)
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Hence, the aggregate production function, obtained after incorporating all these choices

into (7), and using the definitions λb = N
1−ε

ε
K and λa = N

1−ε
ε

L , yields,

Y = Y0

(

π0

(

λbK

λb0K0

)ξ

+ (1 − π0)

(

λaLY

λa0LY0

)ξ
)

1
ξ

(1’)

which coincides with the aggregate production function (1).

3.3.5 Capital and Labor Augmenting R&D Firms

The role of capital and labor augmenting R&D firms is to produce innovations which

increase the variety of available differentiated intermediate goods (NK or NL), and thus

indirectly also λb and λa. Patents never expire, and patent protection is perfect. R&D

firms sell these patents to the representative household which sets up a monopoly for

each new variety. Patent price, pb or pa, which reflects the discounted stream of future

monopoly profits, is set at the competitive market. There is free entry to R&D.

R&D firms employ labor only: La = ℓaL and Lb = ℓbL workers are employed in the

labor- and capital augmenting R&D sectors, respectively. There is also an externality from

the total physical capital stock in the economy, working through the effective capital-

labor ratio in the R&D production function. Furthermore, the R&D firms perceive their

production technology as linear in labor, while in fact it is concave due to duplication

externalities.

Incorporating these assumptions and recalling that x = k(λb/λa), capital augmenting

R&D firms maximize:

max
ℓb

(

pbλ̇b − wℓb

)

= max
ℓb

((pbQK − w)ℓb) , (21)

where QK = B
(

λ1−ω
b xηbℓ

νb−1
b

)

is treated by firms as an exogenous constant in the steady

state (Romer, 1990; Jones, 2005a) – though it will be determined by the respective model

variables in equilibrium. Analogously, labor augmenting R&D firms maximize:

max
ℓa

(

paλ̇a − wℓa

)

= max
ℓa

((paQL − w)ℓa) , (22)

where QL = A
(

λaλ
φ
b xηaℓ

νa−1
a

)

is treated as exogenous.

Free entry into both R&D sectors implies w = pbQK = paQL. Purchase of a patent en-

titles the holders to a per-capita stream of profits equal to πK and πL, respectively. While

the production of any labor augmenting varieties lasts forever, there is a constant rate d at

which production of capital-intensive varieties becomes obsolete. This effect is external

to patent holders and thus is not strategically taken into account when accumulating the
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patent stock.19

3.3.6 Externality Term

There is also an (optional) externality term in the capital’s equation of motion. Motivated

by León-Ledesma and Satchi (2015), we allow for a non-negative cost of adopting new

labor-augmenting technologies: since workers (as opposed to machines) need to develop

skills compatible with each new technology, it is assumed that there is an external capital

cost of such technology shifts (training costs, learning-by-doing, etc.). Based on a detailed

micro-founded derivation available in our working paper version (Growiec et al., 2015)

we posit that new capital investments are diminished by ζzaL, where ζ ≥ 0 and za =

gλa
π
π0

, and thus za
k = gλb

x
π
π0

.

3.3.7 Equilibrium

We define the decentralized equilibrium as the collection of time paths of all the respective

quantities: c, ℓa, ℓb, k, λb, λa, YK, YL, {XKi}, {XLi} and prices r, w, pK, pL, {pKi}, {pLi}, pa, pb

such that: (1) households maximize discounted utility subject to their budget constraint;

(2) profit maximization is followed by final-goods producers, aggregators and producers

of capital and labor-intensive intermediate goods, and capital and labor augmenting

R&D firms; (3) the labor market clears: La + Lb + LY = (ℓa + ℓb + ℓY)L = L; (4) the asset

market clears: V = vL = K + paλa + pbλb, where assets have equal returns: r − δ =
πL
pa

+ ṗa

pa
= πK

pb
+ ṗb

pb
− d; and, finally (5), such that the aggregate capital stock satisfies

K̇ = Y − C − δK − ζzaL, ⇔ k̇ = y − c − (δ + n)k − ζza. (23)

3.4 Solving for the Decentralized Allocation

When solving for the decentralized allocation, we first solve analytically for the BGP of

our endogenous growth model and then linearize the implied dynamical system around

the BGP.

3.4.1 Balanced Growth Path

Since Uzawa (1961) we have known that any neoclassical growth model can exhibit bal-

anced growth only if technical change has a purely labor-augmenting representation or if

production is Cobb-Douglas.20 This conclusion holds for our model too. Hence, once we

19In other words, by solving a static optimization problem, capital augmenting R&D firms do not take
the dynamic (external) obsolescence effect into account.

20Irmen (2016) generalizes Uzawa’s result to growth models allowing aggregate intermediate expenses
to follow a different technology than output.
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presume a CES production function, the analysis of dynamic consequences of technical

change, which is not purely labor augmenting, must be done outside the BGP.

Along the BGP, we obtain the following growth rate of key model variables:

g = λ̂a = k̂ = ĉ = ŷ = A(λ∗
b)

φ (x∗)ηa (ℓ∗a)
νa , (24)

where stars denote steady-state values and, as before, q̂ = q̇/q etc.

Hence, ultimately long-run growth is driven by labor augmenting R&D. This can

essentially be explained by the fact that labor is the only non-accumulable factor in the

model, it is complementary to capital along the aggregate production function, and the

labor augmenting R&D equation is linear with respect to λa. The following variables are

constant along the BGP: y/k, c/k, YK/Y, YL/Y, ℓa, ℓb and λb. Stability of the last variable

at the BGP signifies that, unsurprisingly, there is no capital augmenting technical change

along the BGP.

3.4.2 Euler Equations

Calculations imply that the decentralized equilibrium is associated with the following

Euler equations describing the first-order conditions:

ĉ =
επ

y
k − δ − ρ

γ
, (25)

ϕ1ℓ̂a + ϕ2ℓ̂b = Q1, (26)

ϕ3ℓ̂a + ϕ4ℓ̂b = Q2, (27)

where

ϕ1 = νa − 1 − (1 − ξ)π
ℓa

ℓY
; ϕ4 = νb − 1 − (1 − ξ)π

ℓb

ℓY

ϕ2 = −(1 − ξ)π
ℓb

ℓY
; ϕ3 = −(1 − ξ)π

ℓa

ℓY

Q1 = −επ
y

k
+ δ + λ̂a

ℓY

ℓa
− φλ̂b + ((1 − ξ)π − ηa)x̂

Q2 = −επ
y

k
+ δ + λ̂a + (λ̂b + d)

(

π

1 − π

ℓY

ℓb

)

− λ̂b(1 − ω)− d + ((1 − ξ)π − ηb)x̂

A sufficient condition for all transversality conditions to be satisfied is that (1−γ)g+ n <

ρ.
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3.4.3 Steady State of Transformed System

To analyze the properties of the dynamic system around the BGP, the Euler equations and

dynamics of state variables have been rewritten in terms of stationary variables which

are constant along the BGP, i.e., in coordinates: u = (c/k), ℓa, ℓb, x, λb, with auxiliary

variables z = (y/k), π, g. The steady state of the transformed system satisfies:

g = λ̂a = k̂ = ĉ = ŷ = A(λ∗
b)

φ (x∗)ηa (ℓ∗a)
νa (28)

γg + ρ = r − δ (29)

g = z − ζ
za

k
− u − (δ + n) (30)

d = B
(

λ−ω
b xηbℓ

νb
b

)

(31)

g
ℓY

ℓa
= r − δ (32)

g = r − δ + d

(

1 −
π

1 − π

ℓY

ℓb

)

(33)

r = επz (34)

π

π0
=

(

λb

λb0

)ξ ( z

z0

)−ξ

(35)

z

z0
=

λb

λb0

(

π0 + (1 − π0)

(

x0

x

ℓY

ℓY0

)ξ
)1/ξ

. (36)

All further analysis of the decentralized allocation will be based on the numerical

linearization of the 5-dimensional dynamical system of equations (3), (23) and (25)–(27),

in coordinates u = (c/k), ℓa, ℓb, x, λb, taking (2) as given, around the unique steady state

of the de-trended system (and thus, around the unique BGP of the model in original

variables).

