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Abstract We investigate the regional business cycles at NUTS-3 granularity in Poland (N=73)

using two variables in parallel: GDP dynamics and unemployment. The model allows for both

idiosyncratic business cycle fluctuations in a region in the form of 2-state Markov chain, as

well as spatial interactions with other regions. The posterior distribution of the parameters is

simulated with a Metropolis-within-Gibbs procedure. We find that the regions can be classified

into business cycle setters and takers, and this classification exhibits a high degree of overlap

with the line of division between metropolitan versus peripheral regions. We also find that, under

large N , the fixed-effects methods, as proposed in the previous literature, are vulnerable to both

identification issues and (MCMC) convergence problems, especially with short T , which is of

critical importance in GDP on the considered spatial granularity level.
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ysis

JEL: C11, C23, C24, R12



1. Introduction

A relatively recent thread of business cycle literature inspects the cycles and their synchronicity

at sub-national regional levels. For a number of reasons, sub-national cycles can diverge from

the national economy pattern (see Warżała (2014)), posing challenges to both regional and na-

tional policymakers, not to mention the supra-national entities pursuing cohesion policies (such

as the European Union). These reasons include, broadly speaking, the diverse potential and en-

dowment of regions, resulting in increasing concentration of activity in the most economically

attractive geographical areas and their consequential sectoral specialization.

Diversified regional production was found to be a leading source of regional cycle assyme-

tries (Fatas (1997)). A vast literature of economic geography identifies facilitation of trade

and economic cooperation as an underlying process. Krugman (1990) claims that the reduc-

tion of transaction costs leads to increased specialization of regions and thus reduces their cycle

convergence. Fatas (1997) notes that highly specialized regions experience sectoral shocks as

asymmetric local shocks.

However, Hamilton and Owyang (2012) point to asymmetric local shocks as another possible

source of regional divergence, regardless of the sectoral structure of a region’s economy. One

example thereof are diversified regional economic policies as such (Fatas (1997)). Yet another

mechanism of business cycle decorrelation across regions are asymmetric reactions to symmet-

ric shocks, as a consequence of structural heterogeneity. For instance, the literature identifies

varying reactions to changes in monetary policy (see Owyang and Wall (2006)) or fiscal policy

(see Wall (2007)). Warżała (2011) confirms this asymmetry and finds a significant relation be-

tween the level of the given region’s development and the degree of its sensitivity to the state

of the national economy. More economically advanced regions with more diverse production

structure exhibit more stability and crisis-resistance.

On the other hand, regional business cycles are exposed to sychronizing forces as well. One

of those is the adherence to a common currency area, hypothesized as an endogenously ful-

filled optimum currency area criterion (see Frankel and Rose (1998); Marelli (2007)). On top

of that there are country-wide common fiscal policy, uniform legal order, geographical proxim-

ity, common language and culture as well as other factors that intensify interregional trade and

investment flows and consequently increase the probability of the spatial spillover of a shock,

resulting in a synchronization effect.

The extant literature adopts a number of approaches to the analysis of business cycles in general,

and to the regional dimension thereof. Time series econometrics dominates the field, in partic-

ular the highly popular Markov models which often require the use of Bayesian inference due

to their relatively complex specification as confronted with feasible sample sizes. Time series

investigations, including the hidden Markov model, look predominantly at the current business
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cycle position as a function of past observations.

However, a joint investigation of multiple (homogenous) regions opens up new possibilities.

The relevant spatial panel models can account for the fact that business cycle position is carried

over not only over time, but also through physical space. To accommodate the frequent case of

feedback loops between neighbouring regions’ cycles, spatial econometric methods need to be

introduced.

This paper adopts such a joint, spatio-temporal perspective by looking at regional business cy-

cle positions jointly with their spatial spillovers. To this aim, at the technical level, we combine

three tools, i.e. we perform a Bayesian analysis of a hidden panel Markov model with spa-

tial autoregression. We contributes to the literature by inspecting the regional business cycle

synchronization and divergences at relatively fine granularity, i.e. for 73 NUTS-3 regions in

Poland. The regional breakdown is therefore far more detailed than in both Kondo (2021) and

Torój (2020). For each region, we can conclude on the contribution of local and external busi-

ness cycles over time.

Fine spatial granularity calls for methods that do not assume observational independence, but

also poses some challenges: the need for both more computing power and room for poten-

tial considerable reinterpretation of previous results as the spatial spillovers can potentially be

stronger with smaller regions under consideration.

