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Abstract

I propose a synthetic theory of economic growth and technological progress
over the entire human history. Based on this theory as well as on the analogies
with three previous eras (the hunter-gatherer era, the agricultural era and the
industrial era) and the technological revolutions which initiated them, I draw
conclusions for the contemporary digital era. I argue that each opening of a
new era adds a new, previously inactive dimension of economic development,
and redefines the key inputs and output of the production process. Economic
growth accelerates across the consecutive eras, but there are also big shifts in
factor shares and inequality. The two key inputs to the digital-era production
process are hardware and software. Human skilled labor is complementary to
hardware and substitutable with software, which increasingly includes sophis-
ticated artificial intelligence (AI) technologies. I also argue that economists
have not yet designed sufficient measurement tools, economic policies and in-
stitutions appropriate for the digital-era economy.
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1 Introduction

The primary objective of this paper is to propose a synthetic theory of economic
growth and technological progress over the entire human history, with an intention to
frame the millennia of past development as a single cumulative process. Inspired by
the excellent books by Diamond (1997), an anthropologist, ecologist and geographer,
and Harari (2014), a historian, I organize the millennia of human history into four
eras of economic development: the hunter-gatherer era, the agricultural era, the
industrial era and the digital era. The eras have been initiated by four respective
revolutions: (i) the cognitive (Upper Paleolithic) revolution (ca. 70 000 BP) – the
time when homo sapiens acquired its status of a dominant hominin species and
began gaining control over natural habitats across the world; (ii) the agricultural
(Neolithic) revolution (ca. 10 000 BP), marking the beginning of a transition from
hunting and gathering to sedentary agriculture; (iii) the industrial revolution (ca.
1800 CE), the onset of industrial production, capital accumulation, and systematic
increases in GDP per capita; and (iv) the digital revolution (ca. 1980 CE), marking
a rapid explosion in the world’s capacity to compute, store, and communicate data.
I emphasize the co-existence of the eras in time.

Across all the eras I consider the following themes: knowledge accumulation,
economic growth, key factors of production and their mutual relation, inequality,
and side effects of development.

As a theoretical brace connecting all four eras, I propose that the driving forces
of development can be summarized in a single encompassing concept of local control.
The drive to maximize local control is an emergent feature of human behavior, which
appears regardless of our final goals, provided only that we value the preservation
of ourselves and our children.

The second objective of this paper is to draw new conclusions for the digital era,
building on the synthetic theory of economic growth and technological progress,
presented in this paper, as well as the analogies with previous eras and the techno-
logical revolutions which separated them. I am able to obtain new useful results here
thanks to taking a broader perspective on the digital age than it has been typically
done in the literature. I argue that looking further back in time and investigating
the consecutive technological and economic revolutions provides new insights for the
digital era, compared to viewing it as a mere continuation of the industrial era.

The motivation for writing this paper is the growing dissonance between the
empirically documented properties of the digital economy and the way in which it is
usually analyzed in the macroeconomic literature, both empirically: e.g., growth and
development accounting based on National Accounts data (Jorgenson and Stiroh,
2000; Timmer and van Ark, 2005; Jorgenson, 2005; Fernald, 2015; Gordon, 2016),
and theoretically, in formal models of economic growth and technological change,
e.g. relating to the form of the R&D equation (Jones, 1999; Ha and Howitt, 2007;
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Madsen, 2008; Bloom, Jones, Van Reenen, and Webb, 2017; Kruse-Andersen, 2017).
I think that important lessons can be learned from comparing the recent digital
revolution to the industrial revolution, whose workings have been thoroughly studied
in the unified growth theory literature (Hansen and Prescott, 2002; Galor, 2005,
2011), and the more ancient Neolithic (agricultural) revolution (Diamond, 1997;
Hibbs and Olsson, 2004; Bocquet-Appel, 2011; Harari, 2014).

The key take-away from my reading of this heterogeneous literature is that each
technological revolution is accompanied by a fundamental paradigm shift (Olsson,
2000, 2005), opening an entirely new, previously absent dimension of economic de-
velopment, uncovering new trade-offs, and ultimately rendering the previous-era
measure of development obsolete. For example, the industrial revolution initiated
systematic increases in GDP per capita and growth in demand for skilled labor,
opened the children quantity–quality tradeoff, and by lowering fertility broke the
Malthusian link between development and population size (Galor, 2011), thus mak-
ing population size an obsolete measure of economic development. In my view, it
is not sufficiently appreciated by the economists that the digital revolution in fact
caused equally fundamental changes in the economy. Therefore some of the cur-
rent discussions, on the risks of entering a period of “secular stagnation” (Gordon,
2016), declining labor share (Karabarbounis and Neiman, 2014), increasing profit
share (Barkai, 2017), increasing income inequality (Piketty, 2014), and so on, may
potentially be affected by the fact that we often view the rapidly expanding digital
economy through the lens of inadequate, industrial-era measurements and theories.

There are a few important conclusions from this paper. First, each opening of
a new era marks the arrival of a new dimension of economic development, which
records at least an order of magnitude higher growth rates than the previous-era one.
Hence, this new dimension soon becomes dominant, eventually leading to a “secular
stagnation” in the previous-era measure of economic development, even though the
development process has in fact accelerated. However, there are sizable feedback
loop effects across eras as the new era tends to initially reinforce the previous-era
economy. Applying this logic to the transition between the industrial and the digital
era, one should expect first a massive boost in GDP per capita (the preferred measure
of economic development in the industrial era), driven by the reinforcements from
the digital era, but eventually probably a “secular stagnation” when the potential
for global GDP growth will be saturated, and further growth will be concentrated
exclusively in the digital sphere.

Second, economists have not yet developed sufficiently detailed and reliable meth-
ods of measuring aggregate inputs (broadly categorized as “hardware” and “soft-
ware”) and output (tentatively summarized here as flows of useful data) in the
production process of the digital economy. We tend to look at the digital econ-
omy through the lens of methodologies such as the National Accounts, which are
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well suited to the analysis of the industrial economy but obsolete when applied to
the digital economy. Furthermore, being fixated on country-level analysis and pol-
icy, economists also tend to underestimate that the digital economy is fully global.
Beyond economics, however, information theorists have already produced first es-
timates of the world’s capacity to store, communicate and compute information
(Hilbert and López, 2011; Gillings, Hilbert, and Kemp, 2016). These will be proba-
bly useful as a starting point for setting up more detailed digital-era accounts.

Third, our landmark economic policies and institutions have been designed with
the industrial-era economy in mind. Unfortunately, they are typically either ineffi-
cient when applied to a digital-era economy, or not applicable at all. In effect the
digital economy is largely unregulated. This may be contributing to a range of unfa-
vorable outcomes such as the spread of misinformation over the Internet, formation
of global monopolies, or systematic intrusions into privacy. More broadly, they are
also likely contributing to the increasing (top) income inequality and a declining la-
bor share (Karabarbounis and Neiman, 2014; Jones and Kim, 2017). The situation
is akin to the early years of the industrial revolution, when only agricultural-era
regulations and policies were in place, which – analogously – allowed rapid concen-
tration of wealth, very high income inequality and low labor shares (Piketty and
Zucman, 2014), until adequate industrial-era institutions were installed (and, in ret-
rospect, until the moment when returns to human capital began to match or exceed
those of physical capital).

Fourth, the two key inputs to the digital-era production process can be summa-
rized as “hardware” and “software”, with human skilled labor being complementary
to “hardware” and substitutable with “software”. This means that if we want to keep
our jobs, we must particularly carefully trace the development of the latter. Indeed,
automation is already gradually eliminating routine jobs, both manual and cognitive
(Acemoglu and Autor, 2011; Frey and Osborne, 2013), and the remaining jobs are
safe only until the development of sufficiently sophisticated and versatile AI tech-
nologies. Finally, the ultimate piece of “software” which may arrive in the course of
the digital era, artificial general intelligence (AGI), is a double-edged sword whose
consequences may vary from an utopian depiction of a technological “singularity”
(Kurzweil, 2005) to human extinction (Muehlhauser and Salamon, 2012). I expect
that more and more sophisticated, multi-purpose AIs, ultimately leading to an AGI,
will almost surely be developed because doing so is very much in line with the hu-
man drive to maximize local control, and economic incentives are particularly huge
given that software, as compared to hardware, is a clear development bottleneck of
the contemporary digital-era economy.

The main limitation of the current paper is that it is qualitative. It provides an
encompassing theoretical framework for studying economic growth and technological
progress over the millennia of human history and into the digital era, but it does
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not offer any formal model which could be rigorously taken to statistical data. Its
merits consist mostly in connecting the known facts, organizing them in order to
build a consistent narrative and a blueprint of a unified growth theory for the entire
humankind, and proposing bold but risky conjectures for the digital era, based on
extrapolations and intuitive analogies to the past.

The structure of the paper is as follows. Section 2 organizes the millennia of
human history into four eras, initiated by four revolutions. In Section 3 I found
my theory on the proposition that maximization of human control has been a key
driving force of development, active across all four eras. Section 4 is devoted to the
topic of accumulation of knowledge. Section 5 formalizes the idea that each new
era opens up a new dimension of economic development, documents the subsequent
accelerations in economic growth following the technological revolutions, and ad-
dresses the measurement problem. Section 6 views the production processes in the
consecutive eras through the lens of an aggregate production function and pinpoints
the most important production factors of each era. It also makes the case for better
digital policy. Section 7 discusses the side effects of development, paying special
attention to the existential risk from AGI. Section 8 concludes.

2 Four Eras of Development, Initiated By Four Rev-
olutions

The narrative of long-run economic growth and technological progress over the mil-
lennia of human history can be intuitively organized as four eras, initiated by four
consecutive revolutions, such that each new era puts development into a higher gear.
Let me begin with (Y-chromosomal) Adam and (mitochondrial) Eve.

Hominins first appeared on the face of Earth about 2 400 000 years ago, in East
Africa (Dunsworth, 2010). According to the (arguably most popular) Out-of-Africa
theory, the same geographic region was also the cradle of the anatomically modern
human, homo sapiens (Ashraf and Galor, 2013). First humans are estimated to have
appeared around 200 000 years before present (BP) and made several early efforts
to expand their habitats towards Asia and Europe.

The first turning point in human history was the cognitive revolution, also called
the Upper Paleolithic revolution. Its dating is uncertain; for orientation let us place
it around 70 000 BP (Harari, 2014). Newly acquired cognitive skills, such as the
theory of mind and the ability to create, document and communicate stories, gossip,
tales, legends, and abstract ideas, allowed humans to become “behaviorally modern”
and, crucially, advance from the middle to the top of the food chain (Tattersall,
2009; Tomasello, 2014; Harari, 2014). What followed was the unique wave of hu-
man dispersal out of Africa which turned out permanent from today’s perspective
– although the expansion was probably originated by as few as 1000 individuals
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(Liu, Prugnolle, Manica, and Balloux, 2006). It followed a “southern route” via
the Bab al-Mandab strait towards Asia and Australia, which was reached about 65
000 BP–50 000 BP. Europe, in contrast, was colonized by the homo sapiens only
about 45 000 BP, despite geographical proximity and lack of physical barriers. The
hypothesized reason for this delay is that at the time, Europe was populated by the
homo neanderthalensis. This coincidence signifies that Europe’s Neanderthals were
“an additional ecological barrier for modern humans, who could only enter Europe
when the demise of Neanderthals had already started” (Liu, Martinón-Torres, Cai,
Xing, Tong, Pei, Sier, Wu, Edwards, Cheng, Li, Yang, Bermúdez de Castro, and
Wu, 2015).

The hunter-gatherer era constituted the first major step of development achieved
by the humankind which has never been achieved by any other species. The per-
spective of other species elucidates how impressive it was that hunter-gatherer bands
and tribes managed to colonize almost all habitats in the world, including passing
the Bering Strait to the Americas and inhabiting most Pacific archipelagos. While
they were taking successive natural habitats under their control, they drove all other
hominins to extinction, and did the same for a wide variety of other species such as
the Asian mammoths, Australian megafauna including huge diprotodons (Harari,
2014), or American saber-toothed cats.

However, from today’s perspective, they only managed to obtain miniscule “eco-
nomic growth” rates. Around 5 000 BCE, the combined world population was in the
order of just 5 million (Kremer, 1993), and it took the homo sapiens a whopping
20–25 millennia to defeat the Neanderthals and colonize Europe. Yet, this pace of
development was already at least an order of magnitude faster compared to the pace
of species evolution.

The second turning point in human history was the Neolithic revolution, also
called the agricultural revolution. Domestication of plants and animals allowed for
dramatic increases in the amount of calories derived from a given land area, leading
to marked increases in human population density, and encouraging the formerly
roving hunter-gatherer tribes to abandon their former lifestyle in favor of sedentary
agriculture (Diamond, 1997; Hibbs and Olsson, 2004).