4 Model Calibration

The calibration (see Table 3) follows five steps. First, several “deep” parameters are pre-

determined by taking values stemming from the literature: the (inverse) intertemporal

elasticity of substitution, the rate of time preference, and depreciation. These first two

parameters turn out to be key to generating limit cycles, for a given technology process.
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Table 3: Baseline Calibration: Pre-Determined Parameters

Parameter Value Source/Target

Preferences

Inverse Intertemporal Elasticity of Substitution γ 1.7500 Barro and Sala-i-Martin (2003)

Time Preference ρ 0.0200 Barro and Sala-i-Martin (2003)

Income and Production

GDP Per-Capita Growth g 0.0171 geometric average

Population Growth rate n 0.0153 geometric average

Labor in Aggregate Production ℓY0, ℓ∗Y 0.5934
0.5
(

γ+
ρ
g

)

1+0.5
(

γ+
ρ
g

)

Capital Productivity z0, z∗ 0.3450 geometric average

Consumption-to-Capital u∗ 0.2199 geometric average

Capital Income Share π0, π∗ 0.3260 arithmetic average

Depreciation δ 0.0600 Caselli (2005)

Factor Substitution Parameter ξ −0.4286 ⇒ σ = 0.7, Klump et al. (2007)

Net Real Rate of Return r∗ − δ 0.0499 r∗ − δ = γg + ρ

Substitutability Between Intermediate Goods ε 0.9793 ε = r∗

π∗z∗

R&D Sectors

R&D Duplication Parameters νa = νb 0.7500 see text

Technology-Augmenting Terms λa0, λb0 1.0000 see text

Technology-Augmenting Terms λ∗
b 1.0000 λ∗

b = λb0
z∗

z0

(

π∗

π0

)
1
ξ

Labor Input in R&D sectors ℓa
Y, ℓb

Y 0.2033 ℓ∗a = ℓ∗b for ℓ∗a + ℓ∗b = 1 − ℓ∗Y

Effective Capital-Labor ratio† x0, x∗ 61.7900 x∗ = x0
ℓ∗Y
ℓY0

(

1
1−π0

(

z∗

z0

λb0
λ∗

b

)ξ
− π0

1−π0

)−1/ξ

Notes: † x0 = λb0k0
λa0

= 61.79.
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Second, we assign CES normalization parameters to match US in-sample long-run

averages. This implies an average labor share of 1 − π0 = 0.66. Following many empir-

ical studies (Klump et al., 2007; Chirinko, 2008; Oberfield and Raval, 2015) we calibrate

factors to be gross complements.21 However, since some other studies (e.g., Piketty, 2014;

Karabarbounis and Neiman, 2014) rely on gross substitutes, we consider this in our ro-

bustness exercises. Third, we assume that a range of long-run averages from US data

correspond to the model’s BGP. Doing so allows us to calibrate the rates of economic and

population growth, capital productivity, and the consumption-to-capital ratio.

Next, with this in hand, four identities included in the system (28)–(36) yield the

calibration of other parameters in a model-consistent manner: ℓ∗Y, r∗, λ∗
b , x∗ and ε. Final

production employment is also set in a model-consistent manner. We agnostically assume

the share 1− ℓ∗Y is split equally between employment in both R&D sectors. For the model-

consistent value of ℓ∗Y, this formula leads to values close to those typically considered

under the non-routine cognitive occupational group (e.g., using BLS data, Jaimovich and

Siu (2012) show this ratio to be between 29% and 38% (over 1982-2012); see also Autor

et al. (2003)).22

Regarding the duplication externalities in factor augmenting R&D, as earlier stated,

the literature typically considers a unique R&D duplication externality. Following Jones

and Williams (2000)’s single aggregate value, we set νa = νb = 0.75.23 The technology

augmenting term λ∗
b is set in a model-consistent manner.

The final step is to assign values to the remaining parameters, in particular the techno-

logical parameters of R&D equations. We do this by solving the four remaining equations

in the system (28)–(36) with respect to the remaining parameters, see Table 4. All these

parameters are within admissible ranges. For instance, Pessoa (2005) estimates values

for the obsolescence parameter between 0-15%; our endogenously determined value is

thus centered in that range. Comparing ηa = 0.24 with ηb = 0.13 signifies that, first of

all, lab equipment (effective capital augmentation of the R&D process) assuredly matters

21Both quoted studies rely on consistently measured data exploiting time-series variation. Still, León-
Ledesma et al. (2010) found that even studies based on long samples reported estimates of the US sub-
stitution elasticity below one. Arrow et al. (1961) found an aggregate elasticity over 1909-1949 of 0.57.
Oberfield and Raval (2015) report their average estimate of the aggregate elasticity at 0.7 based on a large
firm-level data set from US manufacturing, with substantial cross-sectional variation. On the other hand,
literature based predominantly on cross-country variation (e.g., Piketty and Zucman, 2014; Karabarbounis
and Neiman, 2014), tends to imply gross substitutability.

22Counting the number of scientists, researchers, teachers and even patents and expenditures has long
been recognised as a crude proxy for research activity. (See the “Oslo Manual” (OECD/Eurostat, 2005) for
a discussion of the various R&D types, and measurement issues.) Thus, we might also choose to interpret
the ℓ∗a and ℓ∗b values as a correction for the managerial and entrepreneurial input to production as well
as learning-by-doing on the side of employees; when new technologies are implemented in production,
they require significant effort and/or reorganization of the workplace, which might be considered to show
up as R&D in our simplified model. Similarly, it may capture non-routine and analytical tasks in the
employment spectrum which do not necessarily show up in formal research-intensive job definitions

23This can also be justified as an average of the original constant-returns-to-scale parametrization of
ν = 1 (Romer, 1990) and the evidence of ν ≈ 0.5 provided by Pessoa (2005).

21



for R&D productivity, and second, that it is relatively more important for inventing new

labor-augmenting technologies than capital-augmenting ones. Moreover, with φ = 0.3,

labor-augmenting R&D – the ultimate engine of long-run growth – is substantially rein-

forced by spillovers coming from the capital-augmenting R&D sector. On the other hand,

ω = 0.5 means that the scope for capital-augmenting R&D is quite strongly limited by

decreasing returns. Given this benchmark calibration, the steady state is a saddle point.

Table 4: Baseline Calibration: Additional Parameters

Parameter Value

Labor augmenting R&D
Unit productivity A 0.02
Capital-Labor in R&D exponent ηa 0.24

Capital augmenting R&D
Unit productivity B 0.16
Capital-Labor in R&D exponent ηb 0.13
Degree of decreasing returns ω 0.50
Obsolescence rate d 0.08
Spillover from capital to labor augmenting tech. change φ 0.30

Technology choice externality ζ 115.28

5 Oscillatory Model Dynamics

Given our baseline calibration, the decentralized allocation of the model exhibits endoge-

nous, dampened oscillations of the labor share and other de-trended model variables, see

Table 5. These are long swings, similar to the one observed throughout the 20th century

in the US (recall Figure 2) and elsewhere (Appendix C.2) rather than business-cycle fluc-

tuations.24

Moreover, we also obtain quantitative predictions on cyclical co-movements.25 It turns

out that all variables except for the consumption-capital ratio u = c/k oscillate when con-

verging to the steady state, with the same frequency of oscillations. The level of capital

augmenting technology λb, the effective capital-labor ratio x, and labor augmenting R&D

24Bear in mind that, by design, our method of analysis does not allow us to test whether the model
succeeds in matching the absolute amplitude of cycles. This is because the analysis is carried out based
on a system that has been linearized around the BGP. Then the local amplitude of oscillations is just a
matter of initial conditions: if the system is started far away from the BGP then the amplitude must be
large, and conversely, it will be small if the system is started close to the BGP. We do not have sufficient
empirical information on the appropriate initial conditions, and moreover, the distance from BGP must be
kept manageably small in the analysis for the linearized system to be a sufficiently good approximation of
the full nonlinear model.