The rest of the paper is organized as follows. Section 2 reviews the tools widely used in the

(regional) business cycle literature, with a focus on hidden Markov models and regional appli-

cations. Section 3 introduces the data and methodology for the empirical analysis that follows

in Section 4. Finally, Section 5 concludes the paper and discusses potential extensions of the

study.

2. Literature review: from country-level Markov switching

to regional spatial models

First introduced by Hamilton (1989), the hidden Markov model quickly spread through the

field of business cycle research. It differentiates between two states: fast economic growth (ex-

pansion) and slow economic growth (recession). The basic Hamiltonian model measures the

growth rate of an economic activity indicator as a sum of a state-dependent average growth rate

and a random disturbance. The states of expansion and recession are assumed to be a stochas-

tic, 2-state homogenous Markov chain process. By this assumption, the probability of switching

between one state and the other depends only on the state noted in the previous period.

The surge in popularity of the hidden Markov models in business cycle analyses, against a

popular alternative of factor models (Stock and Watson (1991)), resulted i.a. from their ability
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to detect the turning points. Chauvet and Piger (2003) demonstrated that the models can detect

regime change more quickly than the Business Cycle Dating Committee NBER.

The growing body of Markov-switching model applications inspired a number of researchers to

propose case-specific extensions. To obtain a more comprehensive and robust picture, Chauvet

and Piger (2003) investigate two economic indicators instead of one: quarterly growth rate of

real GDP and the monthly growth rate of employment in the US.

On the specification level, more profound extensions were proposed by i.a. Hansen (1992) who

considered the identification of regime change by switching parameters other than the aver-

age growth rates, in particular the variance of the error term and the autoregression parameter.

Krolzig (1997), in turn, modified the model by using a multi-dimensional density function that

was not represented by a Gaussian process. The density function does not necessarily need to

have a normal distribution but, for example, as in the case of Dueker (1997), a t-student distri-

bution with the number of degrees of freedom changing accordingly to the regime change.

In a number of studies, a 3-regime specification has been established by dividing the expansion

phase into a normal and a rapid growth phase (see Bernardelli and Dędys (2015); Kim and

Murray (2002)). Sims and Zha (2006) showed that the Bayesian approach enables the estimation

of a model with multipile regimes. In their case, models with 7 through 10 states exhibit the best

fit. Another possible alteration of the Hamiltonian model includes the endogeneity assumption

for the regime changes. Kim et al. (2004) claim that macroeconomic shocks can be correlated

with the business cycle fluctuations and that measurement errors of an unobservable variable

can also lead to endogeneity.

One can also reject the assumption of fixed transition probabilities by allowing them to change

according to the fluctuations of the economic activity indicators. For instance, Diebold et al.

(1994) decided to model the transition probabilities as parametric logistic functions of exoge-

nous variables. A new form of the Hamiltonian model incorporates time-varying transition prob-

abilities, thus making the anticipation of changes in the economy possible. Filardo and Gordon

(1998) argue that the decreasing expected duration of the current cycle phase can be a forecast

of an upcoming regime switch.

Numerous authors point to business cycle asymmetry as a non-negligible feature. The cycle

phases can vary in the steepness, deepness, sharpness and persistence to shocks (see Clements

and Krolzig (1998)). Regime-switching models proved to be able to encapsulate the sharpness

asymmetry (asymmetry of business cycle turning points) because they allow for the introduction

of different parameters depending on the current regime.

Diebold and Rudebusch (1996) combined two alternative approaches to business cycle research:

the Hamiltonian Markov-switching model and the dynamic factor model (see Stock and Watson

(1989)). They introduced a model with factors subject to regime changes which enabled them

to include two crucial features of the business cycle: non-linearity and coincidence of many
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macroeconomic indicators. They also included the dynamics in the form of autoregression.

Multiple estimation approaches can be found in the literature for models of this nature. Kim and

Nelson (1998) proposed multi-move Gibbs sampling in a Bayesian framework for a dynamic

factor model with regime switching. Gibbs sampler draws from the conditional posterior density

for each parameter. The authors proved that the sampling results converge to the joint posterior

distribution of parameters for a sufficiently large number of iterations.

A relatively rich literature investigating the business cycle synchronization and divergence at

the sub-national level exists in the case of United States of America. For instance, Harding

and Pagan (2006) measured the strength of two business cycles synchronization through the

percentage of time when the two economies found themselves in the same regime. The results

showed that various regions can be synchronized with the national economy to a different extent.

