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Abstract

We quantify intraday volatility connectedness between oil and key financial assets and

assess how it is related to uncertainty and sentiment measures. For that purpose, we

integrate the well-known spillover methodology with a TVP VAR model estimated on

a unique, vast dataset of roughly 300 thousand 5 minute quotations for crude oil, the

US dollar, S&P 500 index, gold and US treasury prices. This distinguishes our investi-

gation from previous studies, which usually employ relatively short samples of daily or

weekly data and focus on connectedness between two asset classes. We contribute to

the literature across three margins. First, we document that market connectedness at

intraday frequency presents new picture on markets co-movement compared to the esti-

mates obtained using daily data. Second, we show that at 5 minute frequency volatility is

mostly transmitted from the stock market and absorbed by the bond and dollar markets,

with oil and gold markets being occasionally important for volatility transmission. Third,

we present evidence that daily averages of intraday connectedness measures respond to

changes in sentiment and market-specific uncertainty. Interestingly, our results contrast

with earlier findings, as they show that connectedness among markets decreases in periods

of high volatility owing to market-specific factors. Our study points to the importance of

using high-frequency data in order to better understand market dynamics.
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1 Introduction

The importance of uncertainty and sentiment for both the economy and financial markets

is already well recognized in the literature. The theoretical frameworks of Bernanke (1983)

and Pastor and Verones (2012) imply that a spike in economic uncertainty should lead

to a decline in economic activity and prices of risky assets. There is also a voluminous

empirical literature gauging the reaction of the economy and financial markets to changes

in sentiment, which has emerged and flourished in the last decade.

The increase in academic interest regarding the effects of uncertainty and sentiment

shocks is related to the unfolding of critical events in recent times after a long period of

relative macroeconomic and financial stability. These include the global financial crisis,

the European sovereign debt crisis, the outbreak of the Covid-19 pandemic or the Russian

full-scale invasion of Ukraine. Moreover, advances in machine learning coupled with rising

computational power and the dissemination of dedicated software allowed researchers to

easily examine, describe and interpret textual data by transforming it into a quantitative

representation (see Algaba et al., 2020, for the survey on sentometrics). In economics,

the spread of text processing methods has facilitated the development of news-based

uncertainty and sentiment measures, such as the Economic Policy Uncertainty (EPU,

Baker et al., 2016) or their Twitter-based (TEU) alternatives, the Geopolitical Risk Index

(GPR, Caldara and Iacoviello, 2022) or the News Sentiment Index (NSI, Buckman et al.,

2020). In this sense, the development in natural language processing made it possible to

conduct econometric analyses on the link between uncertainty or sentiment and economic

or financial variables (see Castelnuovo, 2023, for a comprehensive survey).

Given this progress, a large body of literature has concentrated on the causal link be-

tween both uncertainty or sentiment and commodity markets. For instance, Antonakakis

et al. (2017) show that GPR shocks negatively affect oil prices and their volatility. Bilgin

et al. (2018) report that gold prices increase after EPU shocks, thus confirming the role of

this commodity as a safe haven in times of high risk aversion triggered by either economic

or political uncertainty. Uddin et al. (2018) conclude that economic uncertainty shocks

exert stronger effects on energy commodity prices than geopolitical shocks. Ozcelebi and

Tokmakcioglu (2022) document that geopolitical risk affects negatively oil supply and

prices. The empirical literature also investigates connectedness between both uncertainty

or sentiment and commodity markets. For instance, Sharif et al. (2020) or Gao et al.

(2021) focus on spillovers between EPU and oil prices, whereas Li et al. (2022) investigate

links between GPR and oil. Finally, there are few recent studies, which undertake the re-

search question similar to ours and examine the importance of uncertainty and sentiment

in driving the connectedness between financial and commodity markets (Albulescu et al.,

2019; Mensi et al., 2022a; Akyildirim et al., 2022; Gong and Xu, 2022a; Wu et al., 2023;

Dai and Zhu, 2023). We will review these studies in detail in the next section.
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Against this background, in this article we contribute to the scarce empirical liter-

ature identifying the drivers of spillovers across commodity and financial markets. We

investigate whether uncertainty and sentiment drive connectedness between the crude

oil market and the markets for most frequently traded, key financial assets, i.e., the US

dollar, S&P 500, gold and US treasury bonds. For that purpose, we first employ the com-

monly used time-varying parameter vector autoregression model (TVP-VAR) á la Koop

and Korobilis (2014) to estimate Diebold and Yilmaz (2012, 2014, henceforth DY) and

Barunik and Krehĺık (2018, henceforth BK) connectedness measures defined for the time

and frequency domains, respectively. Second, we test if connectedness estimates obtained

in the first stage of our analysis are related to various popular uncertainty and sentiment

measures. We contribute to the literature along three margins.

First of all, we quantify volatility spillovers with the means of a unique database

consisting of intraday data, while contemporaneous studies frequently rely on daily ob-

servations. Our approach allows us to discuss to what extent connectedness among oil

and financial markets at intraday (high) frequency compares to connectedness estimates

obtained using daily data. Specifically, in our model we account for almost 300 thousand

of 5 minute observations spanning the period from January 2, 2018 to May 27, 2022. We

show that measures of connectedness based on intraday data deliver new perspective on

the joint dynamics of financial and commodity markets compared to their counterparts

obtained using daily data.

Second, we present new evidence on intraday volatility connectedness of crude oil

prices with the volatility on four most important financial markets, i.e., the US exchange

rate, stocks, bonds and gold. This makes our study more comprehensive compared to

most previous investigations, which frequently focus on connectedness between oil and

one particular class of assets. We document that at intraday frequency the stock market

transmits volatility, while the bond and exchange rate markets absorb it, with oil and

gold markets being occasionally significant for the volatility flow.

Third, we enrich the literature by examining how volatility connectedness between

crude oil and key financial assets is related to various uncertainty and sentiment proxies.

We find, counter-intuitively, that increases in uncertainty measured with implied volatil-

ity lead to declines in total and directional spillovers. On the other hand, Twitter-based

sentiment measure, that filters short communication circulating among market partici-

pants, is very important for the link between oil and other studied asset classes. In turn,

newspaper-based uncertainty such as the economic policy uncertainty, news sentiment or

geopolitical risk index do not affects connectedness among markets. Our intuition sug-

gests that this outcome stems from the backward-looking nature of these proxies. Overall,

our results shed new light compared to earlier studies based on daily data, which con-

clude that connectedness among markets increases in periods of high uncertainty and low

economic sentiment.
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The remainder of the article is structured as follows. Section 2 provides an in-depth

discussion of the literature. In section 3 we characterize our unique dataset employed in

the study. Section 4 outlines the methodology. The main results are reported in section

5. The last section delivers conclusions and policy implications.
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2 Literature review

In this section, we review three strands of the literature to which we contribute in this

paper. Subsection 2.1 describes studies focusing on the connectedness of crude oil with

stocks, exchange rates, gold and bonds. Subsection 2.2 discusses articles aimed at identify-

ing drivers of oil market connectedness, with a specific focus on uncertainty and sentiment

variables. Finally, subsection 2.3 summarizes works that employ intraday data in oil mar-

ket analyses.

2.1 The connectedness of crude oil and other markets.

The empirical literature examining the relationship among oil and key financial markets

of our interest (stocks, exchange rates, gold and bonds) has exploded in the last decade.

Thus, providing an exhaustive literature review here is infeasible. For that reason, we

limit our discussion to the most important channels of transmission and the main results

of selected studies that focus on the dynamic relationship between oil and other markets.