25This is done by inspecting the eigenvector associated with the largest stable root of the Jacobian of the
system at the steady state.
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Table 5: Dynamics around the BGP under the Baseline Calibration

Dynamic Metric

Pace of Convergence∗ (% per year) 6.3%
Length of Full Cycle† (years), Lc 52.6
Labor Share Cyclicality +
Note: Pace of convergence reflects by how many % of the current
distance does the system’s distance to the BGP decrease per annum.
∗ computed as 1 − err where rr < 0 is the real part of the largest sta-
ble root; † computed as Lc = 2π/ir where ir > 0 is the imaginary
part of two conjugate stable roots (if they exist). A ‘+’ indicates pro-
cyclicality.

employment ℓa are always pro-cyclical, whereas capital augmenting R&D ℓb is counter-

cyclical. Furthermore, as long as capital and labor are gross complements (ξ < 0), the la-

bor income share is also pro-cyclical.26 These features of cyclical co-movement align well

with the empirical evidence for the US medium-term cycle. In particular, the US labor

share is indeed pro-cyclical over the medium-to-long run (despite its counter-cyclicality

along the business cycle).

5.1 Emergence of Limit Cycles

Could one plausibly expect limit cycle behavior of the labor share (and as a consequence,

the growth rate and other endogenous variables) in this model? At the baseline calibra-

tion, the answer is no because (as just noted) the model exhibits dampened cycles, i.e.,

oscillatory convergence to the BGP. On the other hand, we know that limit cycles can

be generated by Hopf’s bifurcation theorem (Feichtinger, 1992; Kuznetsov, 2004). This

states that if, when exploring the support of one of the model parameters, real parts of

two stable conjugate roots of the system transversally cross zero, then the steady state

loses its local stability.

The ensuing bifurcation can be either supercritical or subcritical. In the supercritical

case, the steady state is first a global attractor, and when it becomes locally unstable, a

stable limit cycle is created around it. In the subcritical case, the stable steady state is

only a local attractor surrounded by an unstable limit cycle, and when it loses stability, it

becomes globally repelling. Whether the Hopf bifurcation is supercritical or subcritical,

depends on the sign of the first Lyapunov coefficient at the bifurcation point.27 The

question then is, does any of these situations appear in our case, and if so, do they occur

around an empirically plausible parameter set?

To answer this, we carried out the following “multi-calibration” exercise (or BGP pre-

26In our real deterministic model, that correlation is 1 (compared to 0.6 in the data, recall table 2).
Introducing additional, for example nominal, frictions would be one reconciliation device.

27More precisely, in the multi-dimensional case with which we are dealing here, at the point of a Hopf
bifurcation the steady state ceases to be a stable focus along the stable manifold, and becomes a repelling
focus instead. The considered limit cycles around the steady state are also located in the same manifold.
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serving sensitivity analysis). We computed the eigenvalues of the system around the

steady state for different values of a particular parameter, making sure that whatever

assumption on its value is made, other pre-determined parameters are held at their base-

line values whereas other “free” parameters are re-calibrated in a way that the model

always remains in accordance with (data-consistent) BGP characteristics. In this way, we

identified model parameterizations leading to various types of local dynamics around

the same BGP. Having identified the point of Hopf bifurcation, i.e., the parametrization

under which the eigenvalues of the system around the steady state transversally cross

zero, we computed the first Lyapunov coefficient of the system at this point.28

Parameters not pinned down by the data are the key ones we investigate as regards

the model’s quantitative and cyclical behavior. These are essentially γ, ρ, δ, ξ, ℓ∗a
ℓ∗a+ℓ∗b

and

νa, νb (respectively: inverse intertemporal substitution elasticity, discount factor, depreci-

ation rate, aggregate production elasticity parameter, share of labor augmenting R&D at

the BGP, two duplication parameters).29

Figure 3 illustrates the results of this quantitative exercise with respect to ρ (time

preference), γ (inverse elasticity of intertemporal substitution) and ℓ∗a
ℓ∗a+ℓ∗b

(the share of

labor augmenting R&D at the BGP). Different calibrations of the relevant parameter are

marked on the horizontal axis, whereas the resulting real and imaginary parts of the

eigenvalues of the dynamical system (linearized around the BGP) are plotted along the

vertical. Positive (negative) real parts imply divergence (convergence). The presence of

non-zero imaginary parts indicates oscillatory dynamics. Specifically, we find that:

(i) when the discount factor falls below its bifurcation value of ρbif = 0.0061, a subcrit-

ical Hopf bifurcation is obtained, with the first Lyapunov coefficient

l1(u
∗, ℓ∗a , ℓ∗b , x∗, λ∗

b) = 1.1 × 10−6 > 0,

(ii) when the inverse intertemporal elasticity of substitution falls below its bifurcation

value of γbif = 0.942, a supercritical Hopf bifurcation is obtained, with

l1(u
∗, ℓ∗a , ℓ∗b , x∗, λ∗

b) = −8.1 × 10−7 < 0,

(iii) when the steady-state ratio of labor augmenting R&D to total R&D employment

falls below
(

ℓ∗a
ℓ∗a+ℓ∗b

)bif
= 0.425, a subcritical Hopf bifurcation is obtained, with

l1(u
∗, ℓ∗a , ℓ∗b , x∗, λ∗

b) = 5.0 × 10−7 > 0.

It follows that stable limit cycles can appear in this model when individuals, ceteris

paribus, are sufficiently willing to intertemporally substitute consumption (low γ). In

28Apart from the eigenvalues and eigenvectors, computing the first Lyapunov coefficient also requires
a numerical approximation of second and third order partial derivatives of the system at the steady state
(Kuznetsov, 2004). Matlab codes for the “multi-calibration” exercise as well as computing the first Lya-
punov coefficient are available from the authors upon request.

29Although results for parameters (δ, ηa, νb, νa) are relegated to Appendix E as they do not in themselves
produce qualitative changes in model dynamics, see figure E.5.
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Figure 3: Emergence of Limit Cycles via Hopf Bifurcations
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Note: Vertical lines indicate the baseline calibration.

such a case, their consumption smoothing motive is too weak to compensate for the

fluctuations in the labor share as well as the degree of capital augmentation λb, caused

by the simultaneous arrivals of capital augmenting developments (subject to gradual

depreciation) and changes in the pace of (continued) labor augmenting technical change.

Although both these changes are productivity-enhancing, they are destabilizing due to

their opposing impacts on the labor share. Long swings in economic activity are then

perpetuated.

Moreover, note that all three bifurcation values are in the ballpark of empirically

plausible ones. To generate a stable limit cycle in factor shares (as well as other model

variables), it suffices that the household is just slightly more willing to intertemporally

substitute consumption than under log preferences.