The agricultural era was initiated ca. 10 000 BP (8 000 BCE) in the Fertile Cres-
cent (in the Middle East). The first eight “Neolithic founder crops” included wheat,
barley, lentil, pea, and chickpea. Independent agricultural revolutions, with different
founder crops, appeared subsequently over later millennia in various other parts of
the world: Central China, the New Guinea Highlands, Central Mexico, northwest-
ern South America, Sub-Saharan Africa, and eastern North America. Adoption of
agriculture was only gradual because gains in food production were initially modest
and technological progress as well as diffusion was slow. For these reasons, agri-
cultural societies co-existed with roving hunter-gatherer tribes for entire millennia
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before the former managed to outnumber and thus economically dominate the latter
(Diamond, 1997). In fact, some populations never managed to shift to sedentary
agriculture, e.g. the Aboriginal Australians before the European conquest.

The third turning point in human history was the industrial revolution. It began
around 1800 CE, first in England, and then it quickly spread across Europe and into
the Western Offshoots such as the US. Formerly agricultural societies began to build
factories, manufactures, and engage in mass production. The set of key technolog-
ical inventions which fueled this shift included, among many others, steam engine,
electricity, internal combustion engines, and indoor plumbing (Gordon, 2016). The
industrial revolution was enabled by the earlier scientific revolution (including em-
piricism, experimentation, mathematization, and hypothesis testing), embraced by
the Western societies around the 16th century.

As opposed to the agricultural revolution, the industrial revolution happened
only once in history. At the time, the world was already connected, and the gap
between technological knowledge acquired by the Western societies and any other
disconnected society was too large to enable an independent industrial revolution.

The technology and economy of the industrial era were gradually adopted across
the world, increasing both economic power and standards of living, and enabling
acceleration of economic growth rates by an order of magnitude: doubling times
were cut from hundreds of years to just decades (Galor, 2005). The transition to
the industrial era is not yet complete, though: subsistence agriculture still employs
a majority of population in, e.g., Sub-Saharan Africa or India. Major pockets of
agricultural poverty can also be found across, e.g., China, Indonesia, the Middle
East, or Latin America.

Before the fruit of the industrial era have been fully reaped, the humankind en-
tered yet another technological revolution: the digital revolution. A tentative timing
would place this revolution around the 1980s, when personal computers have begun
to permeate firms and households; however the revolution really gained momentum
in the 2000s when the Internet connected the computers in a truly global World
Wide Web.

The key inventions which fueled the digital revolution were the Turing machine,
semi-conductors, integrated circuits, followed by what now is the hallmark of the
digital era: personal computers, the Internet, cell phones, and industrial robots.
First key developments were achieved in the US, but in this case technology diffu-
sion is really fast, so that nowadays a major part of the hardware frontier of the
digital economy has moved to East Asia (Japan, Korea, Taiwan, China), and on
the consumer side, even very poor and infrastructurally disadvantaged parts of the
world frequently use (at least some) digital technologies. An illustrative statistic
describing the pace of development in the digital era is Moore’s Law (Hilbert and
López, 2011; Bloom, Jones, Van Reenen, and Webb, 2017): since the 1980s, world’s
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general-purpose computing capacity doubles every 1.5 years.
Looking from 2018 into the future, we cannot exclude the possibility of further

technological revolutions. As argued by some authors, such a revolution may likely
occur already within the current century (Hanson, 2000; Kurzweil, 2005; Brynjolfs-
son and McAfee, 2014), with totally unpredictable consequences.

Three observations stand out from this narrative, linking the prehistoric hunter-
gatherer times with the modern digital world. First, each new era accelerates “eco-
nomic growth” by at least an order of magnitude. Second, each new era opens up
an entirely new avenue of development, thus redefining what “economic growth”
refers to. Third, arrival of a new era does not end the previous era, and instead
the technologies from the consecutive eras coincide in time. In fact, as I will argue
later, each new era dramatically strongly feeds back on the previous-era economy:
just think of the gains from mechanization and specialization of agriculture, or the
computerization and robotization of industry.

Focusing only on the population which resides in a given place on the world map,
one may get the impression that the humankind developed linearly, gradually pass-
ing from the hunter-gatherer to agricultural, to industrial, and to the digital era.
However, two elements which distort this view are that (i) the timing of take-off
to the next era has varied largely across the world (Diamond, 1997; Galor, 2005),
and that (ii) the take-off was only gradual. Therefore the technologies of the con-
secutive eras co-exist not only globally (giving rise to cross-country inequality) but
also locally (contributing to within-country inequality). I argue that between-era
inequality is typically far greater than within-era inequality.

3 The Driving Force of Development: Maximiza-
tion of Local Control

Looking back at the four technological revolutions, each of which was an impressive
leap of human capability, begs the question: why did mankind achieve all this?
What was the driving force of all these developments?

In the beginning, we were just lucky. Having tested plenty of other genetic
designs of species, the evolutionary process produced the homo sapiens who slightly
exceeded other hominin species in terms of frontal cortex capacity of the brain. This
slight advantage turned out sufficient for the human to go and rule the world.

What I mean by being “lucky” is that evolution is not intentional when it explores
the space of species designs and maximizes genetic fitness of the resultant species
(commonly known as “survival of the fittest”). The evolutionary search is multi-
dimensional: species tend to fit to certain ecological niches by developing unique
advantages. It is also extremely slow: the fitness of innovations (mutations) is eval-
uated only ex post and over hundreds of generations. For large mammals like us,
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this means that major useful innovations are embodied in us at the time scale of
hundreds of thousands of years. Hence, although species evolution never stops, we
are anatomically almost (if not completely) indistinguishable from our ancestors
who inhabited the Ethiopian savanna 100 000 years ago.

In consequence, evolution can only explain the cognitive revolution of the Upper
Paleolithic but cannot explain any of the later developments of humankind. So why
did they appear?

In the following subsections I put forward a theory which views the process of
human expansion, economic growth, and technological progress, as a single process
where humans intentionally maximize their local control. I view human local control
maximization as one of many sub-routines of the grand process of species evolution,
but the only one which got out of hand because of its sheer pace (faster by orders
of magnitude than the pace of evolution), recursive self-improvement, and greed for
resources. To my knowledge, the idea to use local control maximization as a brace
connecting all four eras is new to the literature.

3.1 The Concept of Local Control

I postulate that what brought us to the digital era of 2018 and beyond, is a process
of intentional local control maximization. This process operates on top of species
evolution, dominating it in terms of speed – in the early hunter-gatherer era only
slightly, but now massively.

By maximizing local control I mean exploring the space of possible actions in
order to reflect one’s preferences as closely as possible, and satisfy as many needs
as possible, using the resources available in one’s environment. Thus defined “local
control” is not new, but I use this specific label to emphasize the versatility of the
concept, its ability to describe actions and incentives across all millennia of human
history, as well as the limitations of human perception and cognition. The word
“control” signifies that human decisions often go beyond the economics textbook
problem of maximizing utility from consumption (and possibly leisure), and that the
maximized objectives may include a much wider variety of variables and motives.
The word “local”, in turn, is meant to emphasize that our information sets are
usually limited, both in space, so that we take only part of our surroundings (natural
environment, other people) into account, and in time, as uncertainty with respect
to future developments forces us to be myopic.

If we accept the proposition that economic growth and technological progress
have been driven over the millennia by the actions of thousands, millions, and now
billions of individual humans who try to maximize their local control, it becomes
natural to measure aggregate world development with aggregate measures of the
extent of human local control. A caveat is that human actions are usually uncoor-
dinated and our interests often collide. Therefore an appropriate empirical measure
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of aggregate human local control must be calculated on a net basis, excluding the
extent of human control which is at the expense of other humans. A more thorough
discussion of measurement issues is provided in Section 5.

Modern physics and computer science literature offers additional characteriza-
tions of the ultimate driving force of economic and technological development, in-
terpreting it as cumulative optimization power (Yudkowsky’s stance in the Hanson
and Yudkowsky (2013) debate) and choice entropy (Wissner-Gross and Freer, 2013).
For reasons that will be clear in Section 5, however, it is much easier for me to relate
to local control than any of these two alternatives.

3.2 Why Do Humans Maximize Local Control?

Why do we maximize local control? Evolution equipped us, just like any other
species, with the intention to satisfy our needs, avoid risks, and safely pass our
genes to the next generation. The key difference is that the evolutionary success of
all non-human species is constrained by other species and particular properties of
the ecosystem; in contrast, humans have proven to be extraordinarily successful in
their survival and multiplication strategies. As the only species in Earth’s history,
we managed to dominate the entire planet, modifying most of the world’s ecosystems
and driving other species to mass extinction (Kolbert, 2014).

The humankind did all this because we were never fine with making simple
choices from a predefined set of alternatives. Instead, we actively seeked to expand
the set of open choices (the effectiveness drive), as well as insure and diversify against
risks (the safety drive, cf. Bowlby, 1969). Hence, we have been gradually loosening
the constraints binding our decisions and getting around them by inventing new
dimensions of action. It has been argued that the key anatomic feature, which
enabled this unprecedented success, is the frontal cortex of our brains. Once its
capacity has surpassed a certain threshold, the homo sapiens acquired the theory of
mind, and used it to create, document and share stories, gossip, tales, abstract ideas,
and ultimately knowledge and technology (Tomasello, 2014; Harari, 2014). This led
to a unique level of versatility and adaptivity, inaccessible to any other species.

It also allowed us to organize ourselves into bands, tribes, local communities,
and ultimately societies and nations. The human brain can naturally accommodate
social contacts up to ca. 150 acquaintances (Dunbar, 1992, 1993). This “Dunbar’s
number” determined the size of early hunter-gatherer tribes, and nowadays sets the
maximum size of an organization before it requires a hierarchical structure. For all
other species, this number is much lower.

The beauty of the local control maximization process lies in its emergent char-
acter. The individual humans do not have to consciously follow this objective; some
of us may even actively oppose it, declaring instead the pursuit of happiness, har-
monious family life, etc., or recalling religious or spiritual motivations. The process
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emerges even if there is no ultimate human goal (no objective meaning of life) what-
soever or if our declared goals are mutually contradictory. The necessary condition
is only that we want ourselves and our children to survive.

The emergent character of the human local control maximization process is eas-
iest to explain by an analogy to machine intelligence, whose actions arise in the
course of maximizing a predefined objective function. The instrumental conver-
gence thesis (Omohundro, 2008; Bostrom, 2012) signifies that regardless of the final
goal (of an AI), there is going to be convergence of its auxiliary goals, which are in
fact dimensions of local control. Omohundro (2008) names the following goals: self-
preservation, efficiency, resource acquisition, and creativity. Analogously, Bostrom
(2012) mentions: self-preservation, goal-content integrity, cognitive enhancement,
technological perfection, and resource acquisition. All that is generally dear to us
humans, isn’t it?

The human local control maximization process outstripped species evolution in
terms of pace following the cognitive revolution. Nowadays, in the industrial and
digital eras, outcomes of virtually all our innovative decisions are evaluated within
a single person’s lifetime, and often on a scale of months or days (if not hours
or minutes). In further contrast to the evolutionary process, ex ante evaluation
of innovations is possible and often practiced, especially when dealing with policy
decisions. However, evaluation is often limited in space and time, so that we hardly
ever think about the whole mankind or the infinite time horizon. The negative
consequences of this fact will be reviewed in Section 7.

Finally, let me also compare the local control concept with the concept of in-
telligence, which can be defined, amonst other definitions, as efficient cross-domain
optimization, an ability to hit narrow targets in broad search spaces, cf. Yudkowsky
(2013). A very similar definition could be coined for local control, only without the
word “efficient”. This is the key difference: intelligence is about obtaining maximum
possible control with minimal possible resources, whereas local control is an exten-
sive measure which does not require efficiency in resource usage. Many goals can be
achieved either by throwing in plenty of resources (the brute force solution), or by
acting more intelligently, with fewer resources.

3.3 Local Control and the Hierarchy of Needs

While our innate instincts may be rooted in the reality of a hunter-gatherer tribe in
prehistoric Ethiopia, our modern lives are very different. This is because the extent
of control over the environment which the humankind has acquired over the millennia
allows us to satisfy many more human needs today. The gradual advancement
observed across the four eras can be illustrated with Maslow’s hierarchy of needs
(Maslow, 1954).

Hunter-gatherers can only satisfy their most fundamental needs. They spend a
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large chunk of their time searching for food, a physiological need. Furthermore, as
their rudimentary equipment, which they carry with themselves, provides them with
some warmth and shelter and they live in extended families as well as organize into
bands and tribes, we may say that some of their basic safety and social belonging
needs are also satisfied.

Compared to hunter-gatherers, sedentary subsistence farmers can satisfy some-
what more safety needs thanks to their permanent dwellings, food storage, elimi-
nation of many threats (e.g., predators, hostile tribes) from the ecosystem, and the
accumulation of more durable goods. Following the increases in population density
and growth of cities and states, social belonging needs can be potentially better
satisfied, too.

