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July 27, 2023

Abstract

Output is generated through purposefully initiated physical action. Pro-

duction needs energy and information, provided by respective factors: hard-

ware (“brawn”), including physical labor and physical capital, and software

(“brains”), encompassing human cognitive work and pre-programmed soft-

ware, in particular artificial intelligence (AI). From first principles, hardware

and software are essential and complementary in production, whereas their

constituent components are mutually substitutable. This framework general-

izes the neoclassical model of production with capital and labor, models with

capital–skill complementarity and skill-biased technical change, and unified

growth theories embracing also the pre-industrial period. Having laid out the

theory, we provide an empirical quantification of hardware and software in the

US, 1968–2019. We document a rising share of physical capital in hardware

(mechanization) and digital software in software (automation); as a whole

software has been growing systematically faster than hardware. Accumula-

tion of digital software was a key contributor to US economic growth.

Keywords: production function, technological progress, complementarity,

automation, artificial intelligence.
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I’m a physicist. We rank things by two parameters: energy and infor-

mation.

Michio Kaku

1 Introduction

In any conceivable technological process, output is generated through physical ac-

tion requiring energy. It is a local reduction of entropy, and as such it does not

occur by chance but is purposefully initiated. In other words, producing output

requires both some physical action and some code, a set of instructions describing

and purposefully initiating the action. Therefore at the highest level of aggregation

the two essential and complementary factors of production are physical hardware

(“brawn”), performing the action, and disembodied software (“brains”), providing

information on what should be done and how.

This basic observation has profound consequences. It underscores that the funda-

mental complementarity between factors of production, derived from first principles

of physics, is cross-cutting the classical divide between capital and labor. From the

physical perspective, it matters whether it’s energy or information, not if it’s human

or machine (Figure 1). For any task at hand, physical capital and human physi-

cal labor are fundamentally substitutable inputs, contributing to hardware: they

are both means of performing physical action. Analogously, human cognitive work

and pre-programmed software are also substitutes, making up the software factor:

they are alternative sources of instructions for the performed action. It is hardware

and software, not capital and labor, that are fundamentally essential and mutually

complementary.

Based on this observation the current paper develops a new macroeconomic

framework for modelling aggregate production and long-run economic growth. We

then demonstrate how it squares with historical data for the US in 1968–2019.

Unfortunately, in data the fundamental distinction between hardware and soft-

ware is obscured by the fact that the human body has double duty: it contains both

muscles which perform physical action and a brain that stores and processes informa-

tion. When performing any task, we make use of both energy and information, with

varying intensity. The same can be said for modern digital devices, such as comput-

ers, smartphones and robots, which also feature both hardware and software. Prior

to digital computers, though, all instructions were coming from the human brain,

making “software” synonymous with human cognitive work. Therefore, while pro-

viding an overarching theoretical frame capable of guiding the narrative across all

human history (Growiec, 2022a), the advantages of the hardware–software frame-

work are most clearly seen in the case of the currently unveiling digital era where
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Figure 1: Factors of production in the hardware–software framework.

information processing, communication and storage are increasingly detached from

the human brain.

The hardware–software framework has a number of distinctive advantages. From

the economic modelling perspective, it is a convenient tool for discussing global long-

run growth processes because, while rooted in first principles from physics, it nests

the following conventional models as special cases:

(i) a standard treatment of an industrial economy producing with capital and

labor and respecting Kaldor’s facts (this case is obtained by assuming that

all physical action is performed by machines and all information processing is

done by people),

(ii) a model of capital–skill complementarity and skill-biased technical change (as-

suming that all information processing is done by people),

(iii) a unified growth theory addressing the period of Industrial Revolution (fol-

lowing the arrival of first machines with an external source of energy, able to

perform physical action on their own),

(iv) a theory of inception and further development of the digital era (following the

arrival of programmable hardware and pre-programmed software).

In the policy perspective, the hardware–software framework can inform the de-

bate on the future of global economic growth – whether we should expect secular

stagnation (Jones, 2002; Gordon, 2016; Gomu lka, 2023), balanced growth with lim-

ited automation – “race against the machine” (Acemoglu and Restrepo, 2018), accel-

erated growth with disruptive automation (Brynjolfsson and McAfee, 2014; Bryn-

jolfsson, Rock, and Syverson, 2019) or technological singularity (Kurzweil, 2005;
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Bostrom, 2014). In the baseline scenario of the hardware–software framework we

expect an acceleration of economic growth at a later stage of the digital era, driven

by wide-ranging AI-driven automation and rapid accumulation of programmable

hardware (Growiec, 2023). The software factor should gradually decouple from hu-

man cognitive work and become proportional to programmable hardware instead

because pre-programmed software can be virtually costlessly copied and thus can

easily scale up to the level of available programmable hardware. Under constant

returns to scale and in the absence of further technological revolutions1, this would

gradually reduce the role of technical change augmenting human cognitive work and

eventually generate long-run endogenous growth by hardware accumulation alone.

In the limit, all production will be automated.

Having laid out the theory, we quantify its predictions empirically, using US

data for 1968–2019. The empirical approach of the current study is to construct

time series for hardware, consisting of human physical labor and physical capital,

and software, consisting of human cognitive work and digital software. To this end

we decompose labor into its physical (manual) and cognitive components, as well

as isolate the hardware and software parts of capital investment. Our calculations

assume an exogenous rate of technological progress which, in line with the theoretical

setup, takes place in the domain of information and therefore is software-augmenting.

We find a rising share of physical capital in hardware (mechanization) and digital

software in software (automation) throughout the period 1968–2019. On top of that,

as a whole software has been growing systematically faster than hardware. Using a

nested CES production function specification, we also perform a growth accounting

exercise which suggests that the key contributor to GDP growth in the US has been

the accumulation of digital software, followed by the accumulation of human capital.

This paper is related to at least five strands of literature. First, the literature

on production function specification and estimation, in particular with capital–skill

complementarity, unbalanced growth, as well as investment-specific and skill-biased

technical change.2 Second, the literature preoccupied with accounting for the ac-

cumulation of information and communication technologies (ICT) and their broad

growth-enhancing role as a general purpose technology.3 Third, studies focusing on

1Given the observed pace of growth in computing power and AI capabilities, further technolog-

ical revolutions are actually quite likely, though.
2Including among others Gordon (1990); Jorgenson (1995); Greenwood, Hercowitz, and Krusell

(1997); Hercowitz (1998); Kumar and Russell (2002); Koop, Osiewalski, and Steel (1999, 2000);

Krusell, Ohanian, Ŕıos-Rull, and Violante (2000); Henderson and Russell (2005); Caselli and Cole-

man (2006); Klump, McAdam, and Willman (2007, 2012); Mućk (2017); McAdam and Willman

(2018).
3Including among others Bresnahan and Trajtenberg (1995); Timmer and van Ark (2005); Jor-

genson (2005); Brynjolfsson and McAfee (2014); Gordon (2016); Brynjolfsson, Rock, and Syverson

(2019); Aum, Lee, and Shin (2018); Jones and Tonetti (2020); Farboodi and Veldkamp (2019);

Nordhaus (2021).
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automation and its impacts on productivity, employment, wages and factor shares.4

Fourth, the nascent literature on macroeconomic implications of development of AI

and autonomous robots.5 Last but not least, the voluminous literature on R&D

based endogenous growth.6

The remainder of the paper is structured as follows. Section 2 provides mo-

tivation for the current study. Section 3 defines the factors of production of the

hardware–software framework and discusses the conceptual underpinnings of the

aggregate production function. Section 4 provides the empirical evidence. Section

5 concludes.