And although the bifurcation value of the time preference rate is rather low in the

baseline case, it should be noted that with γ = 1 (log preferences), the bifurcation value

with respect to ρ appears already around 0.019, which is very close to its baseline value.

5.2 Node–focus Bifurcations

In addition to Hopf bifurcations, another interesting type of sudden changes in model

dynamics can be observed: a “node-focus” bifurcation. If, manipulating one of the model
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parameters, two stable real eigenvalues collide and become complex conjugates, then the

pattern of steady-state convergence changes from monotonic to oscillatory (see Figure

E.6 in the appendix). These arise for manipulations in parameters ξ (related to the sub-

stitution elasticity) and ηb (the capital-labor exponent capital augmenting R&D).

When ξ becomes sufficiently large (and already above zero implying gross factor

substitutability), then the imaginary parts of two conjugate stable roots hit zero, so that

oscillatory dynamics are eliminated. Under gross complementarity, the magnitude of

input complementarity generally increases the frequency of observed oscillations.30

Oscillatory dynamics also prevail only if ηb is sufficiently low, and the lower it is, the

higher the oscillation frequency. A fully analogous result is also found when manipulat-

ing ℓ∗a
ℓ∗a+ℓ∗b

(the share of labor augmenting R&D in total R&D at the BGP). When this share

is sufficiently high (above 90%), dampened oscillations disappear in favor of monotonic

convergence.

5.3 On the Value of the Elasticity of Substitution

Whether the substitution elasticity exceeds unity or not is important for the prevalence

of oscillatory convergence to the BGP and emergence of Hopf bifurcations. Departing

from our benchmark, we now repeat our analysis assuming σ = 1.25 following Karabar-

bounis and Neiman (2014), see Table 6. We still obtain the oscillatory convergence result,

although the pace of convergence is now somewhat shorter than before, but the cycle

length is a highly counterfactual 144 years. In addition, in contrast to our earlier empiri-

cal and model-based analysis (sections 2 and 5), the labor share is now counter-cyclical.

Hence, the case for our original assumption of gross complements seems to be strength-

ened.

Table 6: Dynamics around the BGP under the Baseline Calibration for ξ = 0.2 (σ = 1.25)

Dynamic Metric

Pace of Convergence (% per year) 5.2%
Length of Full Cycle (years), Lc 144.0
Labor Share Cyclicality –
A ‘-’ indicates counter-cyclicality.

Finally, results are now more in favor of an emergence of limit cycles. Bifurcation

values are now closer to our baseline calibration, and the bifurcation is now supercritical

in both cases (not just in the case of γ).

30Finally, as far as manipulations in ξ are concerned, we also observe a further phenomenon. Namely,
in the range of gross substitutability there exists a critical value of ξ when a real root switches its sign. At
this point a generalized saddle-node bifurcation appears, due to which the steady state loses its stability (but
without creating any limit cycles).
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(i) Bifurcation with respect to the discount rate: ρbif = 0.00766, l1 = −2.45 × 10−7 < 0

⇒ supercritical bifurcation ⇒ emergence of limit cycle.

(ii) Bifurcation with respect to the intertemporal elasticity of substitution in consump-

tion: γbif = 1.04092, l1 = −7.31 × 10−7 < 0 ⇒ supercritical bifurcation ⇒ emer-

gence of limit cycle.

5.4 Labor Share Cycles and Duplication Externalities

We now isolate the effect of variations in the magnitude of duplication externalities on

model dynamics. We scrutinize the impact of these particular parameters, and not others,

for three reasons. First, based on the literature we infer substantial uncertainty in their

value. Second, our detailed analysis, delegated to the appendix, revealed that the model

dynamics depend critically on the value of the latter of these two parameters, νb, but

less so on other uncertain parameters, such as e.g., ηa, ηb (Figure E.3). Finally, given our

interest in the labor income share, it makes sense to concentrate on parameters whereby

endogenous R&D growth is directly affected by labor flows.

Table 7 looks at the consequences of varying the ν’s (symmetrically and asymmetri-

cally) in terms of the implied pace of convergence to the BGP and cycle length. These

variations around the baseline typically lead to dampened cycles, and occasionally to

monotonic convergence. The final column takes all parameters as given, including the

particular ν pairings, and varies γ and ρ separately until a Hopf bifurcation (if it exists)

is identified.

5.4.1 Symmetric Duplication

Our results suggest cycle length, Lc, is increasing with the magnitude of duplication

externalities (i.e., it is decreasing with νa = νb):

∂Lc

∂νa

∣

∣

∣

∣

νa=νb

< 0.

Our baseline case (νa = νb = 0.75, indicated by the red rectangle in the table) implies a

cycle length of 52 years. At the extremes, however, this can change to, e.g., over 98 years

or around 30 years (recalling section 2.2, this is the dominant frequency of medium-term

oscillations present in the US data).

The intuition behind this result is the following. As duplication externalities fall (the

ν values rise), the return from labor flows into each of the R&D sectors becomes higher

and the gestation period for new ideas to “come on-stream” is accordingly reduced; thus

cycle length shortens.

At νa = νb = 0.75 Hopf bifurcations arise if the households’ consumption smoothing

motive is less strong than in the baseline (γ = 0.94 vs. 1.75) or if the society becomes
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Table 7: Dynamic Model Properties: Duplication Externalities

Base Calibration νb/νa Pace of Convergence Cycle Length Conditional on νa, ν†
b

with ... (% Per Annum) (Years) γbif ρbif

Symmetric Duplication

νa = νb = 0.1 1 4.84% Monotonic 0.9237 0.0059

νa = νb = 0.5 1 5.58% 97.62 0.9534 0.0064

νa = νb = 0.75 1 6.30% 52.65 0.9430 0.0062

νa = νb = 0.9 1 9.44% 29.45 No Hopf No Hopf

Asymmetric Duplication

νa = 0.9, νb = 0.1 0.1 4.32% Monotonic No Hopf No Hopf

νa = 0.9, νb = 0.5 0.6 9.93% 67.35 No Hopf No Hopf

νa = 0.9, νb = 0.9 1 9.44% 29.45 No Hopf No Hopf

νa = 0.5, νb = 0.9 1.8 4.53% 54.55 1.0794 0.0086

νa = 0.1, νb = 0.9 9.0 4.05% 72.31 1.0864 0.0090

Note: The labor share and the per-capita growth rate at the BGP in the decentralized allocation are exactly matched to
the long-run US averages (0.6739, 0.0171 respectively) for each parametrization, and thus are not shown. † Following a
BGP-preserving sensitivity analysis. “Monotonic” indicates monotonic convergence to the steady state; otherwise there
are dampened oscillations along the convergence path towards the steady state. “No Hopf” indicates that for given
νa, νb, Hopf bifurcations cannot be obtained for any γ or ρ.

more patient (ρ = 0.006 vs. 0.02). Again, this makes sense. If the representative house-

hold gives a high weight to future generations (low ρ), it is willing to invest substantial

resources in physical capital and both R&D types. R&D, however, incurs the cost of

obsolescence of capital augmenting technologies. Furthermore, under CES technology,

this shift in labor allocation affects the labor share, and also propagates via the mutual

R&D spillovers and the effective capital-labor terms. If, ultimately, the consumption-

smoothing motive is weak enough (low γ), these destabilizing effects are not countered

by lowering R&D employment or savings, which leads to endogenous cycles.

5.4.2 Asymmetric Duplication

As before, with weak duplication externalities in labor augmenting R&D (large νa), there

is no limit cycle for any corresponding capital augmenting value. Again this is intuitive.

The balanced growth path is driven by labor augmenting technologies alone. The more

smoothly labor augmenting ideas are being produced, the closer at any point is the

economy to its balanced growth path, and thus less amenable to limit cycles.