Oil and stocks. The reaction of stock prices to oil shocks is usually justified by changes

in future cash flows and expected returns, whereas the response of oil to equity market

shocks is related to the financialization of commodity markets. The empirical studies

confirm the existence of strong ties between these markets. Awartani and Maghyereh

(2013) indicate that oil prices transmit more to Gulf countries stock indices than they

receive, both in terms of returns and volatility. Similar results for implied volatility and

eleven major stock markets are presented by Maghyereh et al. (2016). On the contrary,

Zhang (2017) explores the connectedness of returns from oil and six major stock markets

to find that oil is net receiver of shocks and that, apart from the episodes of increased

volatility, the contribution of oil shocks to the variance of equity market returns is limited.

Several studies focus on individual stocks to deepen the understanding of the oil-equity

relationship. Antonakakis et al. (2018) point to the existence of significant volatility

spillovers among oil and stock prices of 25 largest global oil and gas corporations. Peng

et al. (2018) document significant and asymmetric spillovers from crude oil to stock returns

for 529 firms listed on the Shanghai stock exchange, emphasizing that transmission from oil

price shocks to firm returns depends on the firm’s characteristics. Ma et al. (2019) reports

that US energy stocks are net transmitters to oil returns. Taking a long-term perspective,

Benlagha et al. (2022) illustrate that the connectedness between oil, renewable energy

and stock markets increases in times of pandemics. In a similar vein, Wang et al. (2023b)

show that spillovers between returns from crude oil prices and eleven sector stock indices

in China rises during extreme market events. In general, it can be concluded that there

are significant bi-directional spillovers between oil and stock markets, with ambiguous

results for net transmission.
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Oil and exchange rates. The reaction of exchange rates to oil shocks is related to the

wealth transfer from oil-importing towards oil-exporting countries. On top of this effect,

the intensity of energy use in a given country also affects inflation and interest rate re-

sponse to oil shocks, which indirectly transmits to exchange rate developments. In turn,

shocks to the value of the US dollar affect nominal oil prices as they are expressed in USD

terms. As regards empirical evidence, the influential study of Chen et al. (2010) show that

commodity currencies contain predictive power in predicting commodity prices, whereas

the reverse relationship is not significant. In the same vein, Beckmann and Czudaj (2013)

document a time-varying causality from the US dollar effective rate to oil prices. On the

contrary, Wang et al. (2023a) detect nonlinear effect of crude oil prices on the US dollar

exchange rate, without evidence on reverse causality. The recent contributions of Smiech

et al. (2021) and Dabrowski et al. (2022) indicate that shocks to oil prices and volatility

affect exchange rates of oil-exporting countries, but the response is heterogeneous and

depends on the specific characteristics of each country. As regards rare spillover analyses,

Malik and Umar (2019) find that the connectedness of returns among oil and exchange

rate markets is low and broadly balanced, both for major oil-exporters and importers.

Albulescu et al. (2019) report that for returns oil rather transmits than receives shocks

towards G10 currencies, whereas the spillover effect materializes predominantly for com-

modity currencies. Finally, most recently Obstfeld and Zhou (2023) corroborates the

negative relation between the dollar and global commodity prices (including oil). In gen-

eral, spillovers between oil and exchange rates are rather low, with oil playing mostly the

role of net transmitter.

Oil and gold. Oil shocks exert an impact on gold prices as they lead to higher infla-

tion and interest rates. Given that gold is used as a hedge against inflation but also as

an investment alternative to fixed income financial assets, the total effect is ambiguous.

Moreover, there is also a potential cause for long-run relationship as the prices of both

commodities are expressed in USD terms. Indeed, Zhang and Wei (2010) and Narayan

et al. (2010) point to the existence of a long-term equilibrium between prices of both

assets. They also indicate that in the short run oil prices Granger cause gold prices, with

no reverse link. As regards studies based on the connectedness framework, Rehman et al.

(2018) show that gold returns are only weakly affected by oil market shocks in normal

times, but the link becomes substantial during financial crisis. They also show that, on

average, oil transmits and gold receives shocks in net terms. In turn, Cui and Maghyereh

(2023) focus on numerous commodity futures to find that oil is the largest net transmitter

of spillovers, both for returns and volatility, while gold is a mild receiver of shocks. The

authors also demonstrate that the scale of connectedness among commodity markets was

relatively high at the beginning of the Covid-19 pandemic and the Russian invasion of

Ukraine. In general, the analyses of spillovers between oil and gold indicate that oil is net

transmitter of shocks.
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Oil and bonds. The reaction of fixed income securities to oil shocks is justified by the

existence of the expected inflation component in nominal bond yields and monetary policy

reaction to inflation triggered by energy price increases. Specifically, rising oil prices

cause the expected inflation and policy rates to rise, which pushes up bond yields and

lowers bond prices. However, higher oil prices also generate additional income for oil

exporters, which usually translates into higher demand for financial instruments, including

bonds. This channel cushions the scale of bond prices decline following an oil price

shock. As regards the reverse causality, expansionary policy measures conducted by major

central banks, through the effect on global economic activity and the demand for crude

oil industry, lead to higher oil prices. The empirical evidence indicates that global oil

market shocks represent a significant source of US bond prices variability, but the effect

of bond market shocks on oil prices is negligible (Kang et al., 2014). Similarly, Gormus

et al. (2018) show that oil price and volatility shocks affect high-yield US bond prices

and that the relationship is unidirectional. Balcilar et al. (2020) confirm the transmission

from oil shocks to US bonds by showing that oil price uncertainty helps in predicting US

bonds returns and volatility, with the effect on the latter being stronger. In turn, Dai and

Kang (2021) document that US bond yields have some explanatory power for oil returns.

In a cross-country analysis, Demirer et al. (2020) report that oil shocks exert an effect on

yields of 21 sovereign bond markets. Nazlioglu et al. (2020) analyze price and volatility

causality between crude oil and 14 major bond markets to find that oil prices Granger

cause bond prices in most cases, whereas the feedback from bonds to oil prices is weak

and detected only for the largest economies in the sample, i.e., China and the US. Finally,

several studies apply the connectedness framework to analyze the relationship between

sovereign yields and oil prices. Umar et al. (2022) report that oil and US bond yields are

the main transmitters of shocks, whereas bond yields in other investigated economies are

net recipients of shocks. Similarly, Umar et al. (2023) document a sizable connectedness of

oil price shocks with three fixed income asset classes, with oil found to be net transmitter

of shocks. In general, the above studies point out that the oil market is the source of bond

prices variability, whereas the reverse causality is weak.

Multiple assets. There are also rare contributions evaluating the interaction among oil

and several asset classes using the connectedness framework. Awartani et al. (2016)

point to a strong volatility spillover from oil to US equities, and moderate spillovers

to the euro dollar exchange rate and precious metals. Husain et al. (2019) investigate

the connectedness among oil, S&P 500 index and precious metals volatility to find that

platinum is net contributor in the system, crude oil is net receiver, whereas gold and

stocks are broadly neutral. Adekoya and Oliyide (2021) examine connectedness among

five markets (oil, gold, stocks, bitcoin and exchange rates) and document that gold and

USD are net receivers of shocks, whereas oil and stocks play the role of net transmitters.
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Finally, Dai et al. (2022) focus on volatility spillovers among oil, gold and Chinese stocks.

They show that there exists a high interdependence among all analyzed assets, especially

during major crisis events. Moreover, they report that on average crude oil and gold are

net receivers and stock markets are net transmitters of systemic shocks.

2.2 What drives connectedness of oil and financial markets?

We continue the literature review by discussing results of rare, recent studies that extend

connectedness computation for the second stage of the analysis, which is aimed at iden-

tifying the main drivers of spillover indices. In the context of our investigation, we are

especially interested whether uncertainty and sentiment are important determinants of

links between markets. It is worthy to note that the methodology of this second stage

analysis is very diverse across articles. Albulescu et al. (2019) use a battery of linear and

nonlinear Granger-type causality tests to show that there is a significant causal relation-

ship from the EPU index to the total spillover index (TSI) for oil and currency markets.

Adekoya and Oliyide (2021) use causality-in-quantiles tests to indicate that the severity

of the Covid-19 pandemic is a cause for the TSI for major global assets. Mensi et al.