2 Motivation

2.1 New Trends of the Digital Era

The world economy has changed a lot since the 1980s. Pre-existing long-run trends

in economic development like Kaldor’s “stylized facts” (Kaldor, 1961) and the seem-

ingly eternal constancy of “great ratios” (Klein and Kosobud, 1961) have been over-

turned, and new ones emerged (Jones and Romer, 2010). Among the new tendencies,

during the last 40 years the world has been witnessing (even if only recently doc-

umenting) systematically declining labor shares (Arpaia, Pérez, and Pichelmann,

2009; Elsby, Hobijn, and Sahin, 2013; Karabarbounis and Neiman, 2014), increasing

profit shares (Barkai, 2020), increasing markups and market power (De Loecker,

Eeckhout, and Unger, 2020; De Loecker and Eeckhout, 2018; Diez, Leigh, and Tam-

bunlertchai, 2018), increasing market concentration (Autor, Dorn, Katz, Patterson,

and Van Reenen, 2020) and increasing within-country income inequality (Piketty,

2014; Piketty and Zucman, 2014; Milanović, 2016). All this was accompanied by

a tendency of skill polarization, gradual elimination of routine jobs (Acemoglu and

Autor, 2011; Autor and Dorn, 2013), an increasing variety of jobs becoming suscep-

tible to automation (Frey and Osborne, 2017; Arntz, Gregory, and Zierahn, 2016;

Eloundou, Manning, Mishkin, and Rock, 2023), and a slowdown in total factor

4Including among others Zeira (1998); Acemoglu and Autor (2011); Autor and Dorn (2013);

Graetz and Michaels (2018); Acemoglu and Restrepo (2018, 2019a,b); Andrews, Criscuolo, and

Gal (2016); Arntz, Gregory, and Zierahn (2016); Frey and Osborne (2017); Barkai (2020); Autor,

Dorn, Katz, Patterson, and Van Reenen (2020); Jones and Kim (2018); Hemous and Olsen (2018);

Benzell and Brynjolfsson (2019).
5Including among others Yudkowsky (2013); Graetz and Michaels (2018); Sachs, Benzell, and

LaGarda (2015); Benzell, Kotlikoff, LaGarda, and Sachs (2015); DeCanio (2016); Acemoglu and

Restrepo (2018); Aghion, Jones, and Jones (2019); Berg, Buffie, and Zanna (2018); Korinek and

Stiglitz (2019); Eloundou, Manning, Mishkin, and Rock (2023).
6Including among others Romer (1990); Jones and Manuelli (1990); Aghion and Howitt (1992);

Jones (1995); Acemoglu (2003); Ha and Howitt (2007); Madsen (2008); Bloom, Jones, Van Reenen,

and Webb (2020); Kruse-Andersen (2023).
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productivity growth (Jones, 2002; Gordon, 2016).

By contrast, established economic growth models (see e.g. Barro and Sala-i-

Martin, 2003; Jones, 2005a; Acemoglu, 2009) tend to imply stable factor shares,

markups and market concentration over the long run, stationary income inequality,

a fixed steady-state job structure, and a stable growth rate. They are therefore

unable to reconcile the pre-1980 growth experience with the emerging new regulari-

ties. Also unified growth theories (Galor and Weil, 2000; Galor, 2005, 2011), despite

successfully dissecting the mechanisms of transition from a relatively stagnant agri-

cultural to a fast growing industrial economy during the Industrial Revolution, tend

to fail at capturing the unveiling new tendencies.

A likely reason for the apparent mismatch between data and theory is that ex-

cept for a few forerunners (such as Acemoglu and Restrepo, 2018; Benzell, Kotlikoff,

LaGarda, and Sachs, 2015; Berg, Buffie, and Zanna, 2018; Aghion, Jones, and Jones,

2019; Korinek and Stiglitz, 2019), growth models developed thus far have been either

rooted entirely in the industrial era, or focused on even earlier eras. They generally

do not acknowledge that since the 1980s the Digital Revolution is transforming the

world before our eyes in a comparably profound way to what the Industrial Revolu-

tion was doing two centuries ago. The computer age – to kindly paraphrase Robert

Solow – is now seen everywhere, even in productivity statistics. Since the 1980s

personal computers have been permeating firms and households, and digitization

gained massive momentum in the 2000s with the spread of the Internet. Quantita-

tively, since the 1980s “general-purpose computing capacity grew at an annual rate

of 58%. The world’s capacity for bidirectional telecommunication grew at 28% per

year, closely followed by the increase in globally stored information (23%)” (Hilbert

and López, 2011). The costs of a standard computation have been declining by

53% per year on average since 1940 (Nordhaus, 2021). Hence, growth in the digital

sphere is now an order of magnitude faster than growth in the global capital stock

and GDP: data volume, processing power and bandwidth double every 2–3 years,

whereas global GDP doubles every 20–30 years. The processing, storage, and com-

munication of information has decoupled from the cognitive capacities of the human

brain; “less than one percent of information was in digital format in the mid-1980s,

growing to more than 99% today” (Gillings, Hilbert, and Kemp, 2016). Preliminary

evidence also suggests that since the 1980s the efficiency of computer algorithms has

been improving at a pace that is of the same order of magnitude as accumulation

of digital hardware (Grace, 2013; Hernandez and Brown, 2020). Corroborating this

finding, in the recent decade we have witnessed a surge in AI breakthroughs based on

the methodology of deep neural networks (Tegmark, 2017): increasingly autonomous

vehicles, high-quality language interpretation, understanding, rephrasing, summa-

rizing and producing human-like text (OpenAI’s GPT-4, OpenAI, 2023), generative

visual art (Stable Diffusion), self-taught superhuman performance at chess and Go
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(AlphaZero, Silver, Hubert, Schrittwieser, et al., 2018), or accurate prediction of

protein structures (AlphaFold, Jumper, Evans, Pritzel, et al., 2021). We are also

observing that ever since Bill Gates first topped the list of World’s Billionaires in

1995, biggest fortunes are made in the computer software business.

2.2 Mechanization, Automation and AI

As a first step in resolving the mismatch between data and theory, the hardware–

software framework allows to conceptually disentangle mechanization from automa-

tion:

• Mechanization of production consists in replacing human physical labor with

machines within hardware. Large-scale mechanization is observed since the

Industrial Revolution (≈1800 CE onwards). Mechanization applies to physical

actions but not the instructions defining them.

• Automation of production consists in replacing humans with pre-programmed

software in providing instructions, i.e., within software. But for early forerun-

ners, automation is observed since the Digital Revolution (≈1980 CE onwards)

when information technologies first came into use as general purpose technolo-

gies (Bresnahan and Trajtenberg, 1995). Automation pertains to cases where a

task, previously involving human thought and decisions, is carried out entirely

by machines without any human intervention. Routine tasks (both physical

and cognitive) are typically among the first to be automated (Autor and Dorn,

2013).

The distinction between mechanization and automation is instrumental in ad-

dressing questions like “will humans go the way of horses?” (Brynjolfsson and

McAfee, 2014), which is supposed to mean whether human work will be eventually

fully replaced by machines. The answer is: as far as physical labor is concerned, we

have long gone the way of horses; for cognitive tasks (for which horses are of no use)

this has not been the case yet, but it may happen in the future in the scenario of

full (AI-driven) automation of production. By the same token, it is false comfort to

say that “the history of the Industrial Revolution teaches us that when jobs are de-

stroyed, new ones are bound to emerge”: the history only tells us that when physical

labor is mechanized, additional workers will be demanded in cognitive occupations,

but it tells us nothing about cognitive occupations being automated.