The industrial era opened up a wide range of new possibilities for satisfying
human needs. Sustained growth in GDP per capita allowed a wide group of people
to benefit from increased standards of living and financial security. Developments in
medicine dramatically improved human health and increased our longevity. All this
can be classified as satisfaction of additional safety needs. The industrial economy
also greatly widened the group of people who could develop their specific skills and
gain recognition for their work, thus satisfying esteem and self-actualization needs.

Compared to the industrial era, the digital era offers many more avenues for sat-
isfying esteem and self-actualization needs. The digital economy offers high rewards
for creativity, innovativeness, and unique skills. The Internet further democratizes
access to platforms of self-presentation, and facilitates recognition of one’s work.
Finally, whether we like it or not, gradual automation of routine jobs pushes us
away from the most boring occupations towards more skilled and creative work.

Our systematic advancement up Maslow’s (1954) hierarchy of needs is an indi-
cation of success in following Omohundro’s (2008) and Bostrom’s (2012) emergent
drives. Satisfying low-level needs (physiological, safety, social belonging) follows
from the goal of self-preservation. The drive for resource acquisition helps satisfy
both low-level needs (in particular, safety) and the high-level need of esteem. Note
that the resources we accumulate may vary from an inventory of consumption goods
and financial wealth to social contacts, political power, and useful data. The drives
toward creativity (cognitive enhancement) and efficiency (technological perfection)
are, in turn, linked to the high-level needs of esteem and self-actualization. Both
are achieved by engaging in activities such as learning, experimentation, research,
but also by communicating with others in a social network.

One twist in comparing the emergent drives to Maslow’s categories of human
needs is that some needs, instead of serving one of the goals, may act as substitutes
for our local control when it is unattainable, for example when there is uncertainty
which we cannot eliminate. This includes the social belonging needs of bonding
and emotional support, served e.g. by maintaining close kinship ties (Growiec and
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Growiec, 2014). Accordingly, holding religious or superstitious beliefs is our para-
doxical way to get around fundamental uncertainties and satisfy some of our safety
needs without actually increasing local control.

3.4 Human Local Control in the Digital Era

Human control can be exercised over the natural environment and other humans.
Over the hunter-gatherer, agricultural, and industrial era people have gradually
learned to control the natural environment, but at the same we have dramatically
intensified our contacts with other people. The latter fact mirrors both our huge
reproductive success and the tremendous developments in communication technolo-
gies, which in the current digital era are allowing for instant information transmission
and audiovisual contact with anyone across the globe. The consequence is that the
digital-era human local control maximization process pertains mostly to interactions
with other people and man-made machines.

One of the implications of this phenomenon is the democratization of access
to information creation and sharing. Instead of relying on traditional ways of so-
cial status and hierarchy building, many of us now take the matters in own hands,
managing extensive digital social networks and creating and sharing original media
content on platforms such as YouTube, Facebook, Twitter, Instagram, Snapchat,
etc. We are witnessing an unprecedented explosion of human creativity. Increased
information creation and sharing brings measurable increases in aggregate human
welfare: more useful data are created, collected and shared, more digital goods are
consumed, and diffusion of useful technological knowledge is faster. And while some
may dismiss many of those actions as economically unjustified (no direct monetary
compensation), or view them as an epidemic of narcissism (Twenge and Campbell,
2009), or compulsive behaviors, the concept of local control maximization can actu-
ally rationalize these actions. I will elaborate more on this issue in Section 5.

4 Accumulation of Knowledge

In this section I will discuss how the human local control maximization process has
led to systematic, cumulative technological progress. As we sought to expand the
set of open choices and insure and diversify against risks, we naturally embarked
on a path of knowledge accumulation. More precisely, knowledge accumulation was
fueled by our emergent creativity (cognitive enhancement) drive.

But why have we succeeded at that? As argued above, evidence suggests that
the key reason is the design of our brains. Namely, the capacity of our frontal
cortex is sufficiently large for us to acquire the theory of mind and use it to create,
document and share stories, gossip, tales, abstract ideas, and ultimately knowledge
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and technology (Tomasello, 2014; Harari, 2014). By pooling the collective memory
among a wider group of people, the humankind managed to pass the threshold of
systematic accumulation of knowledge. This capability translated into technological
progress and ultimately economic growth because ideas are non-rivalrous, i.e. can
be applied many times at once (Romer, 1986, 1990).

4.1 The Knowledge Accumulation Equation

To organize my narrative about the specifics of knowledge accumulation in the re-
spective eras, I will use the following knowledge accumulation equation (an extension
of the “idea production functions” used by Jones, 1999; Ha and Howitt, 2007; Mad-
sen, 2008; Kruse-Andersen, 2017):

Ȧ = γF (KA, LA)Aφ − δA, γ > 0, δ ≥ 0, φ ≤ 1. (1)

I will focus on three parameters of the above equation: (i) the knowledge depreciation
rate δ, (ii) the efficiency of knowledge creation γ, and (iii) the scale of operations,
measured by the ratios of KA and LA relative to the respective world totals. To
my knowledge, this focus is new to the literature. In contrast, I will be relatively
less concerned with the magnitude of external returns to knowledge accumulation
φ because it remains empirically unsettled – we do not even know if it is positive
(representing “standing on shoulders” effects) or negative (“fishing out ideas”), Ha
and Howitt (2007); Bloom, Jones, Van Reenen, and Webb (2017) – and crucially
because my main message here is valid for any φ ≤ 1.

Please also note that the above specification assumes two types of inputs to the
R&D (knowledge creation) process: R&D labor LA, encompassing all the skilled
work done by scientists and technical personnel, and R&D capital KA. The latter
factor, although typically disregarded in the R&D-based economic growth litera-
ture, makes a huge difference when comparing “idea production functions” across
the four eras. The practicality and complexity of research equipment has undergone
systematic, cumulative changes. The difference in usefulness of Ptolemy’s astrolabe,
Galileo’s telescope, and the modern Very Large Telescope (VLT) is breathtaking;
perhaps even more so is to think how early statisticians actually computed correla-
tions and ran regressions over large datasets without relying on computers in their
calculations.

I assume that F is increasing and concave in both factors, KA and LA. This
implies scale effects in R&D (Kremer, 1993; Jones, 1995): the larger the economy,
the faster the rate of knowledge accumulation, at least in the short run. F should
be understood as an idea production function which is active within a certain tech-
nological paradigm (i.e., for a given γ). Observable technological progress then
comes from incremental innovations which, in turn, rely on radical innovations for
new research avenues to be opened (Olsson, 2000, 2005; Growiec and Schumacher,
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2013). Even if there are “fishing out effects” within each technological paradigm
(e.g., Bloom, Jones, Van Reenen, and Webb, 2017, suggest that φ < 0), opening
new paradigms rejuvenates technological opportunity (so that γ goes up) and may
sometimes even begin a new era.

In the hunter-gatherer era, there was no conscious “research” activity, and thus
discoveries could only be obtained via learning by doing, chance experiments, and
informal thinking. Folk wisdom was transfered orally across generations, often in
religious or superstitious frames, and generally was not shared beyond the tribe. As
knowledge was stored only in people’s memory, it was often forgotten. Thus the
hunter-gatherer era knowledge accumulation process was characterized by (i) a high
depreciation rate δ, (ii) low efficiency of knowledge creation γ, and (iii) small scale of
operations. Though, compared to other animals, the homo sapiens already passed
the threshold of a steady state, i.e. long-run stagnation in knowledge. As inferred
from the excavations, the humankind’s stock of knowledge began to be generally
trending up already after the cognitive (Upper Paleolithic) revolution.

However, the further millennia brought dramatic improvements relative to this
low starting point. These improvements affected all three key parameters of the
knowledge accumulation equation.

First, a few key discoveries dramatically increased the durability of knowledge by
reproducing it on “external memory”, thus facilitating its storage and reducing the
depreciation rate δ. These included the following: alphabet, writing and the printing
press (invented in the agricultural era), telecommunications and audiovisual storage
of data (in the industrial era), and ultimately digital memory and the Internet
(in the digital era). Although writing, especially if exercised on highly durable
material such as stone, theoretically made knowledge eternal, useful knowledge was
still sometimes forgotten and had to be reinvented from scratch, as exemplified by
the case of Roman bridges and aqueducts. Nevertheless, it may be argued that at
least from the industrial era onwards the knowledge depreciation rate is essentially
zero, as assumed by most of R&D-based economic growth theory (e.g. Romer, 1990;
Jones, 1999; Ha and Howitt, 2007; Kruse-Andersen, 2017).

Second, the history of human knowledge witnessed also a number of breakthrough
ideas which facilitated further discoveries and inventions, and hence increased the
efficiency of knowledge creation γ. Examples of such breakthrough ideas are ancient
philosophy, the university, the modern scientific method (empiricism, experimen-
tation, mathematization, hypothesis testing), the research laboratory, industrial
R&D, automation of tedious research tasks, digitalization of scientific knowledge,
and the World Wide Web equipped with efficient search engines. All these develop-
ments gradually improved our ability to distinguish facts from myths, organize our
knowledge set, locate gaps in it, ask novel, meaningful research questions, formu-
late testable theories, collect relevant data, and pursue empirical verification of our
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theories.
Furthermore, the efficiency of knowledge creation γ could also be affected by

radical innovations which open up new research avenues. Focusing on last centuries,
Gordon (2016) names three radical innovations which could have affected γ: (i) the
inventions of steam engine, railroads, and cotton spinning (1750-1830) at the dawn
of the industrial era, (ii) electricity, the internal combustion engine, and running
water with indoor plumbing (1870-1900), and (iii) ICT technologies: computers, In-
ternet, and mobile phones (since 1960), which initiated the digital era. The economic
effects of the first two radical innovations lasted about a hundred years but – ac-
cording to Gordon – the third one is probably going to be more short-lived. The key
reasons, as I would speculate, are that nowadays international technology diffusion
is much faster (Comin and Hobijn, 2010) and that the digital era is characterized
by way higher growth rates (and shorter doubling times) than the industrial era
and thus needs fewer years to completely reshape the world. As Gillings, Hilbert,
and Kemp (2016) put it: “After RNA genomes were replaced with DNA, it then
took a billion years for eukaryotes to appear, and roughly another two billion for
multicellular organisms with a nervous system. It then took another 500 million
years to develop neural systems capable of forming languages. From there, it took
only 100,000 years to develop written language, and a further 4,500 years before the
invention of printing presses capable of rapid replication of this written information.
The digitalization of the entire stockpile of technologically-mediated information has
taken less than 30 years. Less than one percent of information was in digital format
in the mid-1980s, growing to more than 99% today”.

4.2 Scale of Operations

The third parameter of the knowledge accumulation equation, the scale of oper-
ations, recorded perhaps a biggest increase in the course of human history. Its
growth may have well been the foremost reason for the formidable acceleration in
technological progress across the eras.

What I mean by scale of operations here is the degree of pooling of information,
knowledge, and talent in the R&D process. Even if some researchers may be working
alone, knowledge accumulation is always a cooperative process that occurs in a social
network. And as knowledge is cumulative – previous knowledge acts as basis for new
ideas – the size of this network affects the pace of technological progress. The most
adequate empirical measure of the scale operations in global R&D is probably the
size of the largest connected component of the global research network.

The network perspective is useful here because it helps distinguish between pop-
ulation growth, or growth in the number of active researchers, and connectedness of
global social networks. Both elements grew over the millennia but started from a
very low base. In the hunter-gatherer era, knowledge accumulation was pursued by
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small, disconnected bands and tribes, and hence there was massive duplication: the
same knowledge (e.g., making fire, its use for cooking, the wheel) was acquired in-
dependently in different hunter-gatherer tribes across the world, and this knowledge
was hardly shared. Low connectedness of social networks in prehistorical times ex-
plains also why agricultural revolutions happened independently in various parts of
the world, separated by millennia over which the useful information and technologies
(e.g., domesticated species) did not diffuse beyond surprisingly limited geographical
areas (Diamond, 1997).

The game was changed at the time of great geographical discoveries and Euro-
pean colonial conquests, which began in the late 15th century. Europeans’ ruth-
less “guns, germs and steel” (Diamond, 1997) had also the side effect of gradually
connecting the previously fragmented social networks, unifying the global pool of
technological knowledge, and increasing the scale of operations in the now global
R&D process. This reduced duplication externalities in knowledge creation (Mokyr,
2002). The concentration of power in the hands of Europeans also facilitated the
emergence of a universal language of science. Moving away from Latin, it became
a mixture of French, German, and English, until it was fully dominated by English
in the second half of the 20th century. Yet another unifying factor was the broad
adoption of common mathematical methods of scientific research.