(2022a) apply quantile coherency analysis to find that neither EPU nor VIX are signifi-

cant drivers of the TSI for precious metals and currency markets. Akyildirim et al. (2022)

run quantile regression and show that connectedness among energy equity indices of oil-

exporting and importing countries is significantly influenced by economic sentiment index

extracted from newspapers or Twitter. In another investigation on connectedness across

commodity and financial markets, Wu et al. (2023) apply regime-switching framework to

identify EPU as an important driver of the interactions among these markets. In turn,

using MIDAS framework, Gong and Xu (2022b) show that the dynamic connectedness

among various commodity markets is dependent on the level of the GPR index. Finally,

Dai and Zhu (2023) use predictive regression framework to document that credit spreads

as well as VIX contain predictive content for the TSI for oil and Chinese stocks. Overall,

the above studies provide robust evidence that both uncertainty and sentiment can affect

connectedness across markets.

2.3 Intraday data within the connectedness framework.

The connectedness of the crude oil market with other asset classes is usually analyzed

with data of relatively low frequency (i.e., daily, weekly or even monthly). Consequently,

they do not measure intraday fluctuations of asset prices. Our intraday analysis sheds

new light on the dependence among crude oil and other asset classes, especially during

extreme market events. For that reason, in this subsection we describe rare studies that

use intraday data in oil market analyses.

In several studies, intraday data are only used to calculate daily series for realized
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moments (e.g., volatility, skewness or kurtosis), which are then used in connectedness

analysis (e.g., Luo and Ji, 2018; Zhang et al., 2021; Bouri et al., 2021; Iqbal et al., 2023;

Dai and Zhu, 2023; Maghyereh and Abdoh, 2022; Naeem et al., 2023). These studies are

not a focus of this review as they do not provide guidelines on intraday connectedness.

Our investigation is related to studies examining the relationship between oil and

other asset classes at frequencies measured in minutes. For instance, Phan et al. (2016)

employ 5 minute data from 2009-2012 and predictive regression framework to show that

bid–ask spread, trading volume and price volatility of US equity markets improve volatility

predictability for crude oil prices. Using DCC-GARCH, Corbet et al. (2020) analyze co-

movements among oil and US energy stocks hourly returns during the outbreak of the

Covid-19 pandemic. The authors document positive and meaningful spillovers from oil to

stock prices. Using similar methodology but 15 minute data, Mensi et al. (2022b) examine

volatility spillovers between oil, US stocks and gold around the Covid-19 pandemic. They

show that conditional correlations between markets were higher during lockdowns. Okhrin

et al. (2023) use 1 minute data to explore connectedness between oil prices, US equities,

USD exchange rate and the VIX. Using cross-quantilograms and copula regression, the

authors conclude that connectedness increases sharply during the Covid-19 pandemic and

the Russian invasion of Ukraine.

According to our best knowledge there are only two studies that apply the connect-

edness framework on intraday data to investigate the interdependence of oil and other

financial markets. In the first one, Farid et al. (2021) focus on the volatility connected-

ness across the US equity index and major commodities, including oil and gold. With the

sample of 5 minute data spanning the period January 2019 - May 2020, the authors find

that the outbreak of Covid-19 pandemic exerted a significant impact on volatility linkages.

The authors also indicate that the S&P 500 index was net transmitter and crude oil net

receiver of shocks throughout the sample. In the second study, Adekoya et al. (2022)

examine how crude oil connects with bonds, bitcoin, the US dollar, gold, and stocks. In

this case, the sample is based on 30 minute observations from January 2022 to March

2022. The authors indicate that the Russian invasion of Ukraine significantly increased

returns connectedness between oil and other markets, with oil becoming net transmitter

of spillovers.

Against this rich literature of market connectedness, our contribution is threefold.

First, we employ a unique and vast dataset of intraday data as we make use of roughly

300 thousand observations of 5 minute frequency. Second, our analysis on volatility con-

nectedness encompasses oil and four key, most heavily traded assets (i.e., the US dollar,

S&P 500 index, gold and bonds). Third, we examine how various proxies of uncertainty

and sentiment are related to intraday connectedness of oil with other markets and disen-

tangle a set of its robust determinants.
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3 Data

In the paper we account for two data sources. First, we retrieve intraday price data from

FirstRateData.com, which serve for capturing market connectedness. Our unique dataset

contains quotations for five assets (i = 1, 2, ..., 5), i.e., continuous futures for the WTI

crude oil prices (OIL), effective exchange rate of the US dollar (USD), continuous futures

for the S&P 500 index (SPX), continuous futures for gold prices (GOLD) and continuous

futures for 10-Year Treasury Note (BONDS). The sample covers 1136 trading days over

the period from 2 January 2018 to 27 May 2022, with the last observation limited by

data availability. Nonetheless, our sample allows us to quantify market spillovers before

the Covid-19 pandemic, throughout its outbreak and following the onset of the Russian

full-scale invasion of Ukraine.

We start by discussing the characteristics of this intraday database. For the majority

of working days the market for stocks, bonds, gold and oil opens at 6:00 p.m. and closes

at 5:00 p.m. ET (Sunday to Friday). The exception is the US dollar, which is traded

for 21 hours a day (from 8:00 p.m. to 5:00 p.m. ET) from Monday to Friday, while on

Sunday evening the market for Monday’s trade date opens earlier (at 6:00 p.m. ET). To

facilitate our analysis, we adjust the time index of our database from ET (original dating

in the FirstRateData.com database) to UTC so that all trades take place on working dates

(from Monday to Friday).

The price data at our disposal are available at 5 minute frequency, which constitutes a

sound balance between microstructure noise and accurate estimations (Farid et al., 2021).

This means that for Mondays we gather up to 276 observations per day, whereas for

the remaining days up to 252 observations per day are available.1 Since missing data

throughout the trading day may occur, we fill them with the last recorded price if the gap

does not exceed 30 minutes.

Overall, our database consists of 289,273 observations for five variables. For the over-

whelming majority of cases (i.e., 99.6%) the time distance, τt, between two adjacent

observations t and t − 1 amounts to 5 minutes. For 871 observations the time interval

stands at 185 minutes, which is the equivalent of the 3 hour interval between trading

days. In 210 cases the time difference is 2945 minutes, which corresponds to the weekend

break.2 The development in prices at all studied markets is illustrated in the left column

of Figure 1.

1The variation in the number of observations within each day stems from several features of the
database. First, as already pointed out, for Monday the market opens earlier than for the remaining
trading days. Second, occasionally no trade can occur, resulting in missing observations. Third, in rare
cases throughout the year (e.g., for days preceding the Independence Day, Thanksgiving holidays or
Christmas) US markets close earlier than usually.

2Moreover, there are only 33 instances for which τt varies between 40 and 150 minutes, which points
to a larger interval within a given day due to missing data we do not impute. Furthermore, for 55
observations the time gap is larger than 185 but smaller than 4625 minutes (after excluding the weekend
break). This can be ascribed to various calendar effects throughout the year we mention in footnote 1.
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Following the recent contributions of Antonakakis et al. (2018) and Corbet et al. (2020)

to the literature focusing on modeling the connectedness of oil and equity markets, we

define price volatility as the absolute return, Vit = |pit−pi,t−1|, where p = logP . However,

given that our analysis is based on intraday data, we make two additional adjustments.