The hardware–software framework also helps disentangle the concepts of automa-

tion and artificial intelligence (AI). AI algorithms are a special type of software that

has the ability to improve its performance based on experience and data. This hap-

pens even under a static architecture of AI algorithms, though it is conceivable that

AI may also modify its own architecture while heading towards self-improvement.
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In principle automation does not need AI, and indeed has historically begun prior

to AI. However the development of AI can actually strongly accelerate automation

by substituting human cognitive work in non-routine tasks (Brynjolfsson, Rock,

and Syverson, 2019; Eloundou, Manning, Mishkin, and Rock, 2023). According to

Agrawal, Gans, and Goldfarb (2017), while computers drastically lowered the costs

of computing (arithmetic), AI drastically lowers the costs of prediction. All in all, AI

algorithms provide drastic improvements in the applicability, efficiency, and versa-

tility of software, but do not constitute a qualitative change in its function as means

of providing instructions to programmable hardware. Hence, the framework does

not envisage a separate “AI revolution”, and rather sees AI development as a mas-

sive boost to the Digital Revolution which already began with the early computer

hardware and software. In our view, AI is to the digital era what the development of

electricity and internal combustion engines was to the industrial era: a second wave

of key breakthroughs, forcefully accelerating the impact of the initial revolutionary

technological ideas on the economy and society, but not a separate technological

revolution (Gordon, 2016).

3 The Hardware–Software Framework

We postulate that output is generated through (i) purposefully initiated (ii) physical

action. Based on this premise we posit that at the highest level of aggregation any

production function should feature hardware X, performing the physical action using

energy, and software S, providing the instructions using information. This leads to

a general form of a production function:

Output = F(X,S), (1)

where F : R2
+ → R+ is increasing and concave in both factors and such that hard-

ware X and software S are essential (i.e., F(0, S) = F(X, 0) = 0) and mutually

complementary. The degree of their complementarity is an open question; the plau-

sible range spans from perfect complementarity (Leontief form) if just one method

of producing output exists, to imperfect complementarity if producers are allowed to

choose their preferred technology from a technology menu (Jones, 2005b; Growiec,

2013, 2018). Intuitively, a little substitutability is likely because the same outcome

can sometimes be generated with more resources (larger X) but less efficient code

(smaller S), or vice versa, but the fundamental complementarity should nevertheless

prevail. One natural way to instantiate this assumption is to take a CES specifica-

tion with an elasticity of substitution σ ∈ (0, 1), cf. Klump, McAdam, and Willman

(2007, 2012). The particular CES form of the F function is however not necessary
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for the results.7

The specification (1) abstracts from raw materials, energy resources and data sets

which are being used up in the production process. It works as if we assumed that

they were given for free and in infinite supply, or at least that they were sufficiently

cheap and abundant that they would never become a bottleneck (think, e.g., of

the supply of solar energy). Relaxing this simplifying assumption is left for further

research.

3.1 Factors of Production

Hardware X includes physical actions performed by both humans and machines.

Hence, X encompasses both the services of physical capital K and human physical

labor L, where the latter variable excludes any know-how or skill of the worker.

Software S, in turn, encompasses all useful instructions which stem from the

available information, in particular the practical implementation of state-of-the-art

technologies. Hence, it includes the skills and technological knowledge employed in

human cognitive work, H, as well as pre-programmed software Ψ providing instruc-

tions to be performed by the associated programmable hardware.8 Pre-programmed

software Ψ may in particular include artificial intelligence (AI) algorithms, able to

learn from data as well as potentially self-improve and self-replicate. It is assumed

that there are no physical obstacles precluding pre-programmed software from per-

forming any cognitive task available to a human (Yudkowsky, 2013; Dennett, 2017).

Within hardware, agents of physical action are substitutable. The extreme case

of perfect substitutability reflects the idea that whatever it is that performs a given

task, if the set of actions is the same then the outcome should be the same, too. The

same logic applies to software: regardless of whether a set of instructions comes from

a human brain or a digital information processing unit, if the actual information

content of instructions is the same, then the outcome should be the same, too.

Therefore, at the level of sufficiently disaggregated tasks all forms of software can

also be considered perfectly substitutable.

However, this intuitive property will not always smoothly aggregate to the macro

level. To see this, it helps to view the specification (1) as a reduced form of a richer

framework where hardware and software are used in performing heterogeneous tasks,

and the overall supply of hardware and software is computed by aggregating over

these tasks (Acemoglu and Restrepo, 2018, 2019a,b; Growiec, 2022b). In such a

7For example, Growiec and Mućk (2020) propose a more flexible parametric framework that

also allows the modeler to control whether the factors are gross substitutes or gross complements.
8Contemporary programmable hardware consists typically of computers, robots, and other de-

vices embodying digital chips. In principle, it does not have be silicon-based, though. In fact the

first pieces of non-biological programmable hardware were mechanical devices such as the Jacquard

loom using punchcards, first invented in 1804.
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scenario imperfect substitutability between human and machine contributions to

factors of production may ensue from heterogeneity and mutual complementarity

of the tasks. A particularly important caveat in this regard is that the baseline

hardware–software framework excludes essential non-automatable cognitive tasks

and sub-tasks – which cannot be circumvented and for which human cognitive work

is necessary. For example, if a cognitive task consists of two consecutive steps, the

first of which can be performed by a computer algorithm but the latter only by

a human, then pre-programmed software and human cognitive work will turn out

complementary at the level of the whole task even if they are perfectly substitutable

within the two sub-tasks. This apparent complementarity disappears, however, once

the task becomes fully automatable.9

In line with this discussion we write the general form of a production function

as:10

Output = F(X,S) = F(L+K,H + Ψ). (2)

Each of the four factors L,K,H,Ψ has its unique properties (Table 1).

• Human physical labor L is rivalrous and given in fixed supply per worker and

unit of time, L = ζN where ζ ∈ [0, ζ̄] denotes the supply of physical labor per

worker in a unit of time, expressed in physical capital units, and N is the total

number of workers.

• Physical capital K is rivalrous but can be unboundedly accumulated per

capita. Physical capital K may be non-programmable or programmable. The

share of programmable hardware in total physical capital is denoted by χ (so

that χ ∈ [0, 1]).

• Human cognitive work H consists of three components, technological knowl-

edge A, the average skill level h, and the number of workers N , as in H = AhN .

9Note that in the established task-based automation literature (Zeira, 1998; Acemoglu and

Autor, 2011; Acemoglu and Restrepo, 2018; Aghion, Jones, and Jones, 2019) the default situation

is that tasks can be only partially automated, whereas in the hardware–software framework in

principle tasks can be automated fully. Growiec (2022b) demonstrates that a shift from partial

to full automatability of complex tasks is disruptive for the economy – the contribution of human

cognitive work switches from essential and scarce to inessential and replaceable – and argues that

in the future we may see more and more tasks fully automated with the advancement of AI.
10At the cost of less transparent notation, one can generalize equation (2) to accomodate im-

perfect substitutability between people and machines in both hardware and software (Growiec,

2023): Output = F(G1(L,K), G2(H,Ψ)), with gross substitutability of factors within G1 and G2.

A particularly tractable case to consider is the one where F , G1 and G2 are CES. Furthermore,

the partial automatability scenario – where some essential tasks will never be automated – can

be accomodated by assuming gross complementarity between human and machine inputs in G2

(Growiec, 2022b). This is the specification we use in the empirical section of our study, covering a

historical period during which the potential for automation was limited.
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Technological knowledge A, or the size of the “repository of codes” is non-

rivalrous (Romer, 1986, 1990) and accumulable.11 Per-capita skill levels h are

rivalrous and bounded above, theoretically by the optimal code for performing

a given task, but in practice by a much lower number h̄ > 0 due to the human

inability to rewire our brains in order to perform cognitive tasks more effi-

ciently (Yudkowsky, 2013) as well as more down-to-earth reasons like human

mortality and decreasing returns to education.

• Pre-programmed software Ψ also consists of three components, technological

knowledge A, algorithmic skill level ψ which captures the degree to which pre-

programmed software is able to perform the tasks collected in A, and the stock

of programmable hardware χK on which the software is run, as in Ψ = AψχK.