Owyang et al. (2005) confirmed the existence of significant differences between the American

states in both regimes by applying a regime-switching model to economic time series for each

state. There were, however, some similarities found between regions in a given territory and with

a common specialization. Another observation was that transition probabilities were usually

close to 0 or 1 which implies that the identification of the current business cycle phase was

relatively easy. On the other hand, the probabilities of staying in a given regime were higher

than the probabilities of changing the regime. The authors also proved the occurrence of distinct

differences in the timing and length between the national and regional business cycles. First of

all, each region could switch regimes at a different point in time than the whole country. Second

of all, a recession in the national economy did not determine the state of all regional economies.

The rising interest in sub-national, regional analyses of business cycles has led to methodolog-

ical questions related to the joint analysis of multiple geographic areas. A key disadvantage of

the original Hamiltonian model consisted in its one-dimensionality, meaning it was only ap-

plicable to the national and regional cycles separately. This problem has been addressed by

Hamilton and Owyang (2012) by coverting the model into a panel through which the authors

were able to analyze the fluctuations for many regions simultaneously. Econometrics of panel

data can help to capture both the dynamic and geographical relations between units. With the

use of a wide and long panel data set the authors extended the model into a multi-dimensional

approach by grouping the regions with similar characteristics into clusters, which then led them

to the identification of 3 such clusters for the American states.

Multiple researchers confirmed the significance of the spatial element in the business cycle

analysis. Artis et al. (2011) constructed a spatial ARMA model where the spatial dependence

between regions was represented by a spatial lag of the dependent variable or the error term.

This specification also enables further model development through a spatial weights matrix. To

address the problem of numerous regions and a large transition matrix, Fruhwirth-Schnatter and

Kaufmann (2008) proposed the idea of aggregating the regions into clusters.
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Shibaev (2016) further emphasized that geographical units are rarely independent. The author

inspected spatial relations in a Markov-switching model with the use of spatial autoregressive

error specification which allows for a spatial autocorrelation of shocks in different regions. This

application confirmed the existence of the spatial spillover effect in the US which was also

proved by Artis et al. (2011), whereas the phenomenon of regional business cycle synchroniza-

tion was confirmed by Beraja et al. (2016) and Hamilton and Owyang (2012).

A panel Markov-switching model was also implemented in the works of Kondo (2021) and

Torój (2020). Both authors introduced the spatial lag into a panel hidden Markov model in

order to investigate the spatial spillover effect. Estimation methods included the multi-move

Gibbs sampler and the Metropolis-Hastings algorithm. In terms of methodology, this paper

continues that strand of literature by combining Markov chains, panel and spatial econometrics

with the Bayesian inference.

The work of Torój (2020) does not fit with the rest of the literature insofar as it investigates

the profitability of enterprises, rather than standard business cycle measures, for 16 NUTS-

2 regions. There are a few other, more typical applications of the Markov-switching model

for Poland at the national level, including Podgórska and Decewicz (2001), where the authors

decided to apply the model in the analysis of Polish industry and found that the assumption of

two regimes is sufficient to examine periodical occurrences of both downturns and upturns in

the economy.

3. Data and methodology

3.1. Data

3.2. Hidden panel Markov model with spatial autoregression

Our model, strongly inspired by the works of Kondo (2021) and Torój (2020), builds on the

following equation:

yt = ρWyt +m0 ⊙ (1N − st) +m1 ⊙ st + εt, (1)

where yt denotes a vertical vector of the analyzed variable (either GDP dynamics or unem-

ployment change) in N = 73 Polish NUTS-3 regions in period t, st – unobservable N -element

vector of binary states (1 – expansion, 0 – recession) in period t, m0 and m1 are vertical,

N -element vectors containing the constant for each region during, respectively, expansion and

recession, W = [wn,n] (n = 1, ..., N ) is a strictly exogenous, row-normalized spatial weight

matrix based on the inverted distance between regions’ centroids, εt is N -dimensional vector

of errors, independent for individual t = 1, ..., T periods, with identical multivariate normal
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distributions of zero means and variance-covariance matrix comprising the elements of vector

σ2 on the diagonal and zero elsewhere. For each n, the variable st,n constitutes a 2-state Markov

chain with region-specific 1-period-ahead probabilities of remaining in state 1 denoted as p11,

and likewise p00 for state 0 (with an obvious consequence of transition probabilities amounting

to 1 − p11 from 1 to 0 and 1 − p00 from 0 to 1). ρ is a spatial autoregression parameter, 1N

represents a column vector of ones, of length N , and ⊙ is the Hadamard product.