First, we compute the diurnal pattern of Vit with the truncated maximum likelihood

method combined with smoothing based on five cos and sin functions. This allows us

to eliminate deterministic component and construct detrended volatility V ∗it . Second, to

account for the fact that τt does not always equal to five minutes, we adjust V ∗it by using

the square root of time principle. The reason for this adjustment is motivated by the fact

that the distribution of unadjusted absolute returns at market opening is significantly

more dispersed than the distribution of subsequent returns as market participants may

discount the information appearing between trading hours and change their exposure

already starting from market pre-open. This overnight bias of unadjusted series would

make it difficult to use them within the TVP-VAR framework. Ultimately, we define

volatility as:

Ṽit = V ∗itτ
− 1

2
t (1)

The development in Ṽit is presented in the right column of Figure 1, whereas basic

descriptive statistics are summarized in the upper panel of Table 1. The mean, standard

deviation, skewness and kurtosis of crude oil volatility is much higher than that of the

remaining assets. These results can be partly explained by the oil price development after

the outburst of Covid-19 (see Figure 1). The table also shows that the US exchange

rate and US bonds are less volatile than gold and stock prices. Finally, all the series are

stationary, skewed and characterized by fat tails. As regards links between the series, the

left panel of Table 2 illustrates that Pearson correlations among all the series are positive

and range between 0.10 for OIL-BONDS pair to 0.30 for the SPX-BONDS pair.

In Tables 1 and 2 we also report descriptive statistics for daily series calculated using

the last observation for each trading day. In this way our dataset could be compared to

studies based on daily data, which we have reviewed in the previous section, with the

stipulation that by using intraday data we fully control the moment of the observation

applied to calculate daily returns.

Our second database serves the purpose of establishing whether uncertainty and senti-

ment drives intraday volatility connectedness of oil and key financial asset classes. To this

end, we collect daily observations for various popular uncertainty and sentiment measures.

We have decided to include both measures implied from prices of underlying financial as-

sets as well as proxies based on quantitative representation of textual data. We note here

that the distinction between sentiment and uncertainty is vague, but both these concepts

relate to expectations of market participants that may impact the development of asset

prices. Birru and Young (2022) provide an insightful discussion on various sentiment and
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uncertainty proxies, including the ones we use in this paper.

We start with the volatility index (VIX), which represents market expectations for the

30-day ahead S&P 500 volatility derived from options prices. We also extract daily im-

plied volatilities for oil (OIV), gold (GIV) and bonds (BIV) from respective at-the-money

options with 3-months ahead maturities. These measures are sourced from Bloomberg.

Next, we include the Economic Policy Uncertainty (EPU) index for the US constructed

by Baker et al. (2016). This index (sourced from FRED Economic Data of St. Louis)

is a weighted average of three components: the frequency of major news on economic

and policy related uncertainty in ten major US newspapers, a measure of expiring tax

provisions and forecasters’ disagreement about the economic outlook. We also consider

the Twitter-based economic uncertainty index (TEU) of Baker et al. (2021) extracted by

scraping English-language tweets (taken from the webpage maintained by Scott R. Baker,

Nick Bloom and Steven J. Davis) and the News Sentiment Index (NSI) of Buckman et al.

(2020), which approximates economic sentiment based on counting words related to eco-

nomic activity in 16 major US newspapers (this measure is sourced from the webpage of

Federal Reserve Bank of San Francisco). Finally, we take the Geopolitical Risk (GPR)

index developed by Caldara and Iacoviello (2022), which aims to proxy geopolitical ten-

sions by quantifying sentiment from a tally of newspaper articles reporting on threats to

peace or actual hostilities. GPR is downloaded from the webpage of Matteo Iacoviello.

Figure 2 illustrates the development of the above eight uncertainty and sentiment

indices normalized so that their increase indicates rising uncertainty or deteriorating sen-

timent. It shows a substantial increase in all indices except for GPR after the outburst of

the Covid-19 pandemic. In turn, the GPR has not moved considerably in 2020, but spiked

following the Russian full-scale invasion of Ukraine. Overall, there is visible co-movement

between the investigated indices. However, Figure 2 also illustrates that the short-term

dynamics of these indices is quite heterogeneous, with high amplitude changes for EPU,

TEU and GPR and relatively smooth changes of VIX, OIV, GIV, BIV and NSI. This

comovement is quantified in Table 3, which presents correlation coefficient for levels and

first differences. Its upper panel shows high positive correlation among VIX, OIV, GIV,

EPU, TEU and NSI, moderate correlation with BIV and almost no correlation with GPR.

Following differencing, correlation for all pairs drops substantially, indicating that at daily

frequency these indices deliver complementary information on market sentiment (see the

bottom panel of Table 3).
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4 Methodology

Our investigation comprises of two steps. First, we quantify the relationship among market

volatilities at intraday frequency by estimating the TVP VAR model for the demeaned

vector

yt = [Ṽ OIL
t , Ṽ USD

t , Ṽ SPX
t , Ṽ GOLD

t , Ṽ BONDS
t ]

′

and calculating two well-known connectedness measures: Diebold and Yilmaz (2012, 2014)

in the time domain and Barunik and Krehĺık (2018) in the frequency domain. Second, we

utilize Bayesian model averaging to establish whether uncertainty or sentiment measures

exert a robust impact on the market connectedness in the sample.

TVP VAR. The TVP VAR model á la Koop and Korobilis (2014) assumes that the data

generating process for the vector yt of size m× 1 is:

yt =

p∑
i=1

Bi,tyt−i + εt, εt ∼ N (0, Qt). (2)

All parameters are allowed to vary over time, including the autoregressive matrices, Bi,t,

i ∈ {1, ...p}, and the variance-covariance matrix Qt. All technical details of this method

are provided in Appendix A. Here we only note that we have decided to use the TVP

VAR rather than the rolling window VAR for several reasons as argued by Antonakakis

et al. (2020). The chosen framework allows all coefficients to evolve over time and intro-

duces heteroscedasticity in the variance-covariance matrix. Thus, it overcomes the issue

of choosing arbitrarily the rolling window size in an ad hoc manner. It also does not lead

to information loss or excessive persistence of estimated parameters. Finally, it can be

quickly estimated by Kalman filter, thus without relying on commonly used, but com-

putationally insentive likelihood-based estimation techniques (such as Bayesian methods

based on Markov Chain Monte Carlo simulations).3

Diebold and Yilmaz (2012) connectedness methodology. To establish how intraday

volatility is interconnected in the time domain, we use the Diebold and Yilmaz (2012,

2014) methodology. This well-known framework allows to quantify the fraction of the

H-step-ahead error variance in forecasting variable k that is due to the shock in vari-

able j. Since this decomposition is based on the KPPS generalized IRF method (Koop

et al., 1996; Pesaran and Shin, 1998), it is insensitive to the ordering of variables and

thus enables the researcher to measure both total and directional spillovers. Hence, it is

a suitable tool to capture the connectedness and spillovers between the studied variables

3This feature of the model á la Koop and Korobilis (2014) is especially appealing as our sample is vast
and providing tens of thousands draws for each time period would be infeasible.
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and to establish which one transmits or receives signals from the remaining ones. Since

the methodology by Diebold and Yilmaz (2012, 2014) is well known, we provide the tech-

nical description of this framework in Appendix B. In integrating the TVP VAR model

á la Koop and Korobilis (2014) with the DY framework we follow the implementation by

Antonakakis et al. (2020).

Barunik and Krehĺık (2018) decomposition of market spillovers. To further investi-

gate the volatility connectedness between analyzed markets we employ the Barunik and

Krehĺık (2018) methodology within our TVP VAR. The key appealing feature of this

approach is that it allows us to decompose the connectedness measures obtained in the

time domain and quantify the spillovers between variables arising from heterogeneous

responses to shocks at different frequencies, which is especially informative for analyses

based on intraday data. Thus, it helps to understand the drivers in the connectedness

and spillover measures estimated in the time domain as it identifies the contribution of

selected frequency components. The technical details of the BK framework are described

in Appendix C.

Bayesian model averaging. Following the computation of market connectedness mea-

sures, we investigate how various uncertainty and sentiment proxies are linked to them.