Technological knowledge A is the same as above.12 The algorithmic skill level

ψ is assumed to be bounded above by the optimal code for performing a given

task (i.e., perfect accuracy), though there may be in fact a much lower upper

bound ψ̄ (Hanson and Yudkowsky, 2013).13 Because software can be virtually

costlessly copied, it is assumed that it can scale up to the level of all available

programmable hardware χK.14

Table 1: Factors of Production and R&D

Hardware X

Human physical labor L = ζN

Non-programmable physical capital (1− χ)K

Programmable physical capital χK

Software S
Human cognitive work H = AhN

Pre-programmed software† Ψ = AψχK

Note: † includes AI algorithms.

3.2 Technological Progress

Following Romer (1986, 1990), the hardware–software framework envisages techno-

logical progress (growth in A) as expansion of the “repository of codes”, i.e., as the

development of new, better instructions allowing to produce higher output with a

11Depending on the institutional setup (e.g., intellectual property rights), technological knowl-

edge A may be characterized by varying levels of excludability.
12If in reality the sets of codes available to humans and pre-programmed software are different,

the discrepancy between the measures of both sets can be captured by the ratio ψ/h.
13Depending on the institutional setup (e.g., proprietary code vs. open source), the algorithmic

skill level ψ may be characterized by varying levels of excludability.
14Which implies that, in its basic form, the framework abstracts from economic and legal con-

straints on the diffusion of software, such as the protection of intellectual property rights.
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given amount of hardware. Whether these new instructions take the form of new

abstract ideas, scientific theories, systematically catalogued facts, codes specifying

certain actions, or blueprints of physical items, they are all information and not

actual objects or actions, and it is precisely this informational character that makes

technologies non-rivalrous and a source of increasing returns to scale (Romer, 1990).

What is novel here in comparison to Paul Romer’s seminal contributions, though,

is that these instructions can be applied to the tasks at hand both by humans and

machines.15

The informational character of technological ideas also naturally classifies them

to the domain of software, or “brains”. Technological ideas do not enter into hard-

ware because the purpose of hardware is to perform physical action, and work in

the physical (mechanical) sense cannot be better or worse, there can only be more

or less of it. Thus, developing a machine able to, for example, transport a bigger

load in the same time and using the same amount of fuel, or to perform more digital

computations per second using the same amount of energy, translates into accu-

mulation, not augmentation of capital K. In turn, better targeted physical action

achieved thanks to, say, a more precise tool or a better organized production stream

indicates not an improvement in hardware, but software – instructions initiating the

physical actions. In line with this argumentation, all technological progress is mod-

eled as software-augmenting here. In the hardware–software framework, in contrast

to the capital–labor one, there is no room for discussion on the direction of technical

change – a parsimonious property that is highly valuable from a reductionist point

of view.

3.3 The Aggregate Production Function

Since Solow (1956, 1957) it has become commonplace to take capital K and labor L

as the key inputs of the aggregate production function. Furthermore, it has become

a very frequent, if not default, practice to assume purely labor-augmenting (Harrod-

neutral) technical change, as in Y = F (K,AL). Of course, like any other aggregate

15In the growth literature, the technology level A is frequently interpreted as mass of product

designs (in increasing variety models) or an aggregate quality index of produced goods (in quality

ladder models), Barro and Sala-i-Martin (2003). Note also the difference between technological

ideas and data: “Ideas and data are types of information. Following Romer (1990), an idea is a

piece of information that is a set of instructions for making an economic good, which may include

other ideas. Data denotes the remaining forms of information. It includes things like driving data,

medical records, and location data that are not themselves instructions for making a good but

that may still be useful in the production process, including in producing new ideas.” (Jones and

Tonetti, 2020, p. 2821) In contrast to Jones and Tonetti (2020) and Farboodi and Veldkamp (2019)

the hardware–software framework does not include data as a factor in the production function.

Instead data, like energy, is tentatively assumed to be sufficiently cheap and abundant that it will

never become a bottleneck in production.
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production function specification, this is a simplification that disregards the fact that

K and L are amalgamates of heterogeneous components (Temple, 2006). The key

question is, though, whether this simplified form is sufficient for capturing the key

macroeconomic facts. Evidence is mounting that it is no longer the case. From the

literature16 it is becoming clear that the capital–labor framework, while sufficient to

model the classic Kaldor (1961) facts, fails at capturing the new phenomena specific

to the digital era, present in macro data since the 1980s.

In contrast, the hardware–software production function (2) specifies the produc-

tion factors in accordance with the physical divide between energy and information,

“brawn” and “brains”. Using the concepts introduced above, the aggregate produc-

tion function F is formalized as:

Y = F (X,S) = F (ζN +K,A(hN + ψχK)), (3)

where Y is aggregate value added (or GDP). The function F is increasing and con-

cave in both its arguments, and hardware X and software S are essential and com-

plementary. The standard replication argument applied to this production function

specification implies constant returns to scale with respect to the rivalrous factors

X and S/A = hN +ψχK. With respect to X, S/A and A, though, returns to scale

are increasing (Romer, 1986, 1990).

From the laws of thermodynamics, implying in particular that performing phys-

ical action requires expediting energy, it is expected that an essential fraction of

GDP must consist of material outputs, serving – at the very least – to sustain

the hardware (including human bodies) and allow it to work (Georgescu-Roegen,

1971, 1975). This observation reinforces the assumption that hardware X must be

essential in the production process.

Pre-programmed software can be deployed in production processes only if the

technology allows for the existence of programmable hardware (χ > 0). Once it is

introduced, though, there is no upper bound for its capacity relative to the cogni-

tive capacity of the human brain. It may even one day come to exhibit superhuman

cognitive performance.17 This is because (i) the human brain has fixed compu-

tational capacity whereas pre-programmed software (including AI) can be run on

programmable hardware with any level of computing power, (ii) AI algorithms have

the ability to learn from data and potentially self-improve their architecture. Never-

theless, even without superhuman AI performance all cognitive tasks are amenable

to automation with sufficient computing power χK. The only pre-condition for

16Such as Gordon (1990); Greenwood, Hercowitz, and Krusell (1997); Krusell, Ohanian, Ŕıos-

Rull, and Violante (2000); Caselli and Coleman (2006); Klump, McAdam, and Willman (2007);

Jones and Romer (2010); McAdam and Willman (2018).
17See Chollet (2019) for an excellent review of definitions of intelligence (cognitive performance,

cognitive capabilities, etc.) of non-human agents.
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this outcome is that in the full model the possibility of accumulating the requisite

computing power is not precluded by, e.g., preferences or institutions.18

It is instructive to consider four special cases of the framework, representing four

distinct conventional models.

Industrial economy producing with capital and labor. Under the assumption that all

physical work is done by machines (ζ = 0) and all cognitive work is done by humans

(χ = 0), the production function (3) reduces to the conventional capital–labor spec-

ification with purely labor-augmenting technichal change, Y = F (K,AhN). Capital

and labor are then naturally gross complements, as suggested by bulk of the recent

empirical literature (Klump, McAdam, and Willman, 2007, 2012; Mućk, 2017).

Capital–skill complementarity and skill-biased technical change. Under the assump-

tion that all cognitive work is done by humans (χ = 0), the production function

(3) reduces to the specification with capital-skill complementarity (Krusell, Oha-

nian, Ŕıos-Rull, and Violante, 2000; Caselli and Coleman, 2006; McAdam and Will-

man, 2018) and skill-biased (or more precisely, cognitive labor-augmenting) technical

change, Y = F (ζN +K,AhN). Gross complementarity between hardware and soft-

ware implies that physical capital is complementary to cognitive (≈ skilled) labor

H but substitutable with physical (≈ unskilled) labor L, in line with findings of this

literature.

Industrial Revolution. The hardware–software framework represents the Industrial

Revolution as an episode where physical capital begins to be accumulated after

the initial restriction K ≈ 0 is lifted.19 In result human physical labor is gradually

replaced with machines within hardware in a process of mechanization of production.

Digital Revolution. The framework represents the Digital Revolution as an episode

where pre-programmed software begins to be accumulated after the initial restriction

χ = 0 (and thus Ψ = 0) is lifted. In result human cognitive work is gradually

replaced with machine code within software in a process of automation of production.