This specification does not take on board some features proposed in the extant literature, as

reviewed in the previous section, including multiple states, endogenous transition probabilities

and heavy-tailed distributions. We motivate the choice of a relatively simple specification in a

twofold manner: due to relatively large N and small T . The former was our intentional choice,

the latter – a practical consequence thereof.

Following Kondo (2021), we set the following prior distributions, independent from one another

and across n = 1, ..., N :

• inverse gamma for σ2
n: IG(v

2
, δ
2
);

• two-dimensional normal for each pair [m0,n m1,n]
T : MVN2(µ,Σ);

• beta for p00,n and p11,n: p00,n Beta(α00, α01), p11,n Beta(α11, α10);

• uniform for ρ: ρ U( 1
λmin(W)

, 1), where λmin(W) is the lowest (in absolute terms) eigen-

value of W, in line with the typical stationary bounds for the spatial autoregression pa-

rameter for a row-normalized W matrix (see Anselin and Florax (1994)).

The hyperparameters were set as follows for the GDP model: v = 6, δ = 100, µ =

[
1

10

]
,

Σ =

[
1 0

0 1

]
, α00 = 8, α01 = 2, α10 = 2, α11 = 8. For unemployment, δ = 10, α10 = 1,

α11 = 9 and otherwise like for GDP. µ
0

(µ
1
) as an element of µ were set as averages of the mean

and first (third) quartile of GDP dynamics series, and inversely in the case of the unemployment

rate.

For sampling from the posterior distribution, elements of the empirical strategy by Kim and

Nelson (1998, 1999) have been applied, additionally modified by Kondo (2021) for the purpose

of spatial analysis. The above references demonstrate that conditional posterior distributions

are known in almost all cases, except ρ. This raises the case for the Metropolis-within-Gibbs

simulation, with Metropolis-Hastings algorithm applied to sample ρ in the last step of a Gibbs

iteration. The single g-th iteration of the Gibbs procedure runs as follows:

1. Set the initial value of θ(g−1), comprising all individual model parameters (i.e. all ele-

ments of p00, p11, m0, m1, σ2, ρ), at arbitrary levels (for g = 1) or as values sampled in

the previous step (for g > 1).

2. For each region n = 1, ..., N , sample a path of states s
(g)
n = [s1,n ... sT,n]

T using the

multimove Gibbs sampler, as presented in detail by Kim and Nelson (1998):
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(a) For t = 0, set the probability of expansion and recession at long-term values consis-

tent with p00
(g−1) and p11

(g−1).

(b) Iterate forward with the Hamilton filter (Chib (2001), Kondo (2021)) to compute

the probabilities of state 0 and 1 for each region n and period t, conditional on the

respective probabilities at t− 1, data (from the beginning of the sample until t) and

θ(g−1).

(c) Use the multimove Gibbs sampler to draw states st,n, starting with the last period

t = T and then iterating backwards, conditionally on states in subsequent periods,

data (for the whole sample) and θ(g−1).

3. For each region n = 1, ..., N , sample p
(g)
00,n and p

(g)
11,n from the conditional (on s

(g)
n from

point 2) posterior distributions Beta(α
(g)
00,n, α

(g)
01,n) and Beta(α

(g)
11,n, α

(g)
10,n), where α(g)

ij,n de-

notes in each case the corresponding prior parameter augmented by a number of transi-

tions from state i to j (i, j ∈ 0; 1 in s
(g)
n from point 2.

4. For each region n = 1, ..., N , draw σ
2(g)
n from the conditional (on s

(g)
n from point 2,

and other elements of θ(g−1)) posterior distribution: IG(v
2
, δn

2
, where v = v + T and

δn = δ + ΣT
t=1ε

2
n,t.

5. For each region n = 1, ..., N , draw
[
m

(g)
0,n m

(g)
1,n

]T
from the conditional (on s

(g)
n from

point 2, σ2(g)
n from point 4 and other elements of θ(g−1) posterior distribution MVN2(µn,Σn),

where:

Σn =

(
Σ−1 + σ−2(g)

n

[
1T − s

(g)
n s

(g)
n

]T [
1T − s

(g)
n s

(g)
n

])−1

, (2)

µn = Σn

[
Σ−1µ+ σ

−2(g)
n

[
1T − s

(g)
n s

(g)
n

]T
·

·




yn,1
...

yn,n

− ρg−1(1T ⊗ [ wn,1 . . . wn,n ])


yn,1

...

yn,n


 .