In this context, with no a priori guidance or theoretical underpinnings as well as high cor-

relation among selected measures, the Bayesian model averaging (BMA) framework seems

especially appealing.4 It provides a robust inference by utilizing information from every

possible empirical model that can be constructed from a predetermined set of explanatory

variables. Information from the entire model space is averaged using Bayesian inference to

derive posterior probabilities for all regressors and all considered models. Consequently,

this method explicitly indicates robust regressors and addresses model uncertainty while

mitigating the risk of data-mining and inferring from a potentially misspecified and sub-

jectively chosen model. In this sense, BMA is a model selection method that allows us to

isolate these indices, which exert a robust impact on market connectedness measures.

We consider a linear time series model as follows:

zd = α0 + Xdβ + ξd (3)

where zd is the dependent variable and d = 1, . . . , D denote days. In the paper, for our

dependent variable we take the total spillover index as well as directional spillovers to

and from the oil market. In turn, Xd denotes the vector of size K collecting the lagged

4BMA technique as a variable selection method is frequently used to model macroeconomic dynamics
and relationships at financial markets (e.g., Sala-i-Martin et al., 2004; Eicher et al., 2011; Moral-Benito,
2016; Szafranek et al., 2020).
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dependent variable and eight uncertainty measures, which are potentially related to zd.
5

The strength of this relation is determined by the vector of paramaters β. The error

term is denoted with ξd. Equation 3 can be incorporated into the BMA framework in a

straightforward manner.

Note that in our case matrix Xd contains (only) nine potential explanatory variables,

some bearing similar information. Since K is small, within BMA we can estimate a

model for every subset X
(j)
d ∈ Xd (there are 2K of those), without relying on Markov

Chain Monte Carlo Model Composition (MC3) samplers.6 We discuss shortly technical

details related to the BMA approach in Appendix D.

In presenting the results, we compute unconditional moments of regression coeffi-

cients.7 In interpreting estimation outcomes, our attention focuses on the posterior inclu-

sion probability (PIP, informing on the robustness of a given regressor). Conforming to

the scales proposed by Kass and Raftery (1995) and Eicher et al. (2011), a given variable

can be described to have a weak (50-75% PIP), substantial (75-95%), and strong (above

95%) impact on the dependent variable. For an excellent discussion on the BMA and

methods of estimation we refer to Raftery et al. (1997) or Hoeting et al. (1999).

Model assumptions. For the TVP VAR model we set the maximum lag to p = 2.

Thus, we allow for a richer model dynamics while retaining parsimony and mitigating the

computational burden related to using high lag orders.8 As regards the Minnesota prior,

we use the standard value of the overall tightness parameter at 0.1 and use random-walk

assumption for autoregressive parameters.

For the DY and BK connectedness measures we need to establish the maximum horizon

for the generalized IRFs. Following the common practice in the literature, we set H in

time and frequency domains to 100 periods (i.e., H = 100). In our case this corresponds

to slightly over 8 hours. In frequency decomposition, we differentiate between short-term

(up to 1 hour) and long-term (above 1 hour) frequencies.

Finally, as regards the BMA framework, for model prior we take advantage of the

uniform prior, while for the Zellner’s g prior for the regression coefficient we use unit

information prior.

5Since our independent variables are of daily frequency, we upscale our spillover measures to daily
frequency by taking averages.

6For large K the computation burden of enumerating all models is prohibitively exhaustive and a
version of Metropolis-Hastings algorithm is used instead.

7Thus, in calculating these moments we take into account results from all models, also those, where a
particular coefficient is restricted to zero.

8The indication on the VAR lag order based on traditional information criteria for constant-parameter
VAR are useless as for a large sample the penalty for the number of parameters is extremely low, hence
they point to uncommonly high values of p
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5 Results

The evolution in model parameters. We start by presenting the estimation results for

the TVP VAR model by inspecting the evolution of model parameters over time. The left

and middle column of Figure 3 present own lags autoregressive coefficients, whereas the

right column refers to time-varying volatility. It can be seen that there is a considerable

amount of time variation of all coefficients, which fluctuate around their long term values.

This means that both the propagation of shocks and the strength of the impulse varies

over time. This result stands at odds with studies based on data of lower frequency, in

which autoregressive parameters are usually very stable (e.g., Primiceri, 2005; Cogley and

Sargent, 2005; Koop and Korobilis, 2013; Lubik et al., 2016; Wiggins and Etienne, 2017;

Anand and Paul, 2021; Szafranek and Rubaszek, 2023; Szafranek et al., 2023a).

Total Spillover Index (TSI). We continue by investigating the evolution of the TSI and

its short- and long-term components obtained with the BK method. These results are

presented in Figure 4 (Panel A), together with the values of the TSI calculated using daily

observations. The figure clearly shows that the intraday TSI (after aggregation to daily

observations) is hardly correlated with the daily TSI. The correlation coefficient is very

low and amounts to merely 0.067. The intraday TSI is also visibly less persistent than

its counterpart based on daily data. It can also be seen that at the 5 minute frequency

markets can be either strongly connected or move independently: the minimum value of

TSI amounts to 6.1 on April 1, 2021, and the peak of 58.0 was reached on November 28,

2019. Finally, Panel A of Figure 4 illustrates that the relative contribution of short- and

longer-term frequencies is time dependent.

Panel B of Figure 4 shows the evolution of intraday connectedness around the onset

of the Russian invasion of Ukraine. At 3:00 a.m. UTC Putin announced invasion, the

first explosions in Mariupol were at 3:46 a.m.m and at 4:15 a.m. there were explosions

in Kiev. These events are reflected as a sizable jump in TSI, which value increased from

below 10 at 3:40 UTC to 46.8 at 4:05 UTC and 52.9 at 5:15 a.m. UTC. Following this

initial shock, the intraday connectedness has slowly declined.

Individual market spillovers. In the next step we track which markets transmit and

receive shocks. Figure 5 presents the evolution of gross spillovers calculated both with

intraday and daily data. Once again, it can be seen that intraday connectedness mea-

sures deliver very different picture compared to those based on daily observations. The

divergence is especially visible after the outbreak of the Covid-19 pandemic. The gross

spillover estimates based on daily data suggest that throughout 2020 the equity market

was a sizable source of shocks, which were received by bonds and the US dollar mar-

kets. As regards intraday results, the figure shows that the strength of gross spillovers
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has diminished since the outbreak of the Covid-19 pandemic, which justifies the use of

TVP VAR framework. In particular, gross links of oil and gold with the other markets

are visibly stronger in the pre-Covid period compared to the second part of the sample.

The left panel of the figure also illustrates that on average the equity market is the major

source of shocks in the system, whereas the role of bonds is far smaller. In turn, the

right panel demonstrates that gross spillovers received from other markets are compara-

ble across the markets and fluctuate around the average value of around 25%. The above

gross spillovers structure implies that the stock market is a net transmitter and the bond

market net receiver of shocks. Indeed, Figure 6 illustrates that there are several episodes

during the equity market is a sizable source of markets connectedness, with net spillovers

index reaching almost 100% at the end of 2019. The figure also confirms how intraday

and daily spillovers indices diverged in times of Covid-19 lockdowns.

The information presented in Figures 4–6 is averaged over the entire sample and re-

ported in Table 4. It shows that the mean value of the intraday TSI amounts to 23.8%,

which is slightly below 25.8% for daily TSI. The BK decomposition of the intraday TSI

indicates that around 50% of TSI can be attributed to spillovers at the shortest frequen-

cies (up to 1 hour). The table also quantifies that the equity market is an important net

transmitter of shocks, whereas the bond and exchange rate markets are net receivers of

shocks. As regards the oil and gold market, on average their position is broadly balanced.

Finally, the table shows that all five assets are on average broadly similar in terms of

gross spillovers they receive, but are heterogeneous in terms of how much of spillovers

they transmit.