3.4 Production Function For Ideas

Consistently with the hardware–software framework, research and development (R&D)

processes can also be viewed as a function of hardware X and software S. Hardware

includes R&D capital alongside human physical labor (Growiec, 2022c; Growiec,

18However, in a more general model with complex, multi-step tasks, human cognitive work can

become essential for generating output if at least one step of at least one essential task is not

automatable (Growiec, 2022b). Essentiality implies that there is no way around this particular

step and no possibility of substituting out the entire task.
19The initial restriction K ≈ 0 can be understood as the absence of machines with their own

energy source (e.g., engine), able to perform physical action without energy inputs from the human.
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McAdam, and Mućk, 2023). Software encompasses all the ideas supplied by sci-

entists and technical personnel, as well as code encapsulated in pre-programmed

software. Formally the idea production function obeys the general equation (2),

specializing into:

Ȧ = Φ(X,S) = Φ(ζN +K,A(hN + ψχK)), (4)

where Ȧ represents the flow of new technological ideas. It is assumed that the

idea production function Φ is increasing and concave in both factors, X and S. The

characterization of returns to scale is uncertain, however, as there may be important

spillover effects and duplication externalities in R&D, the magnitude of which is

subject to dispute (Jones, 1999; Ha and Howitt, 2007; Madsen, 2008; Bloom, Jones,

Van Reenen, and Webb, 2020; Kruse-Andersen, 2023).20

3.5 Stages of Economic Development

Let us now trace how the hardware–software framework squares with the key prop-

erties of production processes across the human history (Growiec, 2022a). In this

regard it must be noted that the framework itself does not explain the causes of

technological revolutions which push the economy to the next stage of development,

other than speculating that in certain circumstances, given the relative supply of

aggregate hardware vs. software, such a shift would be particularly demanded. How-

ever, the framework does predict the secular trends emerging after each technological

revolution has exogenously occurred.

At this stage it is helpful to invoke the following asymptotic result:

F (1,∞) = lim
y→∞

F (1, y) = aX ∈ (0,+∞). (5)

Following from the assumptions of (i) constant returns to scale, and (ii) gross com-

plementarity between hardware X and software S, the limit in (5) exists and is

finite. One cannot achieve unbounded output growth unless both hardware and

software grow unboundedly as well.

Stage 1. Pre-industrial production. In a pre-industrial economy, output was pro-

duced primarily in farming. Our civilization could only access the energy trans-

formed in natural processes, such as photosynthesis and human metabolism. With-

out machines fueled with external energy sources, there was no significant accu-

mulation of productive capital K. Output was produced with a technology that

used only human physical labor for performing the physical actions and required

20A more detailed discussion of equation (4) and an empirical assessment of the importance of

R&D capital in the idea production function is provided by Growiec, McAdam, and Mućk (2023).
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also the services of land, a vital but essentially fixed21 factor of agricultural produc-

tion. There was also no pre-programmed software Ψ. Setting a constant K = K̃,

representing land, and χ = 0 in equation (3) yields the following simple formula:

Y = F (X,S) = F (ζN + K̃, AhN) ≈ N · F (ζ, Ah), (6)

where the last approximation follows from the assumption that K̃ is fixed and small

relative to ζN . Hence, under gross complementarity of hardware and software,

pre-industrial output per worker was bounded above (Y/N ≤ ζaX) due to the

insurmountable scarcity of hardware (land and human physical labor), even with an

abundance of technological ideas A.

Stage 2. Industrial production. Following the Industrial Revolution (≈1800

CE onwards) human physical labor was gradually replaced with steam-, oil-, and

electricity-powered machines in a process of mechanization of production. The

stock of physical capital per worker K/N began to grow exponentially. Productive

physical actions were, however, still dependent solely on the instructions produced

through human cognitive work; there was no programmable hardware and no pre-

programmed software yet. As hardware was accumulated faster than software, the

latter eventually became relatively scarce, at which point demand for human cogni-

tive skills began to grow, setting up a secular upward trend in wages (Galor, 2005).

Setting χ = 0 in (3) yields:

Y = F (X,S) = F (ζN +K,AhN). (7)

The hypothetical limit of full mechanization and skill satiation, but with no au-

tomation, K → ∞ and h → h̄, where h̄ is the upper limit of human capital (skill)

accumulation, implies Y = F (K,Ah̄N). Hence for a mature industrial economy we

obtain the standard balanced growth path result (Uzawa, 1961; Acemoglu, 2003).

Under gross complementarity of capital and labor (really: hardware and software)

and “labor-augmenting” (really: software-augmenting) technical change, the indus-

trial economy tends to a balanced growth path where capital per worker K/N and

output per worker Y/N grow at the same rate as technological knowledge A. Tech-

nological progress, generated through R&D, is the unique engine of long-run growth

(Romer, 1990).

Stage 3. Digital production. Following the Digital Revolution (≈1980 CE onwards)

we are observing gradual automation of production. Human cognitive skills which

scale with the working population N are gradually replaced with pre-programmed

21By making this assumption we concentrate on a mature agricultural economy and exclude

the periods of transition from hunting and gathering to sedentary agriculture or conquests of new

agricultural land.
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software which scales with programmable hardware χK that grows faster. Conse-

quently, software-augmenting technical change no longer affects only the efficiency

of human cognitive work, but also to an increasing degree the capacities of pre-

programmed software. As automation progresses, skill-biased technical change grad-

ually morphs into routine-biased technical change (Acemoglu and Autor, 2011; Autor

and Dorn, 2013). This is the world in which we live now.

At a later stage of the digital era, however, pre-programmed software will likely

consist largely of sophisticated, general-use AI algorithms, allowing for multiple-

fold increases in the algorithmic skill level ψ (Agrawal, Gans, and Goldfarb, 2017;

Berg, Buffie, and Zanna, 2018) and thus fortifying the emerging upward trend in

the contribution of the non-human component to software.

The limit of K →∞ with full automation implies

Y = F (ζN +K,A(hN + ψχK)) ≈ K · F (1, Aψ̄χ̄), (8)

where ψ̄ is the upper limit of algorithmic skill accumulation and χ̄ ∈ (0, 1] is the

limiting share of programmable hardware in all physical capital as K → ∞. Full

automation of the production process in the limit means that the human contribution

to output will gradually fall to zero.22

Equation (8) delivers an AK-type implication: in contrast to the industrial econ-

omy, long-run growth of the digital economy is driven not by technological progress

but by the accumulation of (programmable) hardware (Jones and Manuelli, 1990;

Barro and Sala-i-Martin, 2003). If A → ∞ then Y/K → aX . This striking result

is driven by two forces: (i) that pre-programmed software expands proportionally

with programmable hardware, and (ii) that hardware and software are gross com-

plements, and thus in the long run the pace of accumulation of hardware – the

scarce factor – determines the pace of economic growth. The constancy of the out-

put growth rate over the long run follows in turn from the assumption of constant

returns to scale in production, making F asymptotically linear in K (Jones, 2005a;

Growiec, 2007).

Although asymptotically constant, the pace of hardware accumulation and out-

put growth may be nevertheless stupefying, potentially with doubling times of the

order of 2–3 years, which are currently observed for digital processing power, data

volume and bandwidth (Hanson, 2001; Hilbert and López, 2011).23

Hypothetical stage 4. Post-digital production. Under high to full automation

of production processes, programmable hardware χK will gradually become the

22Full automation does not necessary mean that human work will one day become useless for

the economy (Harari, 2017), though. The decline in human productivity relative to machines will

surely be reflected in sub-par growth in wages, but the extent of technological unemployment will

eventually depend also on the elasticity of labor supply. See also Korinek and Juelfs (2022).
23Long-run growth in the alternative scenario where some essential tasks will never be automated

is investigated in Growiec (2023).
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bottleneck of further development, the key factor constraining its pace. This will

increase the incentives to invest in R&D directed towards radical innovations holding

the promise to eliminate this bottleneck. Such breakthrough technology would have

to tap an entirely new source of energy, fundamentally increase energy efficiency, or

otherwise massively improve unit productivity of programmable hardware.24

Formally, such an episode of “new mechanization” may be modelled by intro-

ducing an additional component to the hardware amalgamate, as in:

X = ζN +K + ωM, (9)

where M denotes the new form of hardware, and ω � 1 captures its unit productiv-

ity relative to K. This form of hardware must be programmable, so that AI could

scale with M and avoid becoming a growth bottleneck itself.