A corollary of this can be seen when νb/νa > 1 (representing the case of “labor-biased

duplication”, when duplication externalities are stronger in labor augmenting R&D).
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Here the economy is far away from balanced technical growth in the sense that the cap-

ital augmenting R&D sector is less constrained by duplication than its labor equivalent.

The possibility for waves of innovation and thus excessively fast replacement and ob-

solescence of existing ideas is then more likely to produce exaggerated cycles. In such

cases, the consumption smoothing preferences consistent with a limit cycle are still below

the baseline value but now closer to and marginally above log preferences.

Note finally that although our study does not intend to match the frequency of

medium-to-long swings exactly, we still view the R&D-based endogenous growth model

with CES production as a viable explanation for the hump-shaped trend of the labor

share observed in the US throughout the twentieth century. In fact, if one argued that in

our 83-year time series of the US labor share, we observe only a half of a full swing, then

the model could match that exactly if the imaginary parts of stable roots were around

0.04 which could be obtained e.g., for somewhat lower duplication parameters νa and νb,

a higher capital-labor R&D exponent ηb or lower ηa, etc.

6 Conclusions

The contribution of the article has been (i) to document that the labor share exhibits

medium-to-long run, pro-cyclical swings suggestive of a long cycle, and; (ii) assess the

extent to which a endogenous growth model can account for those regularities.

The model implies oscillatory behavior of factor shares along the convergence path

to the BGP. This is due to the interplay between arrivals of capital augmenting devel-

opments (subject to gradual depreciation) and changes in the pace of (continued) labor

augmenting technical change. The model delivers plausible implications regarding the

co-movement of other variables along the labor share swings. Under certain parametriza-

tions, the model gives rise to Hopf bifurcations, leading to self-sustaining limit cycles of

reasonable length. These parameterizations are within an empirically-plausible neigh-

borhood, such as to suggest that the framework considered naturally gives rise to en-

dogenous factor cycles, rather than in identifying special cases.

The formalization of endogenous cycles in factor shares is an important insight since

mainstream economists have either emphasized the historical stability of factor shares,

or else focused on particular episodes of drifting shares. However, long data sets which

are now becoming available uncover that, before their recent decline, shares have often

in fact been trending upward for decades (as we might expect of a bounded series).

Our model features endogenous mechanisms able to account for both tendencies. For

competing theories, it is a challenge to do so.

Our framework also points to additional lines of inquiry. First, typically in endoge-

nous growth models a research subsidy is recommended to align the decentralized allo-

cation with the socially optimal one.31 In our framework it may be worth investigating

31Although note that in variety expansion models the decentralized steady-state growth rate may well
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whether such a subsidy would (or should) also have cyclical characteristics, or whether

such a subsidy could be feasibly created. If that subsidy were skewed more towards

one factor augmenting technology than another, what would be the distributional and

cyclical consequences?

Second, discussion of labor share declines have often gone hand-in-hand with those

on ‘globalization’ which is often interpreted as a widening of the pool of available labor.

But it could also relate to the extent to which ideas can be protected and accessed, i.e.,

to duplication externalities. Such externalities played a prominent role in our analysis.

Thus our model can provide a platform to discuss those broader issues as rooted in

technological developments.

Finally, we have refrained from any welfare-based statements. The model laid out

here is insufficient for such analysis. But one could envisage analysis aimed at defining

whether the cycles (be they convergent or sustained) are or are not welfare enhancing,

and thus whether public intervention is warranted. Interestingly Atkinson (2015) lists a

number of proposals for reducing inequality trends, the first of which is that “The direc-

tion of technical change should be an explicit concern of policy-makers”. Political agents,

moreover, may take a view on the desirability of economic volatility and the length of

and distributional consequences of economic cycles. We leave these for subsequent dis-

cussion.
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A Data Construction

A.1 Labor Share

The broadly used approach in measuring the labor share is simply dividing Compen-

sation of Employees (CE) by GDP. But that does not take incomes of the self-employed

into consideration. Unfortunately, labor income of the self-employed is published jointly

with the capital income. Since Gollin (2002) a number of adjustments have been pro-

posed. We incorporate one of the most detailed ways in the measuring the labor share,

suggested by Gomme and Rupert (2007), which takes into consideration the unknown

(self-employed) income. The starting point is the assumption that the proportion of the

unknown labor (capital) income to the total unknown income is the same as the ra-

tio of known labor (capital) to the total known income. The unknown income (AI) is

the sum of Proprietors’ Income (PI), Business Current Transfer Payments (BCTP), Sta-

tistical Discrepancy (SDis) and Taxes on Production (Tax) reduced by Subsidies (Sub)

(AI = PI + Tax − Sub + BCTP + SDis). On the other hand, known capital income (UCI)

consists of Rental Income (RI), Current Surplus of Government Enterprises (GE), Net

Interests (NI) and Corporate Profits (CP). Including UCI to Compensation of Employees

(CE) and consumption of fixed capital (DEP) we derive total unambiguous income (UI)

and can calculate the portion of UCI to UI: κ =
UCI + DEP

UI
. Having κ, it is easy to

obtain ambiguous capital income (ACI) which equals AC · κ. Finally, we derive labor

share income as one minus capital income share:

LS = 1 −
UCI + DEP + ACI

GDP
= 1 − κ.

GDP and Consumption of fixed capital (DEP) are taken from NIPA [Table 1.7.5] and

the remaining series are taken from NIPA [Table 1.12].

A.2 Macroeconomic Variables

GDP - Gross Domestic Product in billions of chained (2005) dollars, BEA NIPA Table 1.6.

Capital stock to product (Kt/Yt) - ratio of non-residential private fixed assets stock in current

billions of dollars to GDP also in current billions of dollars, series taken from BEA NIPA Table

1.5 and BEA Fixed Assets Table 4.1, respectively.

Consumption (Ct) - consumption of non-durable goods and services in current billions of dollars

deflated by the implicit GDP deflator, series taken from BEA NIPA Table 1.5 and 1.6.

Investment (It) - sum of non-residential private fixed investment and consumption of durable

goods in current billions of dollars deflated by the implicit GDP deflator, series taken from BEA

NIPA Table 1.5 and 1.6.

Consumption to product ratio (Ct/Yt) - ratio of consumption of non-durable goods and services

in current billions of dollars to GDP also in current billions of dollars, series taken from BEA
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NIPA Table 1.5.

Investment to product ratio (It/Yt) - ratio of consumption of durable goods and non-residential

private fixed investment in current billions of dollars to GDP also in current billions of dollars,

series taken from BEA NIPA Table 1.5.

The share of the R&D expenditures in Gross Domestic Product (RDt/GDPt ) is ratio of total

spending on research and development sector divided by GDP, both series in current millions of

dollars, taken from National Science Foundation and BEA NIPA Table 1.5, respectively.

The share of the non-federal R&D expenditures in Gross Domestic Product (RDNF
t /GDPt ) is

ratio of non-federal spending on research and development sector divided by GDP, both series

in current millions of dollars, taken from National Science Foundation and BEA NIPA Table 1.5,

respectively.

R&D expenditures (RDt) – Research and development expenditures in constant millions of dol-

lars, series taken from National Science Foundation.

Non-federal R&D expenditures (RDNF
t ) – Non-federal research and development expenditures

in constant millions of dollars, series taken from National Science Foundation.

Skill premium (wS
t /wU

t ) - composition adjusted college/high school log weekly wage ratio, series

taken from Acemoglu and Autor (2011).

Labor productivity (LaborProdt) - Real output per hour in non-farm business sector, index (2009=100),

BLS Series No. OPHNFB.