Lastly, we provide an illustration on market connectedness across the entire sample

and during the onset of the Russian invasion of Ukraine on Figure 7. Panel A clearly

shows the dominating role of the stock market in transmitting volatility to other markets

across the entire sample. In turn, the volatility flow to and from the oil market is much

more balanced (as denoted by the relative width of arrows). The remaining three markets

receive volatility in net terms. Interestingly, pairwise volatility spillovers for the bond

market are all negative (i.e., the bond market is a net receiver of volatility from all other

markets). During the onset of the Russian invasion of Ukraine (Panel B) the situation

changes. The gold market transmits the majority of volatility to other markets (mostly

the oil market), thus confirming the role of this market as a safe haven in times of large

uncertainty. The volatility flow between the remaining markets is less pronounced.

Sentiment effect on oil market connectedness. The last question we examine in this

study is whether sentiment drives connectedness among investigated markets. In answer-

ing this question, we put special emphasis on gross spillovers from and to the crude oil

market. Let us recall that in the articles surveyed in subsection 2.2 this question was

addressed by investigating on one or two ad-hoc selected sentiment measures and by ap-
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plying various methodological approaches (linear and nonlinear Granger causality tests,

quantile coherency analyses, quantile and predictive regressions or MIDAS approaches).

Here, we are agnostic on which uncertainty or sentiment index drives connectedness among

markets. In turn, we let the data speak and isolate a set of robust regressors among eight

popular measures described in section 3. For that purpose, we apply the BMA framework

(see section 4) to explain fluctuations in the total spillover index or gross spillover from

and to the crude oil market.

Table 5 presents the results of the BMA regression for the total spillover index. The

first main finding is that TEU is the strongest driver of TSI among eight investigated

indices. This would imply that news appearing on Twitter are quickly and simultaneously

interpreted by market participants, leading to significantly higher TSI. What is important,

the BK decomposition shows that the effect of TEU is related to transitory (lasting up

to one hour) rather than permanent changes in TSI. The second main finding is that all

implied volatility measures are substantial drivers of TSI, with PIP amounting to around

0.80. Interestingly, coefficient estimates in 3 out of 4 cases indicate that higher implied

volatility leads to a decrease in the TSI. The interpretation of this result is that implied

volatilities are derived using options specific to individual markets (e.g., OIV for OIL).

Consequently, they should capture expectations that are market-specific as well. Thus,

their increases lead to the decoupling of one particular market from the others. It can

be added that this decoupling of volatility dynamics is well seen at intraday, rather than

daily frequency. The last main finding is that TEU and implied volatility based indices are

dominating the three newspaper based sentiment measures (EPU, NSI and GPR), which

are insignificant and characterized by very low PIP. This is probably due to the fact that

information in newspapers is delivered to readers with a daily lag, hence does not provide

any additional value compared to TEU and implied volatility indices (see discussion in

Szafranek et al., 2023b).

Table 6, which reports the results of the BMA regression for the gross volatility

spillovers from and to the crude oil market, allows us to better understand the results

from Table 5 by analyzing the dynamics of individual market connectedness. First, the

results in Table 6 reiterate the importance of TEU in driving connectedness among mar-

kets, especially its short-term fluctuations. The coefficient for TEU is again positive,

significant, and of similar magnitude as in the TSI regressions. Second, the results shows

that the impact of oil market specific implied volatility – OIV – is substantial and negative,

while the impact of overall implied volatility is far weaker (but also negative). Moreover,

the posterior mean of the coefficient is almost twice higher than in the TSI regression,

which points to the decoupling of oil market volatility in response to OIV spikes. Third,

it can be seen that the three newspaper based sentiment indices are again insignificant.

Overall, it can be concluded that at intraday frequency, connectedness of the crude oil

market with the remaining ones is driven mostly by TEU and OIV.
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6 Conclusion and discussion

The joint dynamics of commodity and financial markets remains of high interest to a large

number of economic agents, including investors and policy makers. These entities closely

monitor market comovements at monthly, daily and even intraday frequency as unex-

pected price changes might affect their profits, lead to welfare losses or indicate a swiftly

changing economic environment in a presence of a large shock. Against this backdrop, in

this paper we have provided new insights to the literature on market connectedness by in-

vestigating interactions among five key markets (i.e., oil, currency, equity, gold and bonds)

at intraday frequency. Our two-step approach consists in i) computing time-varying con-

nectedness measures for these markets with the means of the spillover framework in time

and frequency domains and ii) identifying robust determinants of the derived spillover

indices among various popular uncertainty and sentiment measures.

Our main findings are threefold. First, we have shown that spillover indices calculated

using intraday series are much different than those computed with daily data. The cor-

responding connectedness series are negligibly correlated and characterized by a different

degree of persistence. This was especially evident during Covid-19 lockdowns. Second, at

intraday frequency the equity market turns out to be the primary source and net trans-

mitter of volatility shocks, while the bond and currency markets are found to absorb these

shocks. In turn, the oil and gold market are occasionally significant for the volatility flow.

Third, the BMA analysis has revealed that the Twitter-based Economic Uncertainty in-

dex is the strongest driver of the total spillover index, indicating that real-time news and

sentiment from Twitter quickly spreads among market participants. Implied volatility

measures, proxying market-specific uncertainty, are also significant for the development

in the overall spillovers. However, quite surprisingly, an increase in implied volatility tends

to decrease markets connectedness, which suggests the decoupling of markets following

rising uncertainty. This is also well illustrated for the oil market, for which increases in oil

price implied volatility leads to decreases in gross spillovers to and from the oil market. In

turn, uncertainty measures derived from newspapers are typically not related to spillovers

development.

Overall, our findings provide robust evidence that at intraday frequency sentiment

changes are driving commodity and financial markets connectedness. We have identified

that Twitter news transitorily increase volatility at all markets, whereas increases in

implied volatility at a given market leads to its decoupling from the remaining ones. We

have also emphasized the importance of using intraday data to better understand the join

dynamics of commodity and financial markets.
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Tables and figures

Table 1: Descriptive statistics

Variable Mean Min. Med. Max. Std. Dev. Skew. Kurt. ADF Nobs

Intraday data

OIL 0.118 0.000 0.068 50.964 0.268 53.604 7151.5 -217.6 289273
USD 0.016 0.000 0.011 1.683 0.018 12.208 710.1 -288.4 289273
SPX 0.046 0.000 0.027 3.085 0.068 7.343 129.0 -215.5 289273
GOLD 0.036 0.000 0.024 2.106 0.043 5.718 95.8 -258.3 289273
BONDS 0.013 0.000 0.012 0.503 0.015 3.906 48.6 -278.1 289273

Daily data

OIL 2.128 0.000 1.328 57.808 3.366 7.485 91.8 -12.5 1136
USD 0.280 0.000 0.218 1.686 0.233 1.554 7.0 -19.6 1136
SPX 0.867 0.000 0.590 11.663 1.044 4.128 31.0 -11.9 1136
GOLD 0.618 0.000 0.433 6.318 0.632 2.701 16.2 -18.9 1136
BONDS 0.219 0.000 0.164 2.118 0.212 2.532 14.6 -16.6 1136

Notes: The table reports descriptive statistics for volatilities calculated using intraday and daily data.
The specification of the Augmented Dickey-Fuller (ADF) test includes a constant and one lag. The 1%
critical value is -3.43.