I should also remark that the scale of operations in global R&D grew (and is
still growing) also because the share of population and capital attributed to R&D
actions is arguably increasing over time at the global scale. Given the digital-era
emphasis on R&D, technological startups, and innovation-led growth, this trend is
likely to persist and even further intensify in the future.

4.3 R&D in the Digital Era

Knowledge accumulation rapidly accelerated in the digital era compared to the in-
dustrial one. Taking the local control maximization perspective, one reason for this
acceleration is that the digital era puts useful data on center stage, and therefore
obtaining new knowledge becomes often a goal in itself, instead of an intermediate
goal en route to increasing value added, the key variable of the industrial era, or
increasing agricultural production. This encourages the world economy to allocate
more resources to R&D than ever before.

The second reason is the increased efficiency of knowledge creation. Radical
innovations such as computers, Internet, and mobile telephony, opened up new ex-
citing research avenues. At the same time, the digital era also produced new, highly
specialized forms of R&D capital. Many inventions would have never been obtained
if not for sophisticated, computerized physical, chemical and pharmaceutical lab-
oratories and the abundance of general-purpose computing power. In the digital
era, computational complexity is less and less an issue, allowing us to build more
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sophisticated models of reality, to pursue more detailed empirical identification of
facts based on statistical data, and to engage in extensive exploratory research and
data mining. Digital-era technologies also allow us to instantly search the massive
base of earlier publications.1

Extrapolating past trends into the future, we should then expect rapid knowledge
accumulation with an ever larger fraction of inputs assigned to the R&D process, and
an increasing contribution of R&D capital to the newly created knowledge. Several
authors (e.g., Frey and Osborne, 2013; Brynjolfsson and McAfee, 2014; Acemoglu
and Restrepo, 2016) suggest, however, that this may not be the end of the story.
Instead, we may be now just in the advent of an explosion of a new “game-changing”
radical innovation in the field of artificial intelligence (AI). Sufficiently advanced AI
may soon enter the “idea production function” not merely as R&D capital, but may
in fact substitute out humans in (at least part of) their researchers’ tasks.

Brynjolfsson and McAfee (2014) predict that sophisticated AI technologies will
likely turn out decisive for growth dynamics in the near future by developing “grad-
ually, then suddenly”, fueled by their highly scalable character and – potentially –
ability to self-improve. Hence, even though AI is still nascent at the moment,2 it is
easy to imagine that highly developed machine learning and big data algorithms, au-
tonomous laboratories, automatic translators, text generators, and multi-function
robots, can potentially have a massive impact on knowledge accumulation in the
future.

This perspective also raises the question of substitutability between computer
software (which includes AI algorithms) and human R&D labor. Thus far they have
been complementary: software was a tool in researchers’ hands. The primary reason
is that so far computer algorithms have been very bad at ideation, creativity, or
asking useful research questions (Brynjolfsson and McAfee, 2014). But this does not
have to be always the case. Day by day, AI algorithms are getting better and better
at pattern recognition based on big data, classification, categorization of various
sorts of content, and making adaptive decisions in noisy, variable environments –
and they are much faster than humans at all that.

The role of AI in future R&D processes depends on the answers to two following
questions. First, is ideation a sophisticated incarnation of pattern recognition or
a qualitatively different feature? Some preliminary results suggest the former an-
swer: AI algorithms are already able to write fiction books, compose music or draw

1The quantification of the role of R&D capital for R&D output and economic growth is still a
gap in the literature, though. I suppose that this is the case because R&D capital emerged as a
significant contributor to R&D output relatively recently.

2Although AI is already able to systematically outperform all humans in such sophisticated
games like chess and Go (DeepMind AlphaZero), and Jeopardy! (IBM Watson), safely and effi-
ciently drive cars in regular traffic (e.g., Google car or Tesla), and support physicians in diagnosis
(again IBM Watson).
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artistic pictures (Schmidhuber, 2009a). This would imply, however, that there is no
qualitative difference between human cognitive abilities and computer software in
R&D. If this is true, sufficiently developed AI algorithms given sufficient computing
power may one day surpass humans in doing research.

The second question pertains to the expected pace of AI progress. Namely, how
high are the returns to cognitive reinvestment in machine intelligence? (Yudkowsky,
2013). How efficient will the future AI be in re-designing itself and its environ-
ment in order to improve its research skills? Humans are in this regard limited by
their innate cognitive capacity. We are unable to rewire our brains, and so we cir-
cumvent this limitation by increasingly relying on external memory, data collection
equipment, and computational power. We also increasingly pool our resources by
working in ever larger research teams whose members have increasingly specialized
sets of skills. As our knowledge set is growing but our brains are not, interdisci-
plinary “Renaissance Men” are long gone (Jones, 2009). Unfortunately, speed and
accuracy of our interpersonal communication are far from perfect, and thus we may
be missing plenty of interdisciplinary insights. AI algorithms running on fast com-
puters, in contrast, communicate extremely fast and without error. They also by
far surpass us in terms of speed and serial depth of computation (Hanson and Yud-
kowsky, 2013). In contrast to us humans who cannot rewire our brains, machine
intelligence is also (at least theoretically) potentially able to recursively rewrite its
code provided that it is able to prove that the rewrite is beneficial (Schmidhuber,
2009b). So far, AI is however markedly lagging in terms of versatility and adap-
tivity. If this is resolved, we may observe a rapid buildup of AI skills, and even an
intelligence explosion. Whether it is going to be good or bad for us, I will try to
elaborate in Section 7.

5 Measuring the Level of Development

So far I have argued that systematic progress in human local control maximization
manifests itself as knowledge accumulation. In this section I will describe how it
is transformed into economic growth. I will review the key differences between the
eras and argue that the level of global economic development ought to be measured
differently in the respective eras. This postulate has intriguing implications for the
ongoing digital era.

5.1 Level of Development Across the Eras

How should one measure economic development at the regional, sectoral, national,
and global level? Economists’ first choice would be to use the GDP, gross value
added (GVA), or some related concept from the National Accounts. Moreover,
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when dealing with pre-industrial eras, we would typically voice discontent about the
lack of exact data, and proceed to construct proxy variables based on the available
information on population size, prices of traded and non-traded goods, etc., and
use some creative interpolations. This is precisely what is being successfully ac-
complished by, e.g., the Maddison Project.3 I have absolutely no objections to this
approach; yet, taking a step back and looking at the whole human history suggests
that it may provide an incomplete characterization of economic development at the
global scale and in the very long run. From this perspective, it appears to be a
struggle to provide exact measurement of only part of our actual development.

If one accepts the proposition that global economic development is a consequence
of the human drive to maximize local control, a direct way to measure development
at the global scale would be to calculate the grand sum of human control. But
what could this mean in practice? We need something that is easier to handle em-
pirically. Proxy variables like global population size, global GDP, multidimensional
measures of the degree of satisfaction of certain kinds of needs, subjectively reported
well-being, aggregate optimization power of human minds and man-made machines,
the aggregate stock of non-redundant data, etc., all have problems of one kind or
another.

My proposition is therefore to use era-specific measures of aggregate human
control. With the wisdom of hindsight, I argue that in the hunter-gatherer era
the extent of human control could be identified with the total carrying capacity of
ecosystems under human rule. I call it the habitat capacity, Hab. In the agricultural
era, characterized by Malthusian population dynamics, the extent of human control
was in turn equivalent to total human population, POP . In the industrial era,
the extent of human control could be identified with world GDP. For the digital
era I do not have the wisdom of hindsight, so I cannot tell for sure. Nevertheless
in the following paragraphs I would like to propose to equate digital-era aggregate
development Q with flows of bits of useful data. To my knowledge, this is a new
perspective.

Aggregate development Q can then be usefully decomposed as

Q = Hab · POP
Hab

· GDP
POP

· Q

GDP
. (2)

Equation (2) signifies that each technological revolution opens up a new dimension
of development, which was previously fixed. Moreover, growth in the new dimension
adds to the growth in the earlier dimensions (and does not substitute them). In fact,
thanks to positive feedback effects each new era strongly accelerates previous-era
growth.

The logic of this decomposition requires that a new technological revolution can
potentially occur only if the previous-era development level is sufficiently high. The

3https://www.rug.nl/ggdc/historicaldevelopment/maddison/
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new era always operates on top of the previous one: there would have been no
agricultural revolution if the habitats had not been conquered by the earlier hunter-
gatherers; no industrial revolution without secure supply of food for a large (and
growing) population; and no digital revolution without reliable supply of both food
and a variety of industrial-era goods and services. The consecutive revolutions can
be also viewed through the lens of Maslow’s (1954) hierarchy of needs: each era opens
new possibilities for satisfying higher-level needs, but pursuing them is possible only
if lower-level needs are already sufficiently satisfied.

In the hunter-gatherer era, successful development could only be done by ac-
quiring control over new habitats which were previously occupied by other species.
Humans gradually eliminated their enemies and advanced up the food chain (Harari,
2014). Once able to do this, they gradually spread around the world. The amount
of food and other natural resources which they could draw from a given piece of
land were roughly fixed because their technology did not allow them to systemat-
ically, intentionally transform ecosystems in their favor. Therefore population size
given habitat capacity was roughly fixed, and so was GDP per capita (at subsistence
level). Hence Q ≈ Hab.

The agricultural era, in contrast, was founded on the idea of transforming habi-
tats. Domestication of food crops opened up the intensive margin of land use,
allowing to sustain more human lives per square mile. Successful development could
then be done not just by conquering new land, but also by turning already acquired
land into farmlands and intensifying agriculture (Diamond, 1997). On the other
hand, the agricultural era was a Malthusian epoch: all increases in output were
eaten up by increases in population size, and thus GDP per capita was roughly
fixed (at subsistence level). Hence Q ≈ POP .

The technological breakthroughs of the industrial revolution brought a new form
of economic development, via industrial production and accumulating physical and
human capital. This opened up the intensive margin of consumption per capita,
allowing more goods (in terms of quantity, quality and variety) to be consumed per
person. After the initial period of rapid capital buildup, industrial-era economies
began to exhibit an ever growing demand for skilled labor. This opened a chil-
dren quantity–quality trade-off and triggered a decline in fertility, thus breaking the
Malthusian mechanism. In sum, in the industrial era aggregate human control could
be increased either extensively (via population growth) or intensively (via growth
in GDP per capita). On the other hand, information content per unit of GDP was
roughly fixed in the industrial era because data storage was limited to analog means,
primarily paper, and later audio and video tapes (Hilbert and López, 2011). Hence
Q ≈ GDP .

The key novelty of the digital-era technology is that it advances our local control
by facilitating collection, transformation, and communication of data. Compared
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to the industrial era, this opens up a new intensive margin of accumulating bits of
useful data per unit of GDP. It has never been so easy to obtain useful information
than in the digital era, and we are systematically taking advantage of this e.g. by
spending many hours per day browsing the Internet. At the same time, we are
increasingly active as creators of online content. It is getting clear that we tend
to draw more utility from useful data than its pecuniary value would suggest. In
sum, I posit that in the digital era aggregate human control can be increased either
extensively (via GDP growth) or intensively (via growth in useful data per unit of
GDP). Hence Q is roughly equal to the total flow of bits of useful data.

At this point, I would like to emphasize that there is no theoretical reason to
believe that the accumulation of useful data is human local control. In fact, saying so
would amount to adopting dataism which “declares that the universe consists of data
flows, and the value of any phenomenon or entity is determined by its contribution to
data processing” (Harari, 2017, p. 428). In contrast, I posit that useful data are not
the ends, but means to obtaining more human control. I am open to the possibility
that another technological revolution would come in the future, opening yet another
dimension of economic development and justifying a split of Q into further factors.
There are already a few possible candidates for such breakthrough technologies:
artificial general intelligence (AGI), nanotechnology, quantum computing, etc.

5.2 Feedback Loops Between the Eras

What blurs the sharp distinction between the consecutive eras is that they co-exist in
time and are interrelated in data. Each new era opens an entirely new dimension of
action but also applies the new developments and new knowledge to the previous-era
economy. Such positive feedback effects were visible across all eras.

Firstly, the agricultural revolution allowed our ancestors to transform ecosystems
in order to make them more habitable. Several previously hostile and thus sparsely
inhabited biomes such as steppes may have suddenly become fertile once domes-
ticated crops and animals have been introduced. Therefore the hunter-gatherer
measure of economic development, habitat capacity Hab, was increasing in the agri-
cultural era (until the point of satiation).