(3)

6. Sample ρ(g) from an unknown posterior distribution, conditional on all elements of θ(g)

drawn in the previous steps. The sampling distribution is simulated with the random walk

Metropolis-Hastings algorithm, in which the candidates are generated by a truncated nor-

mal distribution with mean ρ(g−1), variance has been adjusted to maintain the mean can-

didate acceptance probability from 0.2 to 0.4, and the upper and lower bounds correspond

to the prior distribution of ρ.

It is straightforward to see from Equation (1) that, for each n, the model decomposes each

region’s cyclical position into 3 parts: (i) internal: n’s own business cycle (Markov switching),

(ii) external: the spillover of other regions’ business cycles (spatial autoregression), (iii) other

determinants (error term).
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4. Empirical results for Polish NUTS-3 regions

4.1. MCMC convergence

The posterior distribution has been simulated in two chains. For GDP, the Gibbs sampler of

S = 20000 iterations has been used (including a burn-in of S0 = 4000), and for each of those,

the Metropolis-within-Gibbs procedure counted S = 10000 iterations (including S0 = 3000

burn-in). For longer series of unemployment, shorter chains have turned out to be sufficient

(S = 20000 with S0 = 4000, and S = 9000 with S0 = 2000, respectively). For all parameters,

potential scale reduction factors were equal to 1.00-1.03 (see Figures 1-2 for Gelman-Rubin

plot), except the multidimensional statistic in the unemployment analysis, equal to 1.64. In that

case, neither the extension of chains nor of the burn-in contributed to a decrease. We identify the

underlying reason as related to parameter covariances under high-dimensional parameter space

when N = 73, i.e. considerably higher than in the previous, comparable literature. Jointly with

the time-consuming evaluation of posterior log-density in every iteration, leading to a generally

slow MH computation, as well as the simulation-based evaluation of sampling density that

prevented us from using a more efficient Hamilton Monte Carlo scheme, this might be indicative

of turning to other model specifications (e.g. random effects across units) in future research.

Figure 1: GDP: potential scale reduction factor for ρ
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Figure 2: Unemployment: potential scale reduction factor for ρ

For the key parameter ρ, whose distribution has been simulated in an additional nested MH

procedure, we take an additional, graphical inspection of the traceplots (Figures 3-6. We treat

the patterns of missing trends and regular, normal-like density as reassuring.

Figure 3: GDP: convergence of chain 1 for ρ

Figure 4: GDP: convergence of chain 2 for ρ
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Figure 5: Unemployment: convergence of chain 1 for ρ

Figure 6: Unemployment: convergence of chain 2 for ρ

Due to a high number of regions in the panel (N = 73), we decided to present further results

for selected, 8 representative regions, one for every NUTS-1 entity plus the capital city Warsaw

(see Table 1 for details). The remaining results are available upon request.

Table 1: Adherence of selected NUTS-3 regions to NUTS-2 and NUTS-1 entities

NUTS-3 NUTS-2 NUTS-1

Miasto Warszawa (Warsaw) warszawski stołeczny woj. mazowieckie

żyrardowski mazowiecki regionalny woj. mazowieckie

Miasto Kraków (Cracow) małopolskie południowy

poznański wielkopolskie północno-zachodni

opolski opolskie południowo-zachodni

inowrocławski kujawsko-pomorskie północny

kielecki świętokrzyskie centralny

białostocki podlaskie wschodni
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4.2. Amplitudes: expansion and recession means

Figures 7-8 present prior and posterior distributions of µ0 and µ1, interpretable as recesssion

and expansion means (respectively) of GDP dynamics or unemployment rate, net of spatial

interactions (Wy t) and error terms (εt). For GDP growth rate, the averaged posterior mean over

regions amounts to 0.33 for recession (ranging from -0.57 to 1.86) and 9.95 for expansion (from

9.55 to 10.51). For unemployment, the analogous averages equal +0.15 p.p. during recessions

(max. 0.787 in Warszawa) and -0.39 p.p. during expansions (min. -1.396).

The posterior densities of regime-specific variable means shrink considerably as compared to

the priors, for both GDP and unemployment dynamics. This occurred in spite of relatively non-

informative priors adopted in the analysis.