Table 2: Correlations of volatilities

Intraday data Daily data

OIL USD SPX GOLD BONDS OIL USD SPX GOLD BONDS

OIL 1.00 1.00
USD 0.12 1.00 0.21 1.00
SPX 0.24 0.24 1.00 0.38 0.29 1.00
GOLD 0.16 0.29 0.27 1.00 0.18 0.28 0.27 1.00
BONDS 0.10 0.22 0.30 0.25 1.00 0.20 0.26 0.40 0.29 1.00

Notes: The table reports Pearson’s correlation coefficients for volatilities calculated using intraday and
daily data.
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Table 3: Correlations of sentiment measures

VIX OIV GIV BIV EPU TEU NSI GPR

Levels

VIX 1.00
OIV 0.81 1.00
GIV 0.78 0.76 1.00
BIV 0.44 0.54 0.39 1.00
EPU 0.61 0.62 0.70 0.13 1.00
TEU 0.61 0.69 0.62 0.18 0.61 1.00
NSI 0.58 0.66 0.66 0.11 0.63 0.75 1.00
GPR -0.03 0.03 -0.06 0.31 -0.11 -0.12 -0.11 1.00

First differences

VIX 1.00
OIV 0.32 1.00
GIV 0.24 0.19 1.00
BIV 0.33 0.31 0.26 1.00
EPU -0.02 0.02 -0.04 0.03 1.00
TEU 0.13 0.09 0.04 0.05 0.04 1.00
NSI -0.03 0.08 0.02 0.04 -0.02 -0.01 1.00
GPR -0.05 0.02 0.00 -0.02 0.05 0.00 0.07 1.00

Notes: The table reports Pearson correlation coefficients between the studied sentiment measures in levels
and first differences.
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Table 4: Average connectedness in the sample

OIL USD SPX GOLD BONDS From Net

All frequencies: DY connectedness for intraday data

OIL 76.8 3.6 11.6 5.1 3.0 23.2 0.3
USD 4.0 76.9 7.1 8.3 3.7 23.1 -2.8
SPX 9.8 5.1 73.8 5.6 5.6 26.2 7.5
GOLD 6.0 7.6 7.4 74.2 4.8 25.8 -1.4
BONDS 3.7 3.9 7.6 5.4 79.3 20.7 -3.5

To 23.5 20.2 33.7 24.4 17.2 23.8

Short term: BK connectedness for frequencies up to 1 hour

OIL 56.6 1.5 3.9 2.0 1.6 9.0 0.0
USD 1.7 63.8 3.0 5.5 2.5 12.7 -1.0
SPX 3.5 2.5 50.8 2.5 3.4 11.8 2.1
GOLD 2.1 5.1 2.9 59.4 3.2 13.2 0.3
BONDS 1.7 2.6 4.1 3.6 66.5 12.0 -1.4

To 8.9 11.7 13.9 13.5 10.6 11.7

Long term: BK connectedness for frequencies above 1 hour

OIL 20.1 2.0 7.6 3.1 1.5 14.3 0.3
USD 2.3 13.1 4.1 2.8 1.2 10.4 -1.9
SPX 6.4 2.7 23.0 3.1 2.2 14.4 5.5
GOLD 3.9 2.5 4.6 14.8 1.6 12.6 -1.7
BONDS 2.0 1.3 3.5 1.8 12.8 8.7 -2.2

To 14.6 8.6 19.8 10.8 6.5 12.1

DY connectedness for daily data

OIL 80.2 4.0 9.4 3.1 3.3 19.8 10.1
USD 7.4 74.8 7.0 6.9 4.0 25.2 -7.8
SPX 9.3 3.7 72.7 4.8 9.6 27.3 9.5
GOLD 6.8 6.6 6.6 73.3 6.8 26.7 -5.4
BONDS 6.5 3.2 13.8 6.5 70.0 30.0 -6.4

To 30.0 17.4 36.8 21.3 23.6 25.8

Notes: The table presents average values of connectedness measures across the entire sample. For the DY
connectedness the kj-th entry of the spillover matrix denotes the estimated contributions to the forecast
error variance of variable k from variable j. The off-diagonal column sums (‘To others’) and row sums
(‘From others’) are the gross directional spillovers transmitted and received, respectively. Taking their
differences provides net spillovers. The total spillover index (in bold) can be calculated as the sum of
the off-diagonal elements of the spillover matrix divided by the number of the variables in the system (or
equivalently as the average of the ‘From others’ or ‘To others’ statistics). The sum of the respective BK
connectedness measures at different frequencies is equal to the DY values.
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Table 5: The effect of sentiment measures on the total spillover index

Total Short-term Long-term
PIP PM (PSD) PIP PM (PSD) PIP PM (PSD)

AR(1) 1.000 0.692• 1.000 0.573• 1.000 0.768•

(0.022) (0.025) (0.019)

VIX 0.553 -0.070◦ 0.798 0.125∗ 0.999 -0.317•

(0.072) (0.079) (0.068)

OIV 0.823 -0.167∗ 0.628 -0.103◦ 0.047 -0.004
(0.096) (0.091) (0.031)

GIV 0.883 -0.147∗ 0.134 -0.014 0.077 -0.009
(0.071) (0.042) (0.039)

BIV 0.815 0.134∗ 0.052 0.003 0.164 0.025
(0.078) (0.018) (0.065)

EPU 0.037 0.000 0.986 -0.078• 0.034 0.000
(0.005) (0.021) (0.006)

TEU 0.999 0.122• 0.999 0.117• 0.398 0.035
(0.028) (0.026) (0.049)

NSI 0.044 -0.003 0.035 -0.002 0.040 0.000
(0.021) (0.016) (0.026)

GPR 0.036 0.000 0.105 0.003 0.032 0.000
(0.004) (0.011) (0.006)

Notes: PIP denotes the posterior inclusion probability, PM denotes the posterior mean, while PSD (in
parentheses) stands for posterior standard deviation. ◦, ∗and •report weak (50-75%), substantial (75-95%)
and strong (above 95%) PIP values, respectively.
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Table 6: The effect of sentiment on gross spillovers from and to crude oil.

FROM OIL TO OIL

Total Short-term Long-term Total Short-term Long-term

PIP PM PIP PM PIP PM PIP PM PIP PM PIP PM
(PSD) (PSD) (PSD) (PSD) (PSD) (PSD)

AR(1) 1.000 0.694• 1.000 0.471• 1.000 0.742• 1.000 0.687• 1.000 0.519• 1.000 0.753•

(0.022) (0.026) (0.020) (0.022) (0.025) (0.019)

VIX 0.344 -0.060 0.999 0.273• 0.996 -0.427• 0.921 -0.206∗ 0.998 0.256• 0.999 -0.441•

(0.094) (0.055) (0.089) (0.091) (0.030) (0.088)

OIV 0.884 -0.288∗ 0.996 -0.316• 0.065 -0.012 0.671 -0.149◦ 0.936 -0.206∗ 0.062 -0.010
(0.135) (0.072) (0.059) (0.125) (0.058) (0.053)

GIV 0.106 -0.013 0.079 -0.007 0.038 -0.003 0.041 -0.002 0.044 -0.002 0.032 -0.001
(0.046) (0.031) (0.030) (0.018) (0.080) (0.022)

BIV 0.037 0.001 0.087 -0.009 0.034 0.002 0.061 0.005 0.041 -0.002 0.049 0.006
(0.018) (0.035) (0.026) (0.028) (0.015) (0.037)

EPU 0.037 0.001 0.037 -0.001 0.054 0.003 0.046 0.001 0.129 -0.005 0.147 0.011
(0.007) (0.006) (0.015) (0.008) (0.017) (0.031)

TEU 0.823 0.102∗ 0.998 0.161• 0.180 0.019 0.954 0.118• 1.000 0.152• 0.297 0.034
(0.059) (0.033) (0.047) (0.044) (0.018) (0.059)

NSI 0.117 0.023 0.117 0.018 0.111 0.026 0.036 0.001 0.038 -0.002 0.091 0.018
(0.076) (0.059) (0.087) (0.022) (0.020) (0.071)

GPR 0.041 -0.001 0.030 0.000 0.046 -0.002 0.063 -0.002 0.029 0.000 0.060 -0.003
(0.007) (0.004) (0.013) (0.010) (0.004) (0.015)

Notes: Standard errors are reported in parentheses. ◦, ∗and •report weak (50-75%), substantial (75-95%)
and strong (above 95%) PIP values, respectively.
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Figure 1: Time series for levels, Pit, and volatility, Ṽit, of the analyzed assets
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Figure 2: Time series for sentiment measures
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Figure 3: The evolution of selected coefficients in the TVP VAR model