Secondly, the industrial era not only opened up a new sector of the economy,
but also revolutionized the old one: farming. Mechanization of agriculture, nitro-
gen, phosphate and potassium fertilizers, and the Green Revolution contributed to
massive increases in crop yields. At the same time the industrial-era progress in
medicine implied a massive drop in mortality. Both effects combined led to a huge
improvement in the agricultural era measure of success, i.e., total population (and
population density). However later fertility dropped, and nowadays rapid popula-
tion growth is observed only in poorest regions where people are still employed in
subsistence agriculture.
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Thirdly, modern digital-era technologies massively improve the efficiency of in-
dustrial production. There are many channels: cost-reducing and quality-enhancing
automation, increasing quality and variety of goods thanks to the featuring of elec-
tronics, improved information flow within and among firms, opening of new service
sectors (business-to-business, ICT services, etc.), etc. Furthermore, improved in-
formation flow facilitated rapid globalization, global fragmentation of production
and the creation of global value chains, all of which were also efficiency-improving
innovations. Robert Solow may have said in 1987: “You can see the computer age
everywhere but in the productivity statistics” (Solow, 1987), but nobody would dare
to say this today. Owing to a positive feedback loop, the effects of the digital era
have become very visible in productivity statistics.

5.3 Documenting Subsequent Accelerations and “Secular Stag-
nations” Across the Eras

The pace of economic development has been strongly accelerating across the eras.
The doubling period for aggregate human control Q has shrunk from 34 360 years in
the hunter-gatherer era to 885 years in the agricultural era (population growth), 33
years in the industrial era (total GDP growth in PPP), and 2.8 years in the digital
era (growth in the volume of communicated data). What fueled these impressive
accelerations? As I explained above, in my view the two key factors were the im-
provements in the knowledge accumulation process and the sequential opening of
entirely new dimensions of economic development. Knowledge accumulation was ac-
celerated by radical innovations which reduced the rate of knowledge depreciation,
increased the returns to research effort, accelerated diffusion of information, and
– most importantly – increased the scale of operations in R&D, measured by the
largest connected component of worldwide research network. Opening new dimen-
sions of economic activity, in turn, was associated with opening new technological
paradigms, driving up the pace of knowledge accumulation, at least until it got
overburdened by “fishing-out” effects (Jones, 2005; Bloom, Jones, Van Reenen, and
Webb, 2017). Upon each technological revolution, the new economy grew beside its
previous-era counterpart, and there were also sizable positive feedback loops between
eras.

The flipside of the aforementioned accelerations were “secular stagnations” which
appeared in the previous-era economy whenever the positive feedback loop from the
next era had subsided, and further development remained concentrated in the last
era. The topic is hotly discussed in the context of GDP growth slowdowns currently
observed across the developed economies (Gordon, 2016). In my view, the “secular
stagnation” hypothesis can be intuitively explained in the current framework as
hypothesized arrival of a period when positive feedback effects from the digital-
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era economy on the industrial economy have subsided and further growth remains
concentrated only in the digital era.

Economic growth in the hunter-gatherer era was driven by two factors: acquisi-
tion of new natural habitats, coupled with proportional increases in human popula-
tion, and gradual accumulation of technological knowledge. Both factors grew at a
snail’s pace. According to Kremer (1993) data, the population growth rate between
25 000 BCE and 5 000 BCE amounted to 0.002% per annum. As the resultant pop-
ulation doubling period amounted to 34 360 years, the hunter-gatherer population
failed to double in this period.

In the agricultural era, in contrast, new technological developments allowed to
transform natural habitats, intensify food production, and hence increase popula-
tion density. At the same time, knowledge accumulation accelerated thanks to a
few breakthrough ideas, like writing or philosophy, and to the gradually increasing
scale of operations in R&D. There was also a positive feedback loop with the hunter-
gatherer economy in the sense of acquiring additional habitable land. However, as
eventually all useful land was subjected to human control, a “secular stagnation” in
populated land area set in. According to Kremer (1993) and Piketty (2014) data,
in the period between 5 000 BCE and 1820 CE population growth rate amounted
to 0.078% per annum (implying a doubling period of 885 years). While still modest
by modern standards, this amounted to a massive 39-fold increase in the population
growth rate compared to the hunter-gatherer era. Owing to the Malthusian mech-
anism, though, increases in human control per capita Q/POP were very limited.
According to Piketty (2014) data, GDP per capita growth rate (PPP) in 0–1820 CE
amounted to just 0.019% per annum (so that it would potentially double only in
3600 years).

The industrial revolution brought a further acceleration in economic growth,
through a number of channels. First of all, the world was already connected at
the time, so knowledge accumulation could operate at a very large scale. Second,
after the printing press knowledge depreciation was essentially driven down to zero.
Third, breakthrough industrial technologies set off the processes of physical and
human capital accumulation, as well as increases in GDP per capita and (widely
shared) standards of living. There was also a positive feedback loop with the agri-
cultural economy: mechanization of agriculture and spread of fertilizers increased
crop yields, while developments in medicine, hygiene and increases in standards
of living dramatically reduced mortality, paving the way for a demographic explo-
sion (Boucekkine, de la Croix, and Licandro, 2003). Soon thereafter, however, the
children quantity–quality trade-off associated with rising educational attainment
triggered a decline in fertility, gradually bringing population growth rates down,
eventually to zero or even mildly negative values in the Western world, a clear
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“secular stagnation” in population growth.4 According to Piketty (2014) data, in
the period 1820-1990 CE the headline industrial-era measure of development, world
GDP (in PPP), grew at a rate of 2.14% per annum, doubling every 33 years. The
intensive margin of growth, GDP per capita, grew at a rate of 1.17% per annum,
doubling every 60 years. At the same time, global population grew at a rate of
0.96% per annum, doubling every 72 years.

The acceleration brought by the digital revolution, again, worked through two
channels: accelerated knowledge accumulation and the opening of a new dimension
of economic growth. Knowledge accumulation was accelerated thanks to the de-
velopment of digital R&D equipment, facilitating knowledge storage and retrieval,
connecting the researchers via the Internet, and automating the most tedious re-
search tasks. In terms of the new dimension of growth, in turn, the digital revolution
set off the processes of rapid hardware and software development. Furthermore, a
strong feedback loop was activated with the industrial era via automation, increas-
ing quality and variety of goods, improved information flow, and the opening of new
sectors. According to Hilbert and López (2011) data, between 1986 and 2007 pro-
cessor capacity grew at 58% per annum (doubling every 1.5 years, the exact Moore’s
Law), data storage grew at 23% per annum (doubling every 3.3 years), and data
communication grew at 28% per annum (doubling every 2.8 years). Owing to the
positive feedback loop with the industrial-era economy, GDP growth seems to have
accelerated in the digital era. According to Piketty (2014) data, in 1990-2012 CE
the average GDP per capita (PPP) growth rate was equal to 2.08% (doubling every
34 years).

This is where we are now. Are we going to witness a gradual decline in the
feedback effects from the digital era to the industrial era in the future? Hard to
tell, but if we were to extrapolate from the previous technological revolutions, the
answer would be positive: yes, there would be a “secular stagnation” in GDP growth.
Nevertheless we would still be observing soaring growth rates of information creation,
storage, and communication – and ultimately, aggregate human control would be
growing faster than ever. Until we perhaps reach another technological revolution.

Thinking of possible further technological revolutions, one should bear in mind
that although exponential growth rates and doubling times are a convenient descrip-
tive tool, exponential growth should not be expected to continue indefinitely. That
would call for making at least one highly unlikely knife-edge assumption (Growiec,
2007). Also factually, looking at the millennia of past economic growth suggests
that sigmoid (S-shaped) long-run development patterns are in fact much more accu-

4However, according to Piketty (2014) data, in 1990-2012 population grew at an unprecedented
rate of 1.3% per annum, implying a doubling period of 53 years. This aggregate figure was driven
exclusively by population growth in relatively backward, largely agricultural societies of e.g. Sub-
Saharan Africa or Southeast Asia.
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rate descriptions of reality. Habitat acquisition has been completed long ago, global
population growth is projected to stop in the next century, and it is conceivable
that global GDP will eventually stagnate, too. What is striking, though, is that
the sigmoid functions describing each consecutive era are getting sharper, implying
faster growth soon after inception of the era, and that the consecutive revolutions
are getting closer to each other in time. Extrapolating this observation forward in
time, Hanson (2000) speculates that “within the next century a new mode might
appear with a doubling time measured in days, not years.”

Moreover, using an alternative methodology of estimating a super-exponential
growth pattern with power-law acceleration in the growth rate, Johansen and Sor-
nette (2001) find that the data are consistent with a spontaneous singularity in
the year 2052 ± 10, signaling an abrupt transition to a new regime. Similar super-
exponential growth patterns in ICT data have been documented by Nagy, Farmer,
Trancik, and Gonzales (2011).

The singularity (Kurzweil, 2005) is however an elusive concept. The literature
abounds with futuristic interpretations of singularity, going way beyond the formal
mathematical definition of a vertical asymptote, i.e. the situation where a certain
variable (e.g., GDP per capita, or aggregate development Q) tends to infinity in
finite time. This seeming infinity is frequently identified with qualitative change but
it may also be an artifact of poor approximation of sharply rising but finite-valued
time paths with hyperbolic curves which possess a vertical asymptote.

5.4 Designing New Measurement Methods for the Digital
Era

If we agree that the digital-era economy is able to increase the extent of human
control (and the degree of satisfaction of human needs) beyond the pecuniary value
of its goods and services, it must follow that our standard measures of economic
development, such as GDP, are adequate for the industrial era but obsolete when
dealing with the digital era.

The concept of the National Accounts is rooted in the industrial era. This
reflects both its history and its focus on the dollar value of inputs and outputs of
production processes. By construction, differences in information content per unit
of value added are not acknowledged in the National Accounts. There are reasons
to believe that these differences carry an economic meaning, though. For instance,
several classes of digital goods, such as online entertainment (free music, movies,
etc.), open source and freeware utility software, or open access scholarly publishing,
are entirely missed by the National Accounts even though they contribute to the
well-being of the society (Brynjolfsson and McAfee, 2014), satisfaction of human
needs, and ultimately the aggregate span of human control.
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Therefore, wishing to account for the tremendous growth in the world’s cumula-
tive ability to compute, store, and communicate useful information, by far exceeding
GDP growth rates in the last decades, here I tentatively propose that in the digital
era, economic development Q should be associated with flows of bits of useful data
among humans and devices. This communication can be done through traditional
means (e.g., talking, writing) but also increasingly through digital means. I think
that insisting on looking at global economic development through the lens of GDP
growth misses the fact that in the digital revolution – for the first time in history –
decoupled total data transmission from GDP.

The tremendous growth of the digital-era economy justifies the need to design
a counterpart of National Accounts specifically for data flows instead of flows of
goods and services. To account for digital output, we need a concept such as bits
of useful data which would work like value added in the National Accounts. In
particular, flows of useful data should be distinguished from all data flows, perhaps
in a manner similar to the distinction between value added and global output. One
should also redefine the sectoral breakdown of the economy in order to get a more
precise measurement of the structure of data flows. This will clearly be a huge
endeavor, but likely not an impossible one, and clearly a very useful one. Beyond
economics, preliminary ideas on how this could be accomplished have been proposed
by information theorists (Hilbert and López, 2011; Hilbert, 2017).

This call for a new measurement design comes with a number of caveats. First,
data flows rarely respect national boundaries, thus suggesting that the measurement
ought to be done at the global scale. Therefore this is in fact a call for Global (not
National) Data Accounts. Second, there is a lot of redundancy in data transmission,
storage, and even creation. A lot of thought must be devoted to the filtering of raw
data flows so as to distill the key variables in question. Third, some data flows may
be unintended or detrimental to the users. For one thing, think of the spread of fake
news and Internet hate. I will elaborate more on this in Section 7. Fourth, the data
accounts would have to cleverly embrace the evolving role of intellectual property,
and work its way around data secrecy in order to adequately compute the volume
of data flows without compromising the proprietary character of some datasets.

Of course, this is not to say that National Accounts should be discontinued. To
the contrary, in fact the creation of Global Data Accounts may improve the accuracy
of National Accounts. I am only saying that the digital revolution opened up a new
dimension of actions which has not been sufficiently measured yet. So far we can
indirectly evaluate the digital-era economy by accounting for the feedback effects of
the digital era on the industrial era, which we do by using data on GDP and value
added (e.g., Jorgenson and Stiroh, 2000; Timmer and van Ark, 2005). We fail at
capturing the total effects of digital development, though.

It is also critical to distinguish between inputs and output of the digital-era pro-
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duction process. Flows of useful data are generated using the previously accumulated
stocks of hardware and software, both of which can and should be measured. I will
elaborate more on digital-era production inputs in Section 6.

5.5 Preliminary Evidence on the Data Explosion

While probably insufficient for economic purposes, information theorists have al-
ready produced their first assessments of the level and growth of the world’s total
storage, transmission and computation of data. The seminal contribution of Hilbert
and López (2011) tracks 60 analog and digital technologies during 1986–2007 and an-
nounces that: “In 2007, humankind was able to store 2.9×1020 optimally compressed
bytes, communicate almost 2× 1021 bytes, and carry out 6.4× 1018 instructions per
second on general-purpose computers. General-purpose computing capacity grew at
an annual rate of 58%. The world’s capacity for bidirectional telecommunication
grew at 28% per year, closely followed by the increase in globally stored information
(23%).”