For unemployment changes, the difference between expansion and recession mean for an av-

erage region is tiny in economic terms, and as compared to GDP dynamics. This should not

come as a surprise, given the institutional setup of the Polish labour market. An alternative

explanation entails some degree of cross-regional employment mobility across the regions in

the occurrence of asymmetric shocks, since the NUTS-3 regions are small enough for agents

to avoid the related residence mobility. Interestingly, with less informative priors of µ0 and µ1

than in the case of GDP dynamics, posterior denisities for some regions (see Miasto Kraków

in Fig. 8, and 11 out of 72 other regions) do not preserve the property µ0 ≤ µ1. Since this is a

just-identifying condition for the two regimes, their interpretation should be inverse under such

circumstances, in spite of the slight difference in prior densities. For this reason, the best (worst)

performing regions in unemployment during recession (expansion) exhibit µ0 < 0 (µ1 > 0),

e.g. region ostrołęcki at -0.401 p.p. (region trójmiejski at +0.821 p.p.)

Figure 7: GDP: prior and posterior distributions of µ0 and µ1 for selected subregions
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Figure 8: Unemployment: prior and posterior distributions of µ0 and µ1 for selected subregions

4.3. Timing: transition probabilities

Figures 9-10 present parameters p11 and p00, i.e. the probabilities of remaining in expansion and

recession (respectively) one period ahead. Higher values imply a higher long-term frequency

of a given state, and obviously a lower chance of transition into the other phase. For GDP,

noticeable patterns that emerge in this case are higher posterior means for p00 (0.91) than for p11
(0.78), suggesting longer NUTS-3 level recessions than expansions. (Note, however, different

values of µ0 and µ1 over regions that re-define expansion and recession from region to region).

This is no longer the case for unemployment, with p11 = 0.95 in terms of average regional

posterior mean, and p11 = 0.93 for unemployment, and the posterior density for p00 (blue

overlines in Figure 10) located slightly to the right of p11. Also note the similarity of posterior

distributions for a given variable across all regions.
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Figure 9: GDP: prior and posterior distributions of p11 and p00 for selected NUTS-3 regions

Figure 10: Unemployment: prior and posterior distributions of p11 and p00 for selected NUTS-3

regions

4.4. Synchronization: business cycles within and between NUTS-2 regions

The probabilities of expansion and recession for a given period, depicted in Figures 11-12, have

been computed for every NUTS-3 region using posterior means of parameters. For the sake of

tractability, these figures contain only expansion probability (one minus recession probability),

whereas the time series for NUTS-3 regions are grouped according to their NUTS-2 adherence.

The model for GDP largely fails to clearly differentiate between own business cycle phases in

individual NUTS-3 regions. For most of the time, a number of regions (including almost all from

the NUTS-2 areas: lubuskie, świętokrzyskie, warmińsko-mazurskie and zachodniopomorskie)

are clearly indicated as in recession. This means that the volatility in GDP dynamics has been

interpreted as spatial spillovers from other regions. This largely explains the phenomenon of
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prior-posterior overlap for expansion means. Also, note that most of the high expansion prob-

abilities have been observed in three voivodships, dominant in economic size and dynamics:

mazowieckie, dolnośląskie and śląskie. One might read this as an indication that these voivod-

ships serve as business cycle gravity centers, and other voivodships inherit their business cycles

through upstream or downstream connections rather than exhibit their own ones.

The reading of the unemployment analysis results (Figure 12) is completely different: the model

is highly conclusive in finding the turning points, as well as both phases, in most NUTS-3

regions. This major difference most likely stems from the different panel dimensionality for

the two variables in question. With the same number of regions (N=73), the frequency of the

data is annual for GDP and monthly for unemployment, yielding a material difference in T-

dimension for both variables. Yet, given the sluggish nature and limited economic meaning of

the unemployment rate in Poland, one should not easily reject the results for GDP and focus on

unemployment instead.