Long-run implications include gradual replacement of K-type hardware with M

and a permanent acceleration in growth. Indeed this additional acceleration in

hardware X accumulation may eventually lead to a new growth regime “with a

doubling time measured in days, not years” (Hanson, 2000).

3.6 Factor Shares

The assumption of gross complementarity of hardware and software provides a clear-

cut implication for factor shares: factor income will be disproportionately directed

towards the scarce factor. The hardware–software framework delivers the following

(empirically testable and intuitively explicable) predictions.

Stage 1. Pre-industrial production. In a mature pre-industrial economy able to

achieve systematic technological progress (growth in A), increasing scarcity of hu-

man physical labor and agricultural land (ζN+K̃) relative to human cognitive work

(AhN) implies that an ever increasing portion of value added is directed to hard-

ware at the expense of software. The counterfactual limit of A → ∞ without an

industrial revolution (with a fixed K = K̃) implies a zero software share of output

as virtually all revenues are directed towards agricultural (physical) workers and

owners of agricultural land.

Stage 2. Industrial production. The first stage of development of an industrial

economy features gradual mechanization of production: physical capital accumula-

tion systematically reduces the role of human physical labor in hardware. Given

the substitutability between capital K and physical labor ζN , the physical labor

24Among the probable scenarios, one could envision the arrival of quantum computing (in which

case the Google AI Quantum team has already achieved a major breakthrough, Arute, Arya,

Babbush, et al. (2019)), disruptive nanotechnology, massively improved solar power cells, fusion

power, or perhaps something yet unimagined.
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share goes down whereas the capital share goes up – a trend which was most clearly

seen in the early 19th century; Karl Marx called it “the exploitation of the working

class”.

However, as the pace of capital accumulation in a growing industrial economy

outruns technical change (growth in A), this secular trend is accompanied also by

an increasing output share accruing to software (i.e., human cognitive work) at the

expense of hardware (ζN +K, gradually dominated by K). Hence, during the sec-

ond stage of development of an industrial economy, human cognitive work becomes

increasingly scarce and thus increasingly well remunerated, raising the returns to

education and the skill premium, and setting up a secular upward trend in wages.

Such trend was observed in reality in developed countries from the late 19th and

through most of the 20th century.25 In the counterfactual limit of A→∞, K →∞
and h→ h̄ without a digital revolution, the industrial economy tends to a balanced

growth path, along which Y = F (K,Ah̄N), the hardware (=capital) share stabi-

lizes around some intermediate value π̄X ∈ (0, 1), and the economy respects Kaldor’s

facts (Kaldor, 1961).

Stage 3. Digital production. The first stage of development of a digital economy

features gradual automation of production: accumulation of pre-programmed soft-

ware Ψ gradually reduces the role of human cognitive work H in software. Given the

substitutability of these two factors, the cognitive labor share goes down whereas

the pre-programmed software share goes up. (And if data and software rents are

not separately accounted, also firms’ profit shares and measured markups go up, as

documented e.g. by Barkai (2020); De Loecker and Eeckhout (2018).) This is the

world of today, where disruptive digital technologies fuel the “rise of the global 1%”.

The hardware-software framework predicts a change in this secular trend in the

future, though. It expects that due to exponential technological progress in A,

systematic improvements in algorithmic skill ψ and progressing automation, hard-

ware will gradually become the bottleneck of global development, a key factor con-

straining the pace of further economic growth.26 Consequently the revenues will

be increasingly redirected from software towards programmable hardware, and the

software share πS will set on a secular downward trend. In the hypothetical limit

of K → ∞, χ → χ̄, ψ → ψ̄, assuming the absence of a next technological revolu-

tion, the hardware share will tend to unity. At that point in time, though, only a

negligible fraction of total remuneration will be going to human workers.

25As Galor and Moav (2006) put it, “The accumulation of physical capital in the early stages

of industrialization enhanced the importance of human capital in the production process and

generated an incentive for the capitalists to support the provision of public education for the

masses, planting the seeds for the demise of the existing class structure”.
26This is a robust prediction which fails only if full automation is not possible (then human

cognitive work remains the growth bottleneck forever) or if there is also hardware-augmenting

technical change (which leads to super-exponential, explosive growth), cf. Growiec (2023).
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4 Empirical Evidence

Mapping the theoretical concepts of L, K, H and Ψ to real-world data is a challenge.

In the data there is no direct split of workers’ time and remuneration between their

physical labor and cognitive work; each worker in some proportion does both. Simi-

larly, programmable hardware also has double duty as means of performing physical

action and as a device that stores and runs its code; measured capital investment

and returns conflate both. It is not even clear in the accounting whether a certain

investment helps accumulate programmable or non-programmable capital. Finally,

if not for intellectual property rights pre-programmed software can be virtually cost-

lessly copied to a multiplicity of devices, making it notoriously difficult to price it

and calculate its marginal productivity.

In this section we provide a first attempt at quantifying hardware and software,

using US data for the years 1968–2019. We construct the relevant time series and

plug them in a growth accounting exercise. We use four data sources: (i) the O*NET

Content Model database, providing detailed information on work characteristics and

equipment used in almost 1,000 occupational groups; (ii) microdata from the CPI

IPUMS (Flood, King, Rodgers, Ruggles, Warren, and Westberry, 2022) on hours

worked by occupation in the US from 1968 to 2019; (iii) tables on US investment in

fixed assets from the US Bureau of Economic Analysis; (iv) aggregate US statistics

from Penn World Table 10.0.

4.1 Decomposing Labor: Manual vs. Cognitive Tasks

Our first step is to isolate the hardware and software component within labor (L and

H, respectively). To this end we decompose work tasks in individual professions into

manual and cognitive tasks using the method proposed by Autor, Levy, and Mur-

nane (2003); Acemoglu and Autor (2011). However, while these seminal papers and

the subsequent task-based literature (e.g., Autor and Handel, 2013; Autor, Dorn,

and Hanson, 2015; Lewandowski, Park, Hardy, Du, and Wu, 2022) focused on the

split between routine and non-routine task categories, we identify the manual vs.

cognitive content of jobs. We merge raw O*NET (v.25.3) files on Work Activities,

Work Context, Abilities and Skills and identify manual tasks using a specific list

of selected Work Activities and Work Context Importance scales.27 For each occu-

pation we measure the share of manual work as the average importance of manual

tasks, while the share of cognitive work is obtained as a residual. In so doing we

27Routine manual: 4.C.3.d.3 Pace determined by speed of equipment; 4.A.3.a.3 Controlling

machines and processes; 4.C.2.d.1.i Spend time making repetitive motions. Non-routine manual,

physical adaptability: 4.A.3.a.4 Operating vehicles, mechanized devices, or equipment; 4.C.2.d.1.g

Spend time using hands to handle, control or feel objects, tools or controls; 1.A.2.a.2 Manual

dexterity; 1.A.1.f.1 Spatial orientation.
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follow O*NET procedure of standardisation into 0-100 scores (because in raw data,

each separate task descriptor in O*NET is associated with a different scale).