Employment Lt - Employment in non-farm business sector, index (2009=100), BLS Series No.

PRS85006013.

Aggregate hours Lt × ht - Aggregate hours in non-farm business sector, index (2009=100), BLS

Series No. HOANBS

Consumption to capital stock Ct/Kt - ratio of consumption of non-durable goods and services

in current billions of dollars to non-residential private fixed assets stock also in current billions of

dollars, series taken from BEA NIPA Table 1.5 and BEA Fixed Assets Table 4.1, respectively.

B Some Simple Time Series Properties for the US Labor

Share

B.1 Descriptive Statistics

Table B.1: Labor Share: Summary Statistics

Annual Quarterly

Mean 0.655 0.649
Max 0.706 0.691
Min 0.607 0.600
Std. Dev. 0.021 0.020
Obs. 87 276

(1929-2015) (1947:1-2015:4)
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B.2 Persistence and Cyclicality

To scrutinize the persistence of the labor share, we assume that it follows an auto-

regressive process:

yt = µ + ρyyt−1 + errort,

where the drift term µ captures the long-run mean, µ/(1 − ρy), ρy 6= 1. Our interest

focuses on the value of ρy (the persistence parameter). Table B.2 demonstrates that the

labor share is a highly persistent, slowly adjusting series (with ρy around 0.8-0.9 and over

0.9 for annual and quarterly series, respectively). As can be seen, these high persistence

values are robust to the inclusion of a linear or quadratic trend.32

Finally Table B.3 shows the counter-cyclicality of the raw labor share data using re-

gression on a recession dummy, NBER.

Table B.2: AR(1) Model Estimates for the Labor Share

Annual Quarterly
(1) (2) (3) (1) (2) (3)

(1) (2) (3) (1) (2) (3)

ρ̂y 0.924∗∗∗ 0.799∗∗∗ 0.761∗∗∗ 0.977∗∗∗ 0.940∗∗∗ 0.927∗∗∗

ρy = 1 [0.072] [0.000] [0.000] [0.056] [0.004] [0.001]

Note: Superscripts ∗∗∗, ∗∗ and ∗ denote the rejection of null about param-
eter’s insignificance at 1%, 5% and 10% significance level, respectively.
Probability values in squared brackets.
Specifications:
(1): yt = µ + ρyyt−1 + errort

(2): yt = µ + ρyyt−1 + β1t + errort

(3): yt = µ + ρyyt−1 + β1t + β2t2 + errort

32Although, naturally, these alternative forms relax the assumption about the uniqueness of the labor
share’s equilibrium level.
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Table B.3: Counter-Cyclicality of Labor Share Series

(1) (2) (3) (4)

Annual

D̂ 0.00997∗∗ 0.00380∗∗ 0.00292∗ 0.00299∗

Quarterly

D̂ 0.00299∗ 0.00092 0.00107∗ 0.00120∗

Notes: NBER = 1 if the economy is in a recession as
identified by the NBER chronology and 0 otherwise.
Specifications:
(1): yt = µ +D × NBERt + errort

(2): yt = µ +D × NBERt + ρyyt−1 + errort

(3): yt = µ +D × NBERt + ρyyt−1 + β1t + errort

(4): yt = µ +D × NBERt + ρyyt−1 + β1t + β2t2 + errort.

B.3 Stationarity

The next step consists in verifying stationarity of the labor share series. The regres-

sions shown in Table B.4 are performed in levels with an intercept. The results for

the intercept-plus-trend case are available on request, although given our subject matter,

the former case is more definitionally consistent. The tests are denoted as ADF = Aug-

mented Dickey Fuller; ERS DF-GLS = Elliott-Rothenberg-Stock (1996), Dickey-Fuller GLS;

PP = Philips-Perron; KPSS = Kwiatkowski-Phillips-Schmidt-Shin (1992); ERS = Elliott-

Rothenberg-Stock (1996) point-optimal unit root; multiple Ng-Perron (2001) tests. De-

scriptions of these tests can be readily found in econometrics textbooks. The null in each

case is that the series has a unit root (except for the KPSS test which has stationarity

as the null). In each case the number of lags in the stationarity equation is determined

by Schwartz Information criteria. In the Philips-Perron and KPSS methods, we use the

Bartlett Kernel as the spectral estimation method and Newey-West bandwidth selection.

ARFIMA models estimated by ML, with robust 95% confidence intervals given under the

central estimate of fractional integration parameter d̂.
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Table B.4: Labor Share: Stationarity Tests

Annual Quarterly
CV5% CV5%

ADF [0.063] – [0.321] –
ERS DF-GLS −1.117 −1.940 −0.170 −1.940
PP [0.368] – [0.292] –
KPSS 0.816 0.463 1.401 0.463
ERS 4.480 3.070 24.400 3.200
Ng-Perron

MZa −2.010 −8.100 −0.287 −8.100
MZb −0.980 −1.980 −0.159 −1.980
MSB 0.487 0.230 0.557 0.230
MPT 11.930 3.170 20.924 3.170

ARFIMA (0,d,0) 0.494 ARFIMA (0,d,0) 0.499
(0.488,0.499) (0.498,0.499)

ARFIMA (1,d,0) 0.439 ARFIMA (2,d,0) 0.191
(0.374,0.505) (-0.067,0.449)

Note: Squared brackets indicate probability values, CV5% denotes the
5% critical value of the relevant test, and 95% confidence intervals for
the ARFIMA differencing parameter are given in brackets.

B.4 Additional Results for Short-Run Labor Share Features

Here we look at two additional filtering methods for the short-run labor share series.

These results are parallel to those of table 2 in the main text. We use three meth-

ods: the HP filter (as before) plus simple first differencing of the raw labor share se-

ries and filtering using CF. Results are relatively similar over the methods: the relative

variance of the annual (quarterly) series is around 0.4(0.55), the degree of persistence is

0.3(0.7 for the last two methods) and there is no sign of significant cyclicality (although

the point estimates are negative).
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Table B.5: Main features of the labor share’s short-run component

σLSt
σLSt

/σGDPt
ρLSt,LSt−1

ρLSt,GDPt

first-differenced
annual series 0.986 0.453 0.282 −0.020

(0.854, 1.122) (0.028, 0.522) (-0.284, 0.232)

quarterly series 0.588 0.658 −0.072 −0.292
(0.511, 0.672) (-0.246, 0.121) (-0.458, -0.107)

HP-filtered
annual series 0.660 0.486 0.325 −0.098

(0.538, 0.771) (0.135, 0.495) (-0.303, 0.111)

quarterly series 0.785 0.513 0.736 −0.185
(0.704, 0.870) (0.673, 0.795) (-0.289, -0.074)

CF-filtered (periodicity below 8 years)
annual series 0.638 0.419 0.242 −0.021

(0.516, 0.746) (0.022, 0.433) (-0.218, 0.171)

quarterly series
0.751 0.493 0.714 −0.133

(0.668, 0.837) (0.649, 0.776) (-0.245, -0.020)

Note: σLSt
and σLSt

/σGDPt
denotes volatility in absolute term (percentage deviation from the long-run trend) and relative

term (as a ratio to the GDP’s volatility). ρLSt ,LSt−1
and ρLSt ,GDPt

stand for the first-order autocorrelation and contemporaneous

comovement with product, respectively.
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C Results for Other Countries

To strengthen the empirical points we make in Section 2, we shall argue that data for

other developed economies support our main points as well. It turns out that, despite

slight definitional changes, time-series properties of the labor share in Finland (1900-

2003), the UK (1855-2010), and France (1896-2008) are broadly in line with our main set

of findings for the US.