As regards the business cycle synchronization between regions, some evidence can be found

with both variables. First, the GDP analysis suggests some within-voivodship (NUTS-2) syn-

chronicity in the case of three voivodships where autonomous cycles have been detected (say,

business cycle setters) in the form of two humps located in the beginning and in the middle of the

sample. Since the rest are interpreted by the model as, say, business cycle takers, one can imag-

ine that Pearson correlation analysis will generally exhibit a high degree of correlation, driven

both by the idiosyncratic component depicted in Figure 11 and by spatial spillovers. Second, the

probabilities in Figure 12 suggest that the unemployment data is too noisy for such conclusions,

but some evidence of synchronicity can be found between pomorskie, warmińsko-mazurskie

and lubuskie voivodships.
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Figure 11: GDP: expansion probabilities computed for posterior means, grouped by NUTS-2
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Figure 12: Unemployment: expansion probabilities computed for posterior means, grouped by

NUTS-2 regions

4.5. Spatial interactions: impact of other regions’ cycles

The posterior distributions of spatial autoregression parameter ρ are presented in Figure 13.

Remarkably, the posterior means amount to 0.946 (GDP) and 0.899 (unemployment), and the

HPDIs of +/- 2-3 percentage points cover almost entire posterior probability, in spite of a highly

uninformative prior distribution. A direct reading of this result suggests that a 1 p.p. rise in

the GDP dynamics (unemployment rate) in all other regions translates into a 0.946 p.p. (0.899

p.p.) change in the home region. According to this result, the spatial links across voivodships

have turned out to be a material, and sometimes dominant, driver of individual regions’ GDP

and unemployment rate changes. This should not be viewed as a surprise in a unitary, highly

integrated country.

To visualize the differential scope of cross-regional impacts, we simulate the impacts on GDP

and unemployment of a transition from recesssion to expansion, in every NUTS-3 region under

detailed inspection (note that such transitions have not been found, in some cases). Figures

14-15 present the related spatial multipliers. The results are locally concentrated or spill over

through the country, depending (mainly) on the scale of impulse, i.e. the size of the difference

between µ0 and µ1 and (to a lesser extent) on the slight differences in connectivity of regions,
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Figure 13: Distribution of ρ parameter

implied by the W matrix.

Figure 14: GDP: response of individual regions to a recession-to-expansion transition in a given

region
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Figure 15: Unemployment: response of individual regions to a recession-to-expansion transition

in a given region

Note that both metropolitan areas under inspection (Miasto Warszawa, Miasto Kraków), as well

as the ring around a third metropoly (Poznański), impact on the other regions to a higher extent

than more peripheral regions (Żyrardowski, Opolski, Kielecki, Inowrocławski and, expecially,

Białostocki). This conclusion does not depend on the variable in question, since the positive

impact of recession-to-transition probability ranks from highest in region Poznański, Miasto

Kraków and Miasto Warszawa to lowest in regions Kielecki, Inowrocławski and Białostocki for

both GDP and unemployment dynamics.

The model for unemployment can be further used to decompose the fluctuations for each region

into 3 parts: (i) local (related to m0⊙(1N−st)+m1⊙st), (ii) external (spilled over from other

regions via ρWyt) and (iii) residual (εt). This decomposition has been effected by assigning

state-specific constant to each region (when the probability of a given state exceeds 0.5), then

computing the local business cycle as m0 ⊙ (1N − st) + m1 ⊙ st, along with the systematic

part of the model as (I− ρ

Table 2 presents the top-performing regions in terms of the local business cycle contributions

(top cycle setters), whereas Table 3 – the regions representing the most passive behaviour as

business cycle takers. In the former case, 6 out of top 12 regions include big metropolies, and 5

of them being these metropolies alone (Miasto Poznań, Miasto Warszawa, Trójmiejski including

Gdańsk, Miasto Kraków and Miasto Wrocław).

Turning this table so as to rank the most passive business cycle takers, one obtains Table 3

mostly populated with peripheral regions. It contains one region where a NUTS-2 metropoly

is mixed with peripheral areas (Rzeszowski), and the rest are NUTS-3 entities attributable to

relatively small cities (Biała Podlaska, Żyrardów, Puławy, Bielsko-Biała, Ostrołęka, Tarnów,