These shares are then matched with occupation-level employment data. The

shares of individual occupations in overall hours worked in the US economy are ex-

tracted from the Current Population Survey (CPS) IPUMS database (Flood, King,

Rodgers, Ruggles, Warren, and Westberry, 2022), containing microdata from the

monthly US labour force survey. The classification system used in the IPUMS

database covers more than 450 occupations. We include observations of persons

who were professionally active, had a specific occupation and disclosed the number

of hours worked. To map the ∼ 1000 occupations in O*NET with ∼ 450 occupa-

tions in CPS IPUMS, we use the crosswalk O*NET-SOC 2019 to 2018 SOC from the

O*NET Resource Centre. Upon aggregation we obtain the split of labor between

manual and cognitive work in the US in the period 1968–2019 (Figure 2).28

Figure 2: Dynamics of the share of manual and cognitive work in the US (1968=1)

Finally, we obtain our final time series corresponding to physical labor L (that

enters hardware) and cognitive labor H (that enters software) by multiplying the

shares of manual and cognitive work by total hours worked in the US economy in a

given year.

We also construct time series of average real wages in manual and cognitive tasks,

using remunderation data from CPS IPUMS. We calculate a weighted average of

28Our method for splitting total hours worked into manual and cognitive tasks yields conservative

estimates, with relatively little growth in the ratio of cognitive to manual work. This is partly

because, due to data limitations, we identify the manual vs. cognitive content of jobs at only one

point in time, and all the measured temporal variation comes from changes in the occupational

structure of employment. However, in reality the task content of jobs has also been gradually

evolving. Our intuition is that particularly manual tasks at any given job have been subject to

mechanization. If that were the case, it would amplify the measured growth of cognitive work

relative to physical labor.
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hourly wages across occupations, using the total manual and cognitive hours worked

in each occupation as weights (Figure 3). The measured difference between hourly

wages for performing physical labor and cognitive work is rather low (cognitive work

pays about 10% more on average, with a slow increase in the premium over time),

mirroring our conservative estimates of the split between manual vs. cognitive tasks

within jobs.

Figure 3: Hourly wage in manual and cognitive work (USD, constant prices)

4.2 Decomposing Capital: Physical Capital vs. Digital Soft-

ware

The process of breaking down total capital into physical capital K (that enters hard-

ware) and digital software Ψ is analogous. First, we take US Bureau of Economic

Analysis data which allows us to divide investment into structures, intellectual prop-

erty products (IPPs) and 25 categories of equipment.29 We assume that investment

in structures contributes 100% to hardware, while investment in IPPs contributes

100% to software. The challenge, however, is to determine to what extent invest-

ments in the specific types of equipment affect the hardware and software stock.

In an attempt to solve this problem via proxy, we use O*NET data which provides

29Private fixed assets; Computers and peripheral equipment; Communication equipment; Med-

ical equipment and instruments; Nonmedical instruments; Photocopy and related equipment; Of-

fice and accounting equipment; Fabricated metal products; Engines and turbines; Metalworking

machinery; Special industry machinery, n.e.c.; General industrial, including materials handling,

equipment; Electrical transmission, distribution, and industrial apparatus; Trucks, buses, and truck

trailers; Autos; Aircraft; Ships and boats; Railroad equipment; Furniture and fixtures; Agricultural

machinery; Construction machinery; Mining and oilfield machinery; Service industry machinery;

Electrical equipment, n.e.c.; Other nonresidential equipment; Residential equipment.
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information on what type of equipment is used in the day-to-day work in various pro-

fessions. We assume that the more manual the job is, the more hardware-intensive

equipment the worker uses. In contrast, highly cognitive occupations are assumed

to be more likely to use equipment containing mostly digital software.30 We at-

tribute to each type of equipment its specific proportion of hardware and software

by merging the Tools Used by Occupation dataset from O*NET and the occupation-

level manual-cognitive split discussed above. Using the O*NET-SOC 2019 codes we

merge the Tools Used by Occupation dataset with BEA dataset on investment by

category.

As a result of these steps, we obtain time series on investments in physical capi-

tal (hardware) and digital software. Next, we use the standard perpetual inventory

method to build up the stocks of physical capital (hardware) and digital software.

We apply asset-specific depreciation rates based on Fraumeni (1997). These rates

range from 0.026 per annum (structures) to 0.315 (computers and peripheral equip-

ment).

Figure 4: Unit price of physical capital (hardware) and digital software (USD, con-

stant prices)

To transform both nominal series into real ones, we construct separate price

deflators for physical capital (hardware) and digital software. To this end we use

price deflators by asset category from US BEA. We calculate a weighted average of

asset-specific deflators, using the total hardware and software stock in each asset

category as weights (Figure 4). The result is striking: hardware prices were rapidly

growing throughout the entire time frame 1968–2019, whereas software prices were

roughly constant. This finding is in line with the plentiful past evidence that the

30This is a tentative assumption that calls for refinement in the future. Anecdotal evidence

suggests that it is not always the case that cognitive tasks are performed with “smart” devices,

and manual work – with simple tools. However we do not have sufficient data to verify this.
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price of equipment relative to structures (which we count as 100% hardware) ex-

hibits a secular downward trend (e.g., Greenwood, Hercowitz, and Krusell, 1997;

Gordon, 2016). Specifically the relative prices of ICT equipment have been falling

most precipitously (Timmer and van Ark, 2005), and accordingly in US BEA data

computers and peripheral equipment are the category which witnessed most extreme

price declines, not just in relative but also in absolute terms.

4.3 Constructed Time Series

Over the period 1968–2019 there was a clear increase in the share of cognitive work in

labor and of digital software in capital (Figure 5). Significant differences in software

intensity have persisted between capital and labor, though. Despite all the Digital

Revolution, digital software still accounted for only about 20% of total capital in

the US in 2019 (in current prices), up by only 3.5pp. since 1968. At the same time,

human cognitive work (software) constituted about 64% of total labor input, up by

6pp. since 1968.

Figure 5: Share of human cognitive work in labor and digital software in capital (in

%)

At this point we must also posit a functional form for exogenous software-

augmenting technical change A(t) feeding into H and Ψ. As this is the first attempt

to quantify hardware and software, we opt to keep things as simple as possible.

Therefore we postulate exponential technological progress at a constant rate g > 0,

i.e. A(t) = egt. In the baseline calibration (see below) we assume g = 0.5% per

annum.

With this in hand we find that while the stocks of all four factors of production

(L, K, H, Ψ) have been growing over time, in line with US population growth and

fixed asset formation, their growth rates were rather disparate (Figure 6). Human
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Figure 6: Dynamics of physical capital K, digital software Ψ, physical labor L and

cognitive work H (1968=1)

physical labor was growing at 0.8% per annum on average, cognitive work – at 1.8%,

real physical capital K – at 1.9%, and digital software – at 6.7% (compared to the

average real GDP growth rate of 2.7% per annum). Clearly, even without specifying

the relative productivity of L vs. K in hardware and H vs. Ψ in software, we

already see that as a whole software has been growing systematically faster than

hardware.

4.4 Calibration of the Aggregate Production Function

We now combine all four factors of production in a modified version of aggregate

production function (3). This aggregate production function will later be used in a

growth accounting exercise.

We use the nested normalized CES production function specification, with hard-

ware and software being gross complements:

Y = Y0

(
α

(
X

X0

)θ
+ (1− α)

(
S

S0

)θ) 1
θ

, θ < 0, α ∈ (0, 1). (10)

In contrast to (3), we now also use normalized CES aggregates for hardware and

software, thereby relaxing the assumption of perfect substitutability between people

and machines within hardware and within software. We do so because in reality

there is a multiplicity of tasks to be performed, both in terms of physical action and

information processing; even if people and machines are perfectly substitutable in

performing each task, the tasks themselves may be complementary and many tasks

certainly have not been fully automatable in the considered time period (Growiec,
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2022b). Hence we write:

X = X0

(
γ

(
L

L0

)µ
+ (1− γ)

(
K

K0

)µ) 1
µ

, µ ≤ 1, γ ∈ (0, 1), (11)

S = S0

(
β

(
H

H0

)ω
+ (1− β)

(
Ψ

Ψ0

)ω) 1
ω

, ω ≤ 1, β ∈ (0, 1). (12)

In line with usual practices in the normalization literature (Klump, McAdam, and

Willman, 2012), the normalization points with subscript 0 are taken as (geometric)

sample means.