To put these numbers in perspective, digital storage, transmission and computa-
tion of data has also been compared with its analog counterpart, done for millennia
in human brains. In this regard, note that before the invention of writing, human
brains were the only form of store of data. After the radical innovations of writ-
ing, printing press, analog means of audio and video recording, etc., data storage
was gradually outsourced to “external memory”, and the stock of stored data per
person began to rise. The digital revolution put this growth to an entirely different
gear, though. Gillings, Hilbert, and Kemp (2016) write: “Evolution has transformed
life through key innovations in information storage and replication, including RNA,
DNA, multicellularity, and culture and language. We argue that the carbon-based
biosphere has generated a cognitive system (humans) capable of creating technol-
ogy that will result in a comparable evolutionary transition. Digital information has
reached a similar magnitude to information in the biosphere.” Most of this explosion
took place in the last three decades as the world’s capacity to store, communicate,
and compute information has begun to soar only since the 1980s (Hilbert and López,
2011). Quantitatively, “[i]nformation technology has vastly exceeded the cognitive
capacity of any single human being (...). In terms of capacity, there are two measures
of importance, the number of operations a system can perform, and the amount of
information that can be stored. The number of synaptic operations per second in a
human brain has been estimated to lie between 1015 and 1017 (...). While this num-
ber is impressive, even in 2007, humanity’s general purpose computers were capable
of performing well over 1×1018 instructions per second (...). Estimates suggest that
the storage capacity of an individual human brain is about 1012 bytes (...). On a per
capita basis, this is matched by current digital storage (5× 1021 bytes per 7.2× 109

people).” (Gillings, Hilbert, and Kemp, 2016)
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A few observations are due here. First, these estimates, while impressive, are
exact only up to an order of magnitude. This is not yet the statistical precision we
are accustomed to in economics.

Second, these estimates include a mixture of input and output, stock and flow
variables. Data storage capacity and processor computational capacity can be
thought of as stock input variables, akin to physical capital used in industrial pro-
duction. The amount of actually communicated data is, on the other hand, a flow
output variable. It is however not yet our postulated concept of flows of useful data.
To reach that level of precision, one would have to filter out the data redundancy as
well as intermediate, auxiliary data used up in computations. In economic terms,
total communicated data is a digital-era equivalent of global production, whereas
flows of useful data – an equivalent of value added.

Third, setting up Global Data Accounts and identifying the flows of useful data
may also indirectly facilitate measurement of global knowledge A. Thus far the
latter variable has proven to be inherently difficult to measure. The best proxies
we have as economists are probably total factor productivity (TFP), patents, and
research articles plus scientific books. They are all very crude measures of techno-
logical knowledge, though. TFP is a residual measure which also lumps all sorts of
measurement and specification error. Direct measures like patents or research arti-
cles and books, in turn, are problematic because of incomplete treatment of actual
usefulness and information content of each patent, article or book.

6 Accounting for the Key Factors of Production in
the Respective Eras

Humans have learned to produce a variety of goods and services, using a variety of
inputs. To organize this variety and enable simplified modeling, macroeconomists
frequently group the inputs and outputs into relatively homogeneous clusters and
plug them in an aggregate production function. Whether this concept is an adequate
and useful representation of reality, remains open to debate (Felipe and Fisher,
2003; Temple, 2006). For one thing, aggregate production functions always feature
some residual terms such as TFP (Solow, 1957). In this section, though, I use the
aggregate production function representation of production processes in order only
to organize the thinking rather than to produce exact implications.

6.1 Aggregate Production Function Across the Eras

Throughout the following analysis I describe the production process with an aggre-
gate production function of form:

Q = F (A,K,L), (3)
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where Q is the output variable representing aggregate human control, A is techno-
logical knowledge, K is the “capital” input, and L is the “labor” input. In accordance
with all literature I suppose that F is increasing in A,K,L. I also assume constant
returns to scale with respect to K and L but not A (Romer, 1986, 1990; Barro
and Sala-i-Martin, 2003). Across the four eras, the catch-all terms K and L will
encompass very different inputs, described below. To my knowledge, thus far the
literature has not systematically investigated the changes in composition of the key
production factors across the entire human history.

I posit that K and L are gross complements, as capital and labor have been
over the last century (Chirinko, 2008; Klump, McAdam, and Willman, 2007, 2012;
Oberfield and Raval, 2015) and as land and labor naturally are in the agricultural
production function. Gross complementarity means that an increase in the quantity
of one factor implies an increase in the elasticity of output with respect to the other
factor. In a perfect-competition setting, the latter also means an increase in the
other factor’s share of output. For example, accumulating more capital depresses
the capital’s share of output in favor of labor. Gross complementarity implies also
that each of the factors is essential for production, i.e., that if its supply is zero, so
is output.

The output variable of the hunter-gatherer era is total food production from
habitats under human control. It is roughly equal to the natural habitat capacity,
Hab. Flows of food and other natural resources (e.g., furs for clothing, wood for
shelter, healing herbs, etc.) from a given piece of land are essentially fixed. Therefore
the “capital” factor can be identified with cumulative carrying capacity of natural
habitats under human control, K = Hab, and “labor” is proportional to population
size which, in turn, is also proportional to the habitat capacity, so that L = Hab.
Population size and labor hours per person are set from the binding subsistence
constraint. Hence,

Q = F (A,Hab,Hab) = Hab · F̄ (A). (4)

In consequence, the slow increases in output Q per piece of land are exclusively due
to increases in A, i.e. due to the invention of better stone tools, hunting methods,
new uses of fire, etc.

The output variable of the agricultural era is total food production, and the
inputs are land (K = Land) and agricultural labor (L = POP ):

Q = F (A,Land, POP ) = POP · F̃
(
A,

Land

POP

)
. (5)

Thanks to the domestication of a range of food crops, production of calories per
land area was higher in the agricultural era than in the hunter-gatherer era, allow-
ing to feed more people. In the early years of the Neolithic revolution farmland was
relatively easy to accumulate, and thus people started gradually transforming nat-
ural ecosystems to arable land. This generated food surpluses, allowing to increase
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population size and accumulate more agricultural labor. These food surpluses also
drove the rise of non-food-producing specialists, emergence of landed elite, and ac-
quisition of more agricultural land. As the supply of yet uncultivated land began
to shrink, and land became the limiting factor of production, growth in output per
worker declined. Following the Malthusian mechanism (Kremer, 1993), consump-
tion was driven down to subsistence levels (except for landed elite, and especially if
this elite practiced primogeniture, Bertocchi (2006)). What followed was an era of
few wealthy feudal lords and many poor peasants (who were often tied to their lords
in serfdom). Scarcity of land implied high land-owner shares of agricultural output
and great inequality (Piketty and Zucman, 2014). When the average cultivated land
area per person stagnated, all further increases in output per person were driven by
technological progress, captured by increases in A.

The output variable of the industrial era is GDP, and the inputs are physical
capital K and human capital H:

Q = F (A,K,H). (6)

In the early years of the industrial revolution, physical capital was relatively scarce
and easy to accumulate. The first capitalists began to build factories, manufactures,
assembly lines, and set up their enterprises. This increased output per worker, mak-
ing labor the scarce input, at which point the demand for industrial labor went up.
This demand rise applied in particular to the services of skilled labor. The supply-
side response was increased educational attainment, partly due to the emergence
of public education, ending up in secular increases in human capital per worker.
The equilibrium response was an upward trend in wages and the emergence of skill
premium. The capital share of output, and income inequality, first went up (in the
Marxian period) and then down (Galor, 2005, 2011).

In mature industrial economies, most of the 19th and 20th century was charac-
terized by Kaldor’s (1961) “stylized facts”, with constant factor shares of output, a
steady return to capital, and an upward trend in wages, capital and consumption
which grew at the pace of output. The driving force of long-run economic growth
was technological progress captured by sustained growth in A, further accompanied
by marked increases in physical and human capital per capita over a prolonged tran-
sition period (Barro and Sala-i-Martin, 2003; Jones, 2005). These “stylized facts”
ceased to hold only around 1970s–1980s, immediately prior to the dawn of the digital
era (Jones and Romer, 2010).

The industrial era also influenced the factors of production in the agricultural-
era economy. The emergence of the early capitalists as well as mechanization of
agriculture somewhat diluted the power of the incumbent landed elites, eventually
reducing agricultural-era inequality and democratizing control of land, thus at least
partially preparing ground for Revolutions of 1848.
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The output variable of the digital era, as argued above, is the flow of useful data,
and the inputs are hardware (in place of the “capital” input K), and software (in
place of the “labor” input L):

Q = F (A,Hardware, Software). (7)

In equation (7), hardware includes all sorts of digital capital goods (computers,
cell phones, various electronic devices, industrial robots, etc.), whereas software
includes all sorts of algorithms and programs which can be run on these devices.
Crucially, the “software” amalgamate includes also human labor because it is human
programmers who ultimately write the instructions to be performed by hardware.
Human labor in the digital era is thus complementary to hardware and substitutable
to (pre-programmed) software.

In the beginning of the digital era, hardware was relatively scarce and easy to
accumulate, and therefore people started accumulating it, thus augmenting their
skilled labor. This brought about fast increases in computation power (at the pace
of Moore’s Law) as well as flows of useful data, both per person and per unit of em-
ployed software. At the same time, thanks to scalability and complementarity with
rapidly expanding hardware, leading software producers such as Microsoft, Google
and Facebook have become global superpowers. Compared to the mature indus-
trial era, three last decades also brought about gradual declines in the labor share
of global output (Karabarbounis and Neiman, 2014), increases in the profit share
and CEO pay (Gabaix and Landier, 2008; Barkai, 2017), and increasing inequality,
in particular top income inequality (Piketty and Saez, 2003; Piketty and Zucman,
2014; Jones and Kim, 2017).

This is where we are now. But how will the digital-era economy develop in
the future? Economic logic as well as analogies to the history of agricultural and
industrial eras suggest that we may be soon observing rapid increases in the demand
for (broadly defined) software. This is because software has by now clearly become
the scarce factor, the bottleneck of the digital economy. With a few exceptions,
our software generally does not use the available computing power efficiently. We
have even coined a humorous saying on this: “What Intel giveth, Microsoft taketh
away”. In fact many fancy software features that we like, such as prettier graphics,
more intuitive frontend solutions, etc., generally take away processor power and
burden memory with information which is not central for the core digital process.
Furthermore our software is very specialized and rigid in terms of data requirements.
This means that, despite tremendous growth in available computational capacity,
the level of automation of the digital-era production process remains low. Most of
the time when computing power stays idle is when the user has to set the instructions
manually.

Because computing power is accumulated at the pace of Moore’s Law, the price
of software relative to hardware is quickly going up. This creates potentially huge
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economic rewards to developing better software, in particular AI. I am pointing
specifically at AI here because it appears the best way to circumvent the relatively
slow pace of human thinking and computer–human communication. Both elements
slow down hardware substantially compared to within-computer computation and
computer-computer data flows. The largest increases in digital-era output are ob-
served when tasks are fully automated.

Thus far there has been place for both humans and computer algorithms in the
“software” amalgamate, but it does not have to always be the case. Algorithms are
vastly faster and more accurate, but they lack the cross-domain versatility of the
human mind (Yudkowsky, 2013) and the ability of ideation and creativity (Bryn-
jolfsson and McAfee, 2014). But, as mentioned earlier, they are getting better and
better at pattern recognition based on big data, classification, categorization of var-
ious sorts of content, etc. Automation is already gradually eliminating routine jobs,
both manual and cognitive (Acemoglu and Autor, 2011; Autor and Dorn, 2013; Frey
and Osborne, 2013), and the remaining jobs are safe only until the development of
sufficiently sophisticated and versatile AI technologies. Muehlhauser and Salamon
(2012) present the key advantages of AI relative to humans: increased computational
resources, vastly superior communication speed, increased serial depth (of thought),
duplicability, editability, goal coordination, and improved rationality. These ad-
vantages are important for gauging why AI is a potentially valuable substitute for
human capital in performing majority, if not all tasks of the digital-era economy.
Even so, people tend to protect themselves against full automation of human tasks
by creating new jobs (Acemoglu and Restrepo, 2016). Indeed, nowadays people en-
ter e.g. into creative niches of YouTube vlogging, Instagram modeling, videogame
graphics art, etc., at a quite high rate. But will we be always able to do so? I will
try to comment on this in Section 7.