In order to explore the main features of the labor share in Finland we use the data set

compiled by Jalava et al. (2006). At the first sight, the long-run trajectory of the Finnish

labor share index appears markedly different in comparison to the US labor share (see

figure C.1). However, if we consider only the postwar sample then a hump-shaped

tendency is again well-identified, with the peak in the beginning of 1980s.

Our results for the UK and France are from Piketty (2014). The UK labor share (see

figure C.2) exhibits substantial medium- and long-run variability and its general pattern

since 1920s is very similar to the one of the US: a clear upward swing until around 1975,

followed by a period of gradual decline. Importantly, for the UK we also observe gradual

decline of the labor share in 1855–1916, in line with our interpretation that this variable

can be subject to long cycles. Evidence for France (figure C.3) is less clear-cut (the data

may be subject to a structural break in the 1940s).

Table C.6 shows the estimates of spectral density for the Finnish, British, and French

labor share. We find that when the labor share is only demeaned, its volatility is dom-

inated by low-frequency oscillations. De-trending the series by subtracting a linear or

quadratic trend limits the importance of the cycles with lowest frequencies in favor of

the medium-term component. In that case, medium-run fluctuations are responsible for

more than 65 % of overall variance in Finland and France, and more than 45% in the UK.

The latter result for the UK stems from the fact that the data period since 1855 allows us

to identify more than one swing in the time series, which thus becomes badly fitted with

any quadratic trend.

We conclude that the medium- and long-run swings are a very important not only

for the US labor share, but also for few notable European ones.

Finally, we also confirm on the basis of Jalava et al. (2006) data that the medium-term

component of the labor share in Finland has also been highly persistent and pro-cyclical.

Hence, the behavior of the Finnish labor share in the medium run is quite similar to the

US counterpart (compare tables C.7 and 2); it even exhibits stronger pro-cyclicality.
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Figure C.1: Labor share in Finland
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The red, blue and black lines represent the raw series, the medium-to-long term component and the long-run trend, respectively.

The data on the Finish labor share are taken from Jalava et al. (2006).

Figure C.2: Labor share in the UK
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Figure C.3: Labor share in France
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Note: The red, blue and black lines represent the raw series, the medium-to-long term component and the long-run trend, respec-
tively. The data on the British and French labor share are taken from Piketty (2014).
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Figure C.4: Labor share in the UK (left panel) and France (right panel) from the 1950s
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The red, blue and black lines represents for raw, medium-term component and long-run trend, respectively.

Table C.6: Share of specific frequencies in the observed variance (in %)

Periodicity (in years) ≥ 50 8-50 ≤ 8

Finland
excluding the mean 79.5 16.5 4.0
excluding a linear trend 15.3 72.1 12.6
excluding a quadratic trend 12.9 73.4 12.7

UK
excluding the mean 66.3 25.9 7.9
excluding a linear trend 42.0 45.1 12.9
excluding a quadratic trend 41.5 45.5 13.0

France
excluding the mean 35.6 49.9 14.5
excluding a linear trend 16.9 65.9 17.2
excluding a quadratic trend 14.0 68.2 17.8

Note: the shares have been calculated using periodogram estimates. Bold indicates maximum value.

Table C.7: Features of Labor Share’s Medium-Term Component in Finland

σLSt
σLSt

/σGDPt
ρLSt,LSt−1

ρLSt,GDPt

Annual series 5.590 0.886 0.927 0.673
(4.522,6.500) (0.882,0.953) (0.531,0.766)
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D Additional Empirical Results

Figure D.1: The Quarterly Labor Share, Its Medium-Term Component and Long-Term Trend
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Note: The red, blue and black lines represent the raw series, the medium-to-long term component and the long-run trend, respec-
tively.
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Table D.1: Characteristics of annual medium-term component of selected macroeconomic vari-

ables and cross-correlation with the labor share, |τ| ∈ [0, 10]

Correlation with the labor share Medium-term characteristics
Max Min

ρLSt ,xt
ρLSt+τ ,xt

τ ρLSt+τ ,xt
τ σxt σxt /σyt ρxt,xt−1

ρyt,xt

Kt/Yt -0.46 0.67 9 -0.83 -4 5.79 1.69 0.97 -0.55
(-0.64, -0.26) (0.52, 0.78) (-0.9, -0.73) (4.94, 6.52) (0.95, 0.98) (-0.7, -0.37)

Ct 0.66 0.68 -1 -0.51 -10 2.53 0.74 0.96 0.95
(0.53, 0.77) (0.54, 0.79) (-0.63, -0.38) (2.14, 2.86) (0.93, 0.97) (0.93, 0.96)

It 0.35 0.52 -2 -0.66 -10 6.44 1.88 0.92 0.8
(0.15, 0.53) (0.34, 0.66) (-0.77, -0.5) (5.45, 7.29) (0.88, 0.95) (0.74, 0.86)

Ct/Yt -0.38 0.54 -10 -0.66 -3 1.32 0.39 0.93 -0.78
(-0.54, -0.19) (0.33, 0.7) (-0.78, -0.5) (1.12, 1.51) (0.9, 0.96) (-0.85, -0.69)

It/Yt 0.02 0.46 8 -0.57 -9 4.22 1.24 0.91 0.41
(-0.21, 0.24) (0.18, 0.68) (-0.72, -0.36) (3.5, 4.89) (0.86, 0.95) (0.23, 0.57)

RDt/Yt -0.22 0.69 -9 -0.64 4 11.69 3.42 0.96 -0.08
(-0.38, -0.04) (0.53, 0.81) (-0.74, -0.51) (9.59, 13.55) (0.93, 0.98) (-0.3, 0.15)

RDNF
t /Yt -0.02 0.59 -8 -0.67 5 6.4 1.87 0.94 -0.03

(-0.23, 0.19) (0.38, 0.74) (-0.78, -0.51) (5.37, 7.38) (0.91, 0.96) (-0.26, 0.21)

RDt -0.04 0.59 -8 -0.56 4 11.8 3.45 0.96 0.19
(-0.24, 0.16) (0.36, 0.74) (-0.7, -0.4) (9.94, 13.51) (0.94, 0.98) (-0.04, 0.41)

RDNF
t 0.27 0.63 -3 -0.51 5 7.11 2.08 0.95 0.43

(0.05, 0.47) (0.47, 0.74) (-0.67, -0.32) (6, 8.16) (0.92, 0.97) (0.24, 0.6)

wS
t /wU

t 0.55 0.84 -3 -0.8 9 2.96 0.87 0.97 0.48
(0.38, 0.71) (0.74, 0.91) (-0.93, -0.6) (2.38, 3.49) (0.94, 0.98) (0.26, 0.67)

Labor Prodt 0.34 0.5 3 -0.56 -10 3.05 0.89 0.97 0.64
(0.16, 0.51) (0.28, 0.67) (-0.7, -0.37) (2.77, 3.27) (0.95, 0.98) (0.48, 0.78)

Lt 0.35 0.48 -2 -0.44 -8 2.88 0.84 0.92 0.47
(0.17, 0.51) (0.3, 0.64) (-0.65, -0.18) (2.36, 3.41) (0.88, 0.95) (0.33, 0.59)

Lt × ht 0.38 0.67 -3 -0.35 10 3.13 0.91 0.92 0.58
(0.2, 0.54) (0.56, 0.77) (-0.56, -0.08) (2.53, 3.7) (0.87, 0.95) (0.47, 0.67)

Ct/Kt 0.44 0.8 -4 -0.7 9 5.58 1.63 0.97 0.49
(0.24, 0.62) (0.7, 0.87) (-0.8, -0.54) (4.71, 6.34) (0.95, 0.98) (0.3, 0.65)