Skierniewice) or a ring of perihpery around Poznań (Poznański region, where most of the vari-

ance remained unexplained).
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Table 2: Decomposition of unemployment fluctuations: NUTS-3 regions with a highest contri-

bution of local fluctuations

NUTS-3 Local External Residual

Miasto Poznań 0.746 0.011 0.242

Miasto Warszawa (Warsaw) 0.713 0.010 0.277

Trójmiejski 0.711 0.014 0.275

Starogardzki 0.690 0.006 0.304

Warszawski zachodni 0.680 0.138 0.182

Ełcki 0.679 0.005 0.316

Miasto Kraków 0.671 0.014 0.315

Wałbrzyski 0.667 0.007 0.326

Elbląski 0.644 0.013 0.343

Częstochowski 0.626 0.008 0.367

Miasto Wrocław 0.603 0.007 0.391

Lubelski 0.581 0.019 0.401

Table 3: Decomposition of unemployment fluctuations: NUTS-3 regions with a highest contri-

bution of external fluctuations

NUTS-3 Local External Residual

Rzeszowski 0.000 0.874 0.126

Bialski 0.000 0.873 0.127

Żyrardowski 0.000 0.866 0.134

Puławski 0.000 0.862 0.138

Bielski 0.000 0.840 0.160

Ostrołęcki 0.003 0.715 0.282

Tarnowski 0.056 0.650 0.294

Poznański 0.040 0.309 0.652

Skierniewicki 0.368 0.255 0.378

5. Conclusions

We investigate the regional business cycle properties of two variables, GDP dynamics and un-

employment, in NUTS-3 regional granulation in Poland. The model includes 3 sources of vari-

ation: 2-state Markov switching idiosyncratic business cycle of each region, spatial interaction

with other regions, as well as a random component, and we decompose the variance of each

variable accordingly. In line with the extant literature, to handle the challenge of statistical iden-

tification and constrained parameter space (including probabilities), we use Bayesian methods,

simulating the posterior distribution with a Metropolis-within-Gibbs procedure.
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The novelty of this study, on top of the geographical extension of the previously proposed

methodologies to the Polish data, is threefold. First, we investigate two variables: GDP dy-

namics and unemployment. The latter data is monthly, and the use of relatively large-T dataset

allows to take additional insights into the usability of the model in various data environments.

Second, as opposed to the extant literature, we apply the model to a panel abundant in small

regions (N=73), which revealed some limitations related to the proposed setup (mainly com-

putational constraints) and suggested the need to develop alternative, robust specifications for

such applications. Thirdly, we use the model to put each of these small regions on a continuum

from business cycle setters to business cycle takers.

As for the empirical findings, the main one is a high value of spatial autoregression coeffi-

cient, amounting to 0.899-0.945 depending on the variable, and suggesting an important role

of cross-regional interactions in shaping the regional business cycles on the NUTS-3 level. The

systematic part of the idiosyncratic component is of secondary importance in most regions,

where no local turning points have been detected in the analysis of GDP dynamics, and the bulk

of variability can be regarded as inherited from other regions. As for unemployment, 7 out of

73 regions have been identified as ones where external spillovers (i.e. variability originating in

other regions) are responsible for more than 50% of variance, whereby for 52 out of 73 regions,

this fraction is higher than 1%.

Unemployment analysis finds turning points in most of the regions. Although the labour market

adjustment is more sluggish than the product market adjustment, this result has been possible

to achieve since the time series carried far more observations in T dimension than the GDP

dataset. However, little can be concluded from the parallel analysis of GDP dynamics, since 18

annual observations are far insufficient to correctly identify the states. The GDP model tended

to identify the business cycle switching in no more than 3 voivodships, all top performers in

economic development and per capita GDP.

The NUTS-3 level findings have turned out to be more informative than NUTS-2 ones can

potentially be, in terms of identifying the role of metropolitan areas. The cities of Warsaw,

Poznań, Tricity (including Gdańsk) and Wrocław, along with some NUTS-3 entities in Śląskie

voivodship, appear play the role of business cycle setters.

Due to both (i) the low T -dimension of GDP panel and (ii) the limited role of unemployment in

business cycle analysis, the results of this study should be interpreted with caution. They could,

however, suggest areas where the room for methodological improvement is. One of them is a

more robust specification, better fit for large-N problems. Further questions arise around the

prior elicitation guidelines of means for the recession and expansion periods, so as to strike the

balance between model flexibility and the correct inequality relationship between the posterior

means. In line with the spatio-temporal modelling literature, one should also consider enrich-

ing the model dynamics beyond the Markov switching process to include some form of tem-
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poral autoregression, and handle the econometric sources thereof. Bottom line, the indicative

results achieved here suggest that the nation-wide business cycle dynamics covers potentially

rich network of structures (which we closed in a single spatial autoregression parameter) whose

understanding can be of importance for both regional policy planning, as well as regional and

national forecasting.
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Warżała, R. (2014). Regionalne cykle koniunkturalne w polsce w latach 2000-2014. Zeszyty
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