I also expect that the internal structure of the “software” amalgamate will also
shape the future changes in income inequality. So far the digital era has been
marked by increasing income inequalities and profit shares. To some extent, this
may be exploiting the fact that computer software is extremely highly concentrated
nowadays (e.g., Microsoft, Google, Facebook), owing to the fact that software is
highly scalable and its market is global. At the same time, it is the bottleneck of
the digital era, relative to the more dispersed and often idle hardware. If computer
software will indeed be developed in the future sufficiently strongly to contribute a
larger share of the total “software” input, income inequality and profit shares will
rise further. These trends will likely be even exacerbated if we observe progress in
the creation of more and more versatile AIs. In contrast, they may reverse if one day
software ceases to be the scarce input (and thus its share of output will go down),
or if a well-designed global digital policy is implemented that addresses this issue.
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6.2 Inequality Between Eras Trumps Inequality Within Eras

Let me now briefly comment on the impacts of the four technological revolutions
on inequality, understood as variation within the distribution of certain variables
across the human population. The key variables in question are income, wealth, or
consumption of goods and services, though I expect that in the digital era it may
also make sense to compute inequality in flows of useful data or access to computing
power.

Many decompositions are useful for understanding the sources of inequality. Here
I would like to concentrate on two of them: factor shares vs. concentration of factor
ownership, and within-era vs. cross-era inequality.

The first of the above decompositions naturally corresponds to the aggregate
production function approach I use in the current section. It can only be applied
within a given era. The key logic is that changes in factor shares automatically
bring changes in the degree of inequality as long as ownership of one factor is more
concentrated than the other. And indeed ownership of “capital” K was typically
much more concentrated than “labor” L, because agricultural labor, industrial labor,
and human capital are naturally dispersed as they are embodied in humans. Land
and physical capital, in contrast, tended to be concentrated in relatively few hands
for centuries (Galor, 2005). The concentration of capital in the Western economies
went down only in the early 20th century (Piketty and Zucman, 2014), during the
world wars. In consequence the time path of inequality broadly followed the pattern
of the capital share, but for the decline in inequality around both world wars.

The digital era seems to stand out from this analysis. For the first time in
history, the “labor” factor L includes also disembodied pre-programmed software,
whose ownership is highly concentrated. Therefore in the digital era increases in
the “labor” L (software) share of output may possibly be even associated with in-
creasing, not decreasing inequality, if bulk of the remuneration goes to computer
software owners rather than human users. One should also be cautious when in-
terpreting the landmark macroeconomic trends of the last 30 years: declining labor
shares (Karabarbounis and Neiman, 2014), increasing profit shares (Barkai, 2017),
and increasing inequality, especially at the top of the distribution (Piketty, 2014;
Andrews, Criscuolo, and Gal, 2016; Jones and Kim, 2017). These observations are
based on data which conflate the industrial-era and digital-era economy, and thus
rather capture the shift between the eras and not illustrate any phenomena within
the digital era. These findings are also confounded with the fact that technological
revolutions hugely affect relative prices. After the industrial revolution there was a
massive decline in the price of industrial goods relative to land and property. Simi-
larly following the digital revolution we observe a decline in the price of ICT capital
and other investment goods relative to consumption goods (and especially land and
property), cf. Greenwood, Hercowitz, and Krusell (1997); Fernald (2015).
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To understand the within-era vs. between-era inequality decomposition, one
should begin with the observation that (i) technologies from subsequent eras coincide
across the world and (ii) there are marked growth accelerations between eras. A
large fraction of population in Sub-Saharan Africa is still employed in subsistence
agriculture. At the same time, it becomes a continent of contrasts whenever we
see a clash of the agricultural, industrial and digital eras. The Western world, in
contrast, has largely eliminated subsistence agriculture, and achieved affluent and
relatively equal societies. Yet, even there one may easily observe differences in the
pace of development between the relatively stagnant traditional industry and the
booming digital economy. This all suggests that the timing of takeoff into another
era determines the relative standing of nations, regions, economic sectors, and people
(Diamond, 1997). As growth rates can differ by orders of magnitude between eras,
cross-era inequality quickly overwhelms within-era inequality, giving rise to a “great
divergence” in economic development and bimodal (or more generally, multimodal)
distributions of e.g., country or regional GDP (Quah, 1997; Henderson and Russell,
2005). Also within countries, measured increases in inequality, in particular top
income inequality and CEO pay, may partly represent between-era inequality, i.e.
the inequality between those who got on the train and those who missed it.

6.3 Measuring the Inputs in the Digital Era

Following my earlier call to design and implement Global Data Accounts in order to
properly capture the digital-era output variable, flows of useful data, I would also
like to call for better measurement of inputs of the digital-era production process,
hardware and software. We also have to learn to measure hardware and software
share of digital output, and digital inequality – by which I do not just mean in-
equality in available computing power, data storage capacity and bandwidth (akin
to wealth inequality), but also in the in- and outflows of useful data (similar to
income inequality).

Among the two inputs, measurement of hardware is probably going to be rela-
tively easier. The “hardware” amalgamate may include all capital and consumption
goods which have a digital component, but its key characteristics are likely going
to be computing power, data storage capacity and bandwidth. First estimates have
been already done (Hilbert and López, 2011). The “software” factor is going to be
way more challenging, though. It may include the flows of services of existing (pre-
programmed) software, but also the work of human programmers and other users. It
could potentially be measured, e.g., as the aggregate number of elementary instruc-
tions provided to hardware. A caveat is that while human labor is rivalrous, software
services are not because software can be costlessly copied and run simultaneously
on many devices.

A related challenge would be to quantify hardware capacity utilization. Intu-
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itively, hardware capacity utilization is likely generally low, much lower than physi-
cal capital utilization. We may likely find that computing power and bandwidth are
idle most of the time, because our software (and particularly so, the human users)
provide relatively very few instructions. This further strengthens my earlier asser-
tion that huge returns are waiting for the developers of new software which could
tap this unused potential and generate large flows of useful data.

There are also potentially interesting distributive implications from quantifying
the volume of idle computing power and digital memory. Namely, their substantial
fraction is probably going to be embodied in personal computers and other electronic
devices whose ownership is dispersed. This raises a question if we could potentially
implement a “computer banking” system allowing users to rent their idle computa-
tional capacity and digital memory, so that they could use their electronic devices
as source of capital income. That would act to reduce inequality. On the software
side, however, that would probably further reinforce development of sophisticated
software replacing human work and thus increasing inequality. Thinking of striking
a balance, we have to bear in mind, though, that the latter phenomenon will likely
continue into the future anyway.

One final caveat is that there will be less and less scope for comparing the “wealth
of nations” in the fully globalized digital era. The primary level of measurement
should probably be gradually shifted from the country level to the company level, the
global value chain (that is, value network) level, and the global level. Technological
companies are already multi-national and almost footloose. For example, real GDP
grew in Ireland in 2015 by 25.6%, against the European Union average of 2.3%
(Eurostat data, in PPS). Why? Because a few large multi-national but hitherto US-
based companies have either moved their productive assets to Ireland (e.g., Apple
moved some of its valuable intellectual property assets such as copyrights and patents
on the design and technology) or domiciled in Ireland by buying a smaller Irish-
registered rival and “inverting” into an Irish corporate structure. They did so to
save on taxes. It is however doubtful if this statistical fact had any bearing on the
actual incomes and productivity of Irish citizens.

6.4 The Case for Better Digital Policy

Acknowledging that we have entered a new, digital era of economic development,
offers one more (perhaps controversial) insight. Namely, it appears that compared
to the agricultural and industrial economy, the digital economy is virtually unreg-
ulated. Our landmark economic policies and institutions have been designed with
the industrial-era economy in mind. They are either inefficient when applied to a
digital-era economy, or not applicable at all. At the same time, dedicated digital-era
economic policies or institutions have not been devised yet.

Although such observations are rarely made in the public debate, they should not
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come as a surprise: we are arguably still at an early stage of the digital era, and after
previous technological revolutions it also took time to develop suitable policies and
institutions, which were developed bottom-up. When the agricultural revolution of
the Neolithic period allowed for accumulation of food surpluses, this had anarchic
outcomes until the state emerged and enforced hierarchical order, much more cen-
tralized than in the previous hunter-gatherer era (Diamond, 1997). Analogously,
the industrial revolution unleashed fast-growing, laissez-faire industrial capitalism
which was gradually regulated by installing worker rights, taxes, public education,
health insurance, etc. Ultimately in the Western world this led to the welfare state
with an increasingly high share of state budget in GDP. The industrial era arguably
strengthened the centralized state in terms of tax collection and law enforcement
compared to the agricultural-era powers of feudal rulers.

So far the digital-era economy is very loosely regulated compared to the industrial-
era economy. Authorities are not, e.g., taxing data flows (which would be a digital-
era equivalent of VAT), taxing software providers for their returns to collected useful
data (which would be an equivalent of income tax), enforcing penalties for distribut-
ing harmful data, etc. Consequences are abound. For example, there exists a sizable
“dark web”, a digital-era representation of the shadow economy. Cyberpolicing is
lagging behind cybercrime. Organized Internet-based misinformation actions are
able to affect democratic voting outcomes and public sentiments but so far cannot
be traced back to their original organizers. There is an economic arms race towards
most versatile and adaptive AI technologies but there is very little research on AI
safety. Insufficient regulation arguably also facilitates the formation of global mo-
nopolies, large-scale intrusion into privacy, and generally abusing the position of
power on the side of large technological corporations. There is also a legitimate
reason behind this last set of outcomes, however: unprecedented scalability of the
digital economy. For example, software applications can be immediately deployed
to the entire global market. In the digital era, start-up companies can grow very
fast very quickly, and thus incumbent companies have strong incentives to collect as
much data as possible in order to be able to fill the emerging market niches first.

Designing policies and institutions for the digital era requires to ask some impor-
tant questions. First, are we able to trace and quantify the objects of interest, such
as data returns to software and flows of useful data? Note that in the early years of
the industrial revolution, when only agricultural-era regulations and policies were in
place, physical capital and industrial output were also viewed as rather fluid, elusive
concepts, not so easy to quantify and regulate as land ownership and crop yields;
now we do this on a daily basis.

Second, the digital-era economy is global, and costs of “relocating” the business
are historically small: it is much easier to re-route data traffic than to re-route goods
or establish overseas businesses. Thus sensible digital policy should arguably be
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globally administered. But who should take care of this and would these institutions
be publicly legitimized? Global institutions like the World Economic Forum clearly
recognize the digital revolution (Schwab, 2016). In contrast, our mindsets tend to
be adjusted to the local and national levels and our economics is still rooted in the
industrial era. Perhaps time is needed until the world accepts that there could be
legitimate authorities at the global level, even if specializing only in digital policy.

7 Side Effects of Development

If the driving force behind past development has been the human drive to maximize
local control, we should not be surprised that it had many unintended side effects.
For one thing, changes in natural ecosystems always have consequences reaching
beyond the direct objectives which motivated these changes. Nature is a highly
complex system, and humans cannot fully comprehend its complexity. We only
build simplified models, so even with the best of our intentions there are always
aspects of reality which are not accounted for.

We do not pursue the best of our intentions, though. We do not even try to
maximize long-run social welfare, and we are not preoccupied with sustainability
or intergenerational equity. What we do is maximize our local control, here and
now. We do not account for the external effects beyond these narrow confines. In
consequence, unintended side effects of our activities appear due to insufficient scale
of analysis and suboptimal cooperation (bounded rationality), as well as insufficient
treatment of long-run problems (myopia).5

We also do not have sympathy for other species. Successful expansion of control
on behalf of humans has always been associated with declines in control on behalf
of other species. The period of our flourishing is a period of mass extinctions: the
Holocene extinction (Kolbert, 2014).

In the following subsection I will discuss the ecological side effects of the cumu-
lative increases in human local control, observed over the four eras of development.
I will argue that what is good for our local control, may have unintended negative
consequences at the global scale. Next I will move to a discussion of the relation-
ship between human control and development of AI. Finally I will comment on the
biggest risk of all: the existential threat from artificial general intelligence (AGI).

7.1 Ecological Side Effects

Although one could be tempted to think that prehistorical hunter-gatherers lived in
harmony with nature, the reality was one of a constant war. Our early ancestors

5As a partial defense of humankind, I should say that rationality of other species is even more
bounded, and their time perspective is even shorter.
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were able to conquer so many natural habitats across the world only because they
eliminated the most important species which previously ruled them. The homo
sapiens drove other hominins to extinction, and other species followed suit.

That happened before the humans learned to transform the natural habitats in
their own favor. The following agricultural era witnessed much stronger ecological
side effects of human activity. Transformation of diverse ecosystems into monocul-
tures of wheat, corn, bananas, etc., dramatically reduced biodiversity. Farming was
also a cause of massive deforestation and soil erosion. Moreover, as in the agri-
cultural era people often relied on simplified, narrow diets based on few local food
crops, they faced risks of malnutrition. Most dramatically, myopia and insufficient
coordination sometimes caused episodes of famine or wars over scarce resources.
Perhaps the clearest example here is the history of Easter Island collapse (de la
Croix and Dottori, 2008).