Note: ρyt,xt and ρLSt ,xt
denote the contemporaneous cross-correlation for series xt with output and the

labor share. ρLSt+τ ,xt
reflects to the correlation of variable xt with labor share lagged by k period. For

the labor share the highest and the lowest cross-correlation with each series are reported. ρxt ,xt−1
and

σxt denote the first-order autocorrelation and standard deviation from the long-run trend, respectively.
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Table D.2: P-values from the F signal test – Annual series

Cycle length Excluding
(in years) Mean Linear trend Quadratic trend

87.00 [0.000] [0.000] [0.293]
43.50 [0.015] [0.014] [0.137]
29.00 [0.000] [0.000] [0.000]
21.75 [0.412] [0.782] [0.441]
17.40 [0.263] [0.193] [0.136]
14.50 [0.214] [0.395] [0.196]
12.43 [0.396] [0.513] [0.415]
10.88 [0.335] [0.056] [0.013]

9.67 [0.366] [0.148] [0.061]
8.70 [0.828] [0.447] [0.272]
7.91 [0.294] [0.206] [0.112]
7.25 [0.693] [0.808] [0.703]
6.69 [0.635] [0.326] [0.184]
6.21 [0.734] [0.418] [0.266]
5.80 [0.736] [0.379] [0.218]
5.44 [0.877] [0.595] [0.452]
5.12 [0.940] [0.713] [0.593]
4.83 [0.996] [0.902] [0.851]
4.58 [0.979] [0.996] [0.992]
4.35 [0.962] [0.910] [0.870]
4.14 [0.918] [0.841] [0.759]
3.95 [0.967] [0.989] [0.980]
3.78 [0.999] [0.942] [0.911]
3.63 [0.900] [0.694] [0.566]
3.48 [0.913] [0.759] [0.650]
3.35 [0.972] [0.980] [0.972]
3.22 [0.984] [0.888] [0.832]
3.11 [0.900] [0.816] [0.733]
3.00 [0.987] [0.904] [0.856]
2.90 [0.985] [0.921] [0.880]
2.81 [0.997] [0.951] [0.924]
2.72 [0.999] [0.962] [0.941]
2.64 [0.996] [0.978] [0.967]
2.56 [0.988] [0.944] [0.914]
2.49 [0.995] [0.955] [0.931]
2.42 [0.997] [0.975] [0.961]
2.35 [0.996] [0.949] [0.922]
2.29 [0.984] [0.938] [0.906]
2.23 [0.992] [0.999] [0.998]
2.18 [0.998] [0.957] [0.934]
2.12 [0.981] [0.902] [0.853]
2.07 [0.988] [0.954] [0.929]
2.02 [0.972] [0.955] [0.931]
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Table D.3: P-values from the F signal test – Quarterly series

Cycle length Excluding
(in years) Mean Linear trend Quadratic trend

69.00 [0.000] [0.000] [0.112]
34.50 [0.000] [0.000] [0.000]
23.00 [0.000] [0.000] [0.000]
17.25 [0.000] [0.000] [0.000]
13.80 [0.037] [0.073] [0.025]
11.50 [0.280] [0.044] [0.017]

9.86 [0.005] [0.000] [0.000]
8.63 [0.371] [0.919] [0.866]
7.67 [0.020] [0.001] [0.000]
6.90 [0.213] [0.001] [0.000]
6.27 [0.479] [0.794] [0.741]
5.75 [0.302] [0.018] [0.008]
5.31 [0.507] [0.830] [0.806]
4.93 [0.538] [0.802] [0.782]
4.60 [0.352] [0.446] [0.394]
4.31 [0.238] [0.164] [0.127]
4.06 [0.868] [0.989] [0.988]
3.83 [0.823] [0.758] [0.715]
3.63 [0.855] [0.396] [0.336]
3.45 [0.864] [0.326] [0.268]
3.29 [0.524] [0.440] [0.380]
3.14 [0.766] [0.573] [0.532]
3.00 [0.737] [0.809] [0.778]
2.88 [0.871] [0.840] [0.812]
2.76 [0.797] [0.810] [0.778]
2.65 [0.826] [0.938] [0.928]
2.56 [0.798] [0.662] [0.615]
2.46 [0.817] [0.887] [0.869]
2.38 [0.906] [0.730] [0.691]
2.30 [0.677] [0.404] [0.346]
2.23 [0.626] [0.516] [0.462]
2.16 [0.872] [0.924] [0.911]
2.09 [0.849] [0.886] [0.871]
2.03 [0.743] [0.420] [0.368]
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E Additional Quantitative Results

We shall now provide a few additional quantitative results based on the model consid-

ered in the main text.

E.1 Impact of Parameter Variation on Labor Share at the BGP

Figure E.1 presents the impact of varying selected model parameters, holding other ones

constant, on the BGP level of the labor share. All panels can be interpreted through the

lens of equations (A.1) and (A.2):

π

π0
=

(

λbk

λb0k0

)ξ ( y

y0

)−ξ

⇒ π̂ = ξ(λ̂b + k̂ − ŷ), (A.1)

π

1 − π
=

π0

1 − π0

(

x

x0

ℓY0

ℓY

)ξ

⇒ π̂ = ξ(1 − π)(x̂ − ℓ̂Y). (A.2)

As agents become less patient (higher ρ), R&D intensity falls, as does the labor share.

Similar reasoning pertains to the inverse elasticity of substitution γ. That the result
∂(1−π)

∂ηb
> 0 | σ < 1 arises from the usual property that, under gross complements,

improvements in capital augmenting technical change are labor biased; analogously
∂(1−π)

∂ηa
< 0 | σ < 1. Likewise, we have under gross complements: ∂(1−π)

∂νa
> 0, ∂(1−π)

∂νb
< 0.

If capital depreciates faster, the capital (labor) share rises (falls).

Note that the lack of dependence of the BGP on ξ in the decentralized allocation

follows from CES normalization (Klump and de La Grandville, 2000), coupled with the

fact that we have calibrated the normalization constants to the BGP of the decentralized

allocation.33 This choice of point of normalization allows us to perfectly isolate changes

in model dynamics (eigenvalues of the linearized system) due to changes in the elasticity

of substitution from changes in the steady state location.

33For the decentralized steady state of the calibrated model to be completely insensitive to changes in the
elasticity of substitution, one requires two assumptions. First, the CES production function is normalized.
Second, it is normalized exactly at the steady state (so that x∗ = x0, ℓ∗Y = ℓY0, etc.) We do exactly that,
thanks to which we isolate changes in model dynamics (eigenvalues) from changes in the steady state
location, in a very clean way. It can be related to the findings of Klump and de La Grandville (2000) who
isolated changes in the curvature of the production function from changes in unit factor productivity. For
other choices of normalization constants, the BGP of the calibrated model would be sensitive to changes in
the elasticity of substitution.
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Figure E.1: Dependence of the Equilibrium Labor Share on the Model Parametrization
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Note: The vertical dotted line in each graph represents the baseline calibrated parameter value.
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Figure E.2: Comparing Balanced Growth Paths: Dependence on the Time Preference.
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Figure E.3: Comparing Balanced Growth Paths: Dependence on the Intertemporal Elasticity of

Substitution in Consumption.
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Figure E.4: Comparing Balanced Growth Paths: Dependence on νb.
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Figure E.5: Additional Bifurcation Figures
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Note: The vertical dotted line in each graph represents the baseline calibrated parameter value.
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Figure E.6: “Node–focus” Bifurcations
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Note: The vertical dotted line in each graph represents the baseline calibrated parameter value.
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