However, as the hardware–software framework is a new theoretical setup, there

is no evidence in the literature on the values of distribution parameters α, β, γ, and

elasticity parameters θ, µ, ω. We set them so as to roughly match the (i) the average

GDP growth rate (2.7% in data), (ii) average labor share (0.61 in data), (iii) the

cognitive wage premium (in data, an average hour of cognitive work is worth ∼ 10%

more than an hour of manual work), and (iv) the share of digital software in overall

capital (19.4% on average), and exclude parametrizations with very strong variation

in the labor share or the cognitive wage premium.

Specifically, to compare the predictions of the hardware–software framework with

observations on the US labor share and cognitive wage premium, we need to derive

their model-based counterparts. Postulating the normalized CES specification (10)

and assuming that factors are priced at their respective marginal products (subject

to a possible constant markup), we obtain:

πX = α

(
X

X0

Y0

Y

)θ
, πS = (1− α)

(
S

S0

Y0

Y

)θ
, (13)

πL = γ

(
L

L0

X0

X

)µ
, πH = β

(
H

H0

S0

S

)ω
. (14)

The labor share and the cognitive wage premium are derived as follows:

πLabor = πXπL + πSπH , (15)

and
wH
wL

=
πSπH
πXπL

L

H
. (16)

The selected baseline parameters approximately achieving the aforementioned

objectives are listed in Table 2.

Table 2: Baseline parameterization of the nested CES production function

Output Hardware Software Tech

α θ γ µ β ω g

0.40 -0.2 0.64 1 0.65 -0.37 0.005
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In this parameterization, the elasticity of substitution between hardware and

software is σX,S = 1
1−θ = 0.83 – somewhat above the usual estimate of the elasticity

of substitution between aggregate capital and labor from the literature, σ = 0.6

(Klump, McAdam, and Willman, 2012), but in the theoretically postulated domain

of gross complementarity. In turn, physical capital and human physical labor are

perfectly substitutable, whereas human cognitive work and digital software are gross

complements, with an elasticity of substitution of σH,Ψ = 1
1−ω = 0.73, in line with

the partial automation scenario (σH,Ψ < 1). These parameter choices also imply that

at the point of normalization, cognitive work earns about 13% more than manual

work, whereas the labor share is 0.64. However, while roughly matching the average

labor share and skill premium in the data, and the extent of their temporal variation,

we cannot reproduce the downward trend in the labor share and an upward trend

in the cognitive wage premium (Figure 7).

Figure 7: The labor share and the cognitive skill premium: model vs. data

Our main results (Figure 8) suggest that growth in software (3.7% per annum)

systematically outruns that of hardware (1.2% per annum). We also find that the

extents of both mechanization (share of machines in hardware) and automation

(share of machines in software) are upward trending, but with very different slopes:

over the considered time frame mechanization progressed by about 42% (or 0.7%

per annum), and automation (in real terms) by as much 441% (or 3.0% per annum).

4.5 Growth Accounting

Log-differentiating equation (10) with respect to time, one obtains the following

Solow-type decomposition of economic growth:

gY = πXgX + πSgS, (17)

where πX = ∂Y
∂X

X
Y

is the hardware share of output, and analogously πS = ∂Y
∂S

S
Y

is

the software share. Due to constant returns to scale with respect to rivalrous inputs

and purely software-augmenting technical change, πX + πS = 1.

Decomposing (10) further,

gY = πXπLgL + πXπKgK + πSπHgH + πSπΨgΨ, (18)
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Figure 8: Hardware, software (1968=1) and the extent of mechanization and au-

tomation (1968=1, right axis) under the baseline calibration

where πL = 1− πK = ∂X
∂L

L
X

is the human physical labor share within hardware, and

πH = 1− πΨ = ∂S
∂H

H
S

is the human cognitive labor share within software.

Under the baseline calibration we find that the key contributor to GDP growth

in the US in 1968–2019 was the accumulation of digital software, followed by the

accumulation of human capital (Table 3, Figure 9). Furthermore, while the contri-

bution of human capital was roughly steady throughout the studied time period,

the contribution of digital software was particularly strong in the 1970s–1990s and

generally declining over time, particularly after the dotcom bubble which burst in

2000. Our speculative hypothesis, to be verified as new data come along, is that

this slowdown period may constitute an interlude before the next upcoming wave

of AI-driven automation in the coming years (Brynjolfsson, Rock, and Syverson,

2019).

Table 3: Contributions to annual GDP growth, 1968–2019 (pp.)

GDP K Ψ L H Residual

pp. 2.71 0.27 1.45 0.22 0.68 0.09

% of total 10.3% 54.8% 8.1% 25.8% 3.3%
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Figure 9: GDP growth decomposition, 1968–2019

5 Conclusion

In this paper we have put forward the hardware–software framework – a new con-

ceptual framework of production and long-run growth, based on first principles and

emphasizing the role of energy and information in the growth process. Nevertheless

it remains closely linked with the existing economic literature. It nests four conven-

tional macro models as special cases, and can be used to inform the debate on the

future of global economic growth.

As an empirical application of the theory, we have constructed time series of

physical capital K, digital software Ψ, physical labor L and cognitive work H for

the US in 1968–2019. We have then plugged these series in a growth accounting

exercise. Our results suggest that the key contributor to GDP growth in the US in

1968–2019 was the accumulation of digital software, followed by the accumulation of

human capital. This is consistent with the interpretation (Growiec, 2022a) that we

are still at an early stage of the digital era, and more profound economic transforma-

tions should be expected as AI-driven automation gains steam and more and more

production processes are fully automated, thereby reducing the contribution of hu-

man cognitive work towards zero (Brynjolfsson, Rock, and Syverson, 2019; Korinek

and Stiglitz, 2019; Growiec, 2022b; Korinek and Juelfs, 2022; Eloundou, Manning,

Mishkin, and Rock, 2023).

Our results can be extended in a number of directions. First, one can build

formal macroeconomic models based on the hardware–software framework, with a
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variety of applications. For example, Growiec (2023) applied the hardware–software

framework to build scenarios for the future and address the question: what will drive

global economic growth in the digital age? Second, using certain identifying assump-

tions one can construct time series for hardware and software stretching further back

in time, thus quantifying the role of these fundamental factors of production over

the very long run, including for example the period of Industrial Revolution. This

is needed to ascertain usefulness of the framework as a building block for a unified

growth theory (Kremer, 1993; Galor, 2005, 2011). Third, one can add more detail

to the model, such as heterogeneous tasks with varying extents of automatability

(Growiec, 2022b). This would improve the fit of the model to the data and make

it better suited to producing quantitative predictions of economic growth at later

stages of the digital era.
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Krusell, P., L. E. Ohanian, J.-V. Ŕıos-Rull, and G. L. Violante (2000):

“Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis,”

Econometrica, 68, 1029–1054.

Kumar, S., and R. R. Russell (2002): “Technological Change, Technological

Catch-up, and Capital Deepening: Relative Contributions to Growth and Con-

vergence,” American Economic Review, 92, 527–548.

Kurzweil, R. (2005): The Singularity is Near. New York: Penguin.

Lewandowski, P., A. Park, W. Hardy, Y. Du, and S. Wu (2022): “Tech-

nology, Skills, and Globalization: Explaining International Differences in Routine

and Nonroutine Work Using Survey Data,” World Bank Economic Review, 36,

687–708.

Madsen, J. (2008): “Semi-endogenous Versus Schumpeterian Growth Models:

Testing the Knowledge Production Function Using International Data,” Journal

of Economic Growth, 13, 1–26.

McAdam, P., and A. Willman (2018): “Unraveling the Skill Premium,” Macroe-

conomic Dynamics, 22, 33–62.
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