Just as the positive effects of economic growth accelerated in the industrial era, so
did the ecological side effects. The growth of cities and industrial zones replaced nat-
ural landscapes with seas of concrete. The growing manufacturing industry caused
air, soil and water pollution, engulfing the cities in smog. It also created huge de-
mand for exhaustible fossil resources: energy resources like oil, gas and coal, metal
ores, and even rare chemical elements such as uranium. Some of them are expected
to be depleted within the next decades. Increased greenhouse gas emissions induced
global warming. Our completely transformed life environments brought civiliza-
tional diseases such as obesity or allergies. And development of nuclear weapons
imposed on us a constant risk of a deadly nuclear war.

The digital revolution – similarly to the earlier technological revolutions – causes
its own side effects without eliminating the previous ones. It brings civilizational dis-
eases to an entirely new level, with increased incidences of Internet, social media or
videogame addiction, or social phobia. It also bombards our brains with digital pol-
lution, demanding them to navigate around Internet hate, fake news, and the rapid
spread of socially harmful ideas such as anti-vaccination movements, anti-system
agendas or actions reinforcing our undue prejudices and xenophobia. Furthermore,
on the one hand it puts us under constant stress by raising the frequency of received
e-mails, instant messages, and notifications. On the other hand it offers us instant
gratification by flooding our brains with easy-to-digest but entirely unnecessary in-
formation, which reduces our span of attention and teaches our brain to avoid deeper
thinking, a mechanism called “the shallows” (Carr, 2010). In sum, while the agricul-
tural and industrial eras completely reshaped the relationships between the human
and the environment, and affected our bodies, the digital era completely reshapes
the relationships among humans, and affects our brains.
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7.2 Artificial Intelligence and Human Control

While seeking to maximize our local control, humans built various devices which
augmented their innate abilities. We carved sticks to reach further than our bare
hands could reach, we wrote our ideas on paper so that we would not have to
remember them later, we built cars so that we could move faster, and we built
computers so that we would not have to invert that bloody four-by-four matrix by
hand. As these devices got more and more sophisticated, we outsourced more and
more of our actions. Sometimes these developments backfired on us, when we hurt
ourselves with the stick, crashed the car into a tree, or realized that our job as
a janitor has just been replaced with a surveillance camera. But generally these
innovations increased the span of our control.

Artificial intelligence may put this logic in question. On the one hand, AI is just
a set of optimization algorithms which have been created by human programmers,
and which can only pursue goals set by human programmers. Seen in this way,
it is just one more external device augmenting our abilities. On the other hand,
it gets frightening when the algorithm provides answers that are far beyond our
comprehension. For example, DeepMind AlphaZero exhibits vastly superhuman
performance at chess an Go, and it learned that in less than a day, only by self-play,
without using human knowledge.6

Extrapolating past trends, in particular observing the pace of growth in idle
computing power, digital memory and the associated returns to software, I expect
that in the future the “software” input will to an increasing degree include AI. Un-
fortunately, by getting more versatile and adaptive, it will also become more substi-
tutable with human skilled labor. So far our software gradually automates routine
tasks but is complementary to advanced human skills (Autor and Dorn, 2013; Frey
and Osborne, 2013), part of a broader phenomenon of skill-biased technical change
(Caselli and Coleman, 2006) and capital-skill complementarity (Krusell, Ohanian,
Ríos-Rull, and Violante, 2000). However, when AI software will manage to automate
also highly skilled jobs (potentially leaving people with only AI development and
programming: tasks which are extremely skill-demanding and thus implementable
only by a very narrow group of specialists), one may expect dire consequences for
the labor share of output and income inequality. According to machine learning
researchers (Grace, Salvatier, Dafoe, Zhang, and Evans, 2017): “AI will outper-
form humans in (...) translating languages (by 2024), writing high-school essays (by

6DeepMind’s AlphaGo Zero AI algorithm has mastered the (extremely sophisticated) game of
Go to a level allowing it to beat all human competitors as well as its previous incarnation AlphaGo
(which already beat all human competitors) by 100-0. AlphaGo Zero was trained without super-
vision and without using human knowledge. Its performance suggests a qualitative improvement
in the game play compared to the strategies invented by professional Go players over centuries
(Silver, Schrittwieser, Simonyan, et al., 2017).
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2026), driving a truck (by 2027), working in retail (by 2031), writing a bestselling
book (by 2049), and working as a surgeon (by 2053). Researchers believe there is a
50% chance of AI outperforming humans in all tasks in 45 years and of automating
all human jobs in 120 years.”

Even worse than the distributional consequences are the effects for human con-
trol. AI algorithms are going to increasingly make decisions on our behalf and we
are going to be less and less able to understand the premises for these decisions. The
technologies developed so far are narrow AI algorithms which are confined to rela-
tively limited action spaces. We can switch them off and do things our way. They
do not yet have the capability to expand the space of actions which are searched
in order to maximize the objective. Today’s AlphaZero is vastly superhuman at
chess and Go, but is not able to go from there to beat the stock market or master
nanotechnology. It cannot push its constraints, self-rewrite, and go rule (let alone,
navigate) the world. But we should not exclude the possibility that one day an
artificial general intelligence (AGI) might be able to do that.

The quest for AGI opens the threat that machine intelligence will one day obtain
the capability to search a very broad space of actions, while maximizing some objec-
tive which (even if to a tiny extent) opposes our human local control. By the logic
of intelligence explosion via a cascade of recursive self-improvements, this AGI may
develop itself to be orders of magnitude faster and more accurate than our human
local control maximization process. We are, in the end, limited by the cognitive
capacities of our brains and data communication abilities, using only speech and
writing. Then, one day we may realize that the objectives we had programmed into
the AGI have led to unintended consequences which cannot be corrected anymore:
the AGI is now superintelligent and will always outsmart us, successfully protecting
its original objective (Bostrom, 2012; Hanson and Yudkowsky, 2013). In this way,
we may fall victim to our own dynamic inconsistency of actions: the AGI may get
out of hand, giving the humankind a very narrow (if at all) time margin for reaction.

As an economist I expect that once AGI becomes technically possible, techno-
logical corporations will not hesitate to create it. Its development will certainly help
dramatically increase the local control by these few humans who programmed the
AGI, by making them rich, famous and powerful, at least until the unintended side
effects show up. The economic incentives for developing AGI are clearly there: as I
argued above, it is software, not hardware, which is now the bottleneck of the digital
economy.

7.3 Existential Threat from AGI

To fully comprehend that development of AGI causes an existential threat to hu-
mankind, one has to first reiterate the underlying driving force behind development.
Before the cognitive revolution, it was evolution, which aimed to maximize genetic
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fitness of species. Later, it was our human local control maximization process – a
sub-routine of evolution, embedded in all organisms, which got out of hand in the
case of humans because our frontal cortex development allowed us to acquire the
theory of mind and exceptional social skills, and thus we have passed the thresh-
old for collective knowledge accumulation. At this point, the human local control
maximization process got out of hand owing to its sheer pace (faster by orders
of magnitude than the pace of evolution), recursive self-improvement (thanks to
knowledge accumulation), and greed for resources.

But our own maximization process also has plentiful sub-routines. Among them,
we may want to build AGI, algorithms endowed with computer hardware, which not
only do quick and error-free computations, but also learn without supervision like
AlphaZero, navigate the world like Google self-driving cars, plug in for data and
power when needed, self-rewrite their code when it is useful for the goal like the
Gödel machine of Schmidhuber (2009b), and do this all at once. Among other
processes, this process is particularly likely to get out of human control, for the
same reasons as the human local control maximization process got out of evolution’s
control: much faster pace of digital computation, by orders of magnitude, recursive
self-improvement of machine intelligence, and the AGI’s greed for resources.7

Once we recognize this possibility, the key question becomes: what should be
the objective function of the AGI that we intend to build? Can we ascertain that
its pursuit will bring favorable outcomes for the humankind? I am purposefully
referring only to the objective function here, because other characteristics of the op-
timization process, such as constraints or behavioral rules (such as Asimov’s Three
Laws of Robotics) can always be relaxed, reinterpreted or otherwise circumvented
if the optimizer is powerful in pursuing its goal. I am also consciously emphasizing
the requirement that we should be certain that the AGI will be friendly. Other-
wise it will be an existential threat. The reason is that a superintelligent machine
which follows a goal which is not fully aligned with our long-run collective well-
being – importantly, not just our local control subject to bounded rationality and
myopia – may exterminate humankind without giving us notice to stop the process
(Good, 1965). This may happen even if the goal is seemingly innocuous, like in the
Bostrom’s (2003) thought experiment of a paperclip maximizer. Muehlhauser and
Salamon (2012) suggest that human extinction will in fact be the default outcome
of machine superintelligence unless “we first solve the problem of how to build an AI
with a stable, desirable utility function”. Warnings against this scenario have been
voiced, among others, by influential intellectuals such as Stephen Hawking, Frank

7It is humbling to recall that the design of the human brain remains clearly suboptimal in a
multiplicity of dimensions. As remarked by Stephen Hawking, there is no physical law precluding
particles from being organized in ways that perform even more advanced computations than the
arrangements of particles in human brains.
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Wilczek, Bill Gates, and Elon Musk.
A key trap when thinking about the existential threat from AGI is antropomor-

phization (Bostrom, 2012). Our faulty intuition suggests that an AGI, before it
kills us, should gain consciousness, self-awareness, ability to modify its goals, and
that it should first intentionally turn rogue towards humankind. In fact none of
these qualities is needed. AGI may just be a powerful optimizer with very few or no
human features. More precisely, Bostrom (2012) argues for an orthogonality thesis :
“Intelligence and final goals are orthogonal axes along which possible agents can
freely vary. In other words, more or less any level of intelligence could in principle
be combined with more or less any final goal.” Furthermore, it is intelligence it-
self which causes the threat, and not the final goal, because regardless of the final
goal, there is going to be likely emergent convergence of auxiliary goals of any AGI
(Omohundro, 2008; Bostrom, 2012), following the instrumental convergence thesis.
The drives towards self-preservation, goal-content integrity, efficiency (technological
perfection), creativity (cognitive enhancement), and resource acquisition will follow
from almost any conceivable final goal. Please note that all these auxiliary AGI
goals are akin to the “local control” that humans would like to maximize; however
the final goal on behalf of humans, whatever that is, is due to evolution whereas the
AGI’s final goal will be set by the human programmers.

In the end, intelligence – i.e., efficient cross-domain optimization (Yudkowsky,
2013) – has in fact always been an existential threat. Just as humans are an ex-
istential threat to all other, less intelligent species, AGI can become an existential
threat to the humankind (and all other species, too) if it surpasses us in terms of in-
telligence. Or maybe even earlier, when it surpasses human aggregate cross-domain
optimization power by extensively using abundant hardware. “The AI does not hate
you, nor does it love you, but you are made out of atoms which it can use for
something else.” (Yudkowsky, 2008). The bottom line is that while deliberating on
the possible economic and societal benefits of sophisticated, self-improving AI soft-
ware, we should not forget that it can also be a double-edged sword. The predicted
“singularity” may end up both as utopia and dystopia.

8 Conclusion

In sum, in this paper I proposed a synthetic, qualitative theory of economic growth
and technological progress over the entire human history, i.e., across the four eras
of development: the hunter-gatherer era, the agricultural era, the industrial era and
the digital era. Across all the eras I considered the following themes: knowledge
accumulation, economic growth, key factors of production and their mutual relation,
inequality, and side effects of development.

The key novel elements of my theory are: (i) the proposition that the universal
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driving force of development can be summarized as a process of human local control
maximization; (ii) the idea that each technological revolution opens up an entirely
new dimension of economic growth which operates on top of previous ones, and thus
measurement of development should be era-specific; (iii) identification of scale of op-
erations in R&D and the knowledge depreciation rate as an important determinants
of the pace of technological progress; (iv) the observation that each new era not
only accelerates growth, but also positively feeds back on the previous era; (v) the
observation that between-era inequality tends to trump within-era inequality.

Building on this synthetic theory and the analogies with previous eras, I drew
new predictions of future developments in the digital era. I paid special attention
to the observation that human skilled labor tends to be complementary to hardware
but substitutable with software. I obtained new useful results here thanks to taking
a broader perspective on the digital age than it has been typically done in the
literature: namely, that of entire millennia of economic growth and technological
progress. I also discussed the possibility that further development of sophisticated
software will end up in building artificial general intelligence (AGI), and that the
AGI will pose an existential threat to humankind.

There are many threads in this paper which ought to be continued. First and
foremost, specialized measurement of digital-era inputs and output, in terms of data
units and not dollar value, ideally leading to Global Data Accounts. Second, elab-
oration of the case for global digital policies and institutions. Third, quantification
of the role of R&D capital in technological progress and economic growth in the
industrial and digital eras. Fourth, detailed analysis of the multi-channeled impact
of AI technologies on economic growth. Fifth, ongoing research on AI safety.
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