Note: The black solid line represents the time-varying estimates of autoregressive parameters and standard

deviation of shocks.
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Figure 4: Total spillover index
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Notes: The figure presents the TSI (Sg
t (H), panel A and B) decomposed using the BK approach into

short (up to 1 hour, dark gray) and long-term frequencies (over 1 hour, light gray area). On panel A,

the results for 5 minute interval are aggregated to daily data by taking averages, with red solid line

indicating the TSI computed using daily data. On panel B the TSI and its decomposition based on

intraday data for the Russian invasion of Ukraine (24 February 2022) is presented.
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Figure 5: Gross directional spillovers
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k←•,t(H)). These measures are decomposed using the BK approach into short (up to 1 hour, dark
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daily data.
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Figure 6: Net directional spillovers
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Notes: The figure presents net spillovers, Sg
k,t(H). The results for 5 minute intervals are aggregated to

daily data by taking averages. The red solid line represents net spillovers calculated using daily data.
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Figure 7: Average market connectedness

A) Entire sample B) Russian invasion of Ukraine (24 February 2022)
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Notes: The figure illustrates average market connectedness across the entire sample (Panel A) and on

the day of the Russian invasion of Ukraine (24 February 2022, Panel B). Blue and red circles denote net

volatility transmitters and receivers, respectively.
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Appendix A The multivariate Kalman filter

TVP VAR. In this paper we use the TVP VAR model á la Koop and Korobilis (2014).

The data generation process for vector yt of size m× 1 and unconditional mean equal to

zero is:

yt =

p∑
i=1

Bi,tyt−i + εt, εt ∼ N (0, Qt) (A.1)

where (B1,t, . . . , Bp,t) are matrices of time-varying VAR coefficients and εt is the zero-mean

Gaussian error term with time-varying variance-covariance matrix Qt.

We reformulate the TVP VAR model as follows:

yt = xtBt + εt εt ∼ N (0, Qt) (A.2)

βt = βt−1 + ηt ηt ∼ N (0, Rt) (A.3)

where xt = [yt−1, yt−2, ..., yt−p], Bt = [B1,t, · · · , Bp,t]
′
, βt = [vec(B1,t)

′
, . . . , vec(Bp,t)

′
]
′
,

vec(Bj,t) denotes the vectorization of matrix Bj,t. The VAR coefficients β evolve as multi-

variate random walks with the zero-mean disturbance term ηt with time-varying variance-

covariance matrix Rt. All disturbance terms are uncorrelated over time and with each

other.

We estimate the evolution of TVP VAR model parameters by using the Kalman filter

method proposed by Koop and Korobilis (2014), where we initialize the filter by applying

the Minnesota prior.9 For Qt we use exponentially weighted moving average estimator

depending on the decay factor κ2, while Rt is estimated using the forgetting factor κ4.

Both κ2 and κ4 are time-invariant and not estimated, since allowing them to vary over time

significantly increases the computational burden of the Kalman filter (Koop and Korobilis,

2013) with no significant gains of this choice. Koop and Korobilis (2014) propose κ2 = 0.96

and κ4 = 0.99, but as we work with intraday data, we allow for very limited amount of

variation in model parameters and volatility. Thus, we set κ2 = κ4 = 0.99.

Below we outline the subsequent steps for the multivariate Kalman filter we use to

9The alternative is to resort to the Primiceri (2005) prior based on presample information or to rely on
uninformative priors. We check the stability of the results with respect to prior information and conclude
that it does not affect our estimation outcomes.
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estimate the TVP VAR model. The filter can be described as follows:

βt|x1:t−1 ∼ N (βt|t−1,Σ
β
t|t−1)

βt|t−1 = βt−1|t−1

Σβ
t|t−1 = Σβ

t−1|t−1 + R̂t

R̂t = (1 − κ−14 )Σβ
t−1|t−1

Qt = κ2Qt−1|t−1 + (1 − κ2)ε̂tε̂
′

t

ε̂t = yt − yt−1βt|t−1

Given the information set at time t, estimates are updated as follows:

βt|x1:t ∼ N (βt|t),Σ
β
t|t)

βt|t = βt|t−1 + Σβ
t|t−1y

′

t−1(Q̂t + yt−1Σ
β
t|t−1y

′

t−1)
−1(yt − yt−1β̂t|t−1)

Σβ
t|t = Σβ

t|t−1 − Σβ
t|t−1y

′

t−1(Q̂t + yt−1Σ
β
t|t−1y

′

t−1)
−1yt−1Σ

β
t|t−1

Qt|t = κ2Qt−1|t−1 + (1 − κ2)ε̂t|tε̂
′

t|t

ε̂t|t = yt − yt−1βt|t
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Appendix B The Diebold and Yilmaz (2012, 2014) connect-

edness approach

The starting point for integrating the DY framework and the TVP VAR model consists in

writing down the forecast error at horizon H formulated at time t in the moving average

representation:

yt+H − Et(yt+H) =
H−1∑
s=0

Λs,tεt+H−s. (B.1)

Matrices Λs,t obey the recursion:

Λs,t = B1,tΛs−1,t + B2,tΛs−2,t + · · · + Bp,tΛs−p,t for s > 0, (B.2)

Λ0,t = I5 and Λs,t = 0 for s < 0. This representation is key to understanding the dynamics

of the system.

Following DY, we denote by θgkj,t(H) the contribution of shock j to forecast error

variance of variable k at horizon H. The superscript g emphasizes the fact that the

contribution is calculated with the KPPS generalized IRF method. In turn, the subscript

t indicates that this statistic is time-varying. The formula for θgkj,t(H) is as follows:

θgkj,t(H) =
σ−1jj,t

∑H−1
h=0 (e

′

kΛh,tQtej)
2∑H−1

h=0 (e
′
kΛh,tQtΛ

′
h,tek)

(B.3)

where Qt is the variance-covariance matrix for the error vector εt, σjj,t is the j element of

the diagonal of the matrix Qt at time t and ek is the selection vector with 1 as the kth

element and 0 otherwise.

As shocks to each variable are not orthogonalized, the sum of the contributions to the

variance of the forecast error may not necessarily equal to 1. Therefore, DY normalize

each entry of the variance decomposition matrix by the row sum, which we follow in our

time-varying setting:

θ̃gkj,t(H) =
θgkj,t(H)∑N
j=1 θ

g
kj,t(H)

. (B.4)

Consequently, in each period t the conditions
∑N

j=1 θ̃
g
kj,t(H) = 1 is satisfied, which implies

that
∑N

k,j=1 θ̃
g
kj,t(H) = N . We will use θ̃gkj,t(H) to measure the evolution of own (for k = j)

and cross (for k ̸= j) spillovers between the studied asset classes.

Following DY, we calculate the overall connectedness as the total spillover index, using

the normalized forecast-error variance contributions from the KPPS variance decomposi-
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tion. In our case this measure is time-varying by construction and amounts to:

Sg
t (H) =

∑N
k,j=1
k ̸=j

θ̃gkj,t(H)∑N
k,j=1 θ̃

g
kj,t(H)

× 100 =

∑N
k,j=1
k ̸=j

θ̃gkj,t(H)

N
× 100 (B.5)

Employing the generalized VAR framework enables us to learn about the direction of

the spillovers, since the outcome of this procedure does not depend on the ordering of

variables. Therefore, we can exploit additional information from further connectedness

measures introduced by Diebold and Yilmaz (2012) and refined in Diebold and Yilmaz

(2014). Consequently, we focus on three additional measures. They are also time-varying

and include:

1. Gross directional spillovers received by market k from all other markets j:

Sg
k←•,t(H) =

N∑
j=1
j ̸=k

θ̃gkj,t(H) × 100, (B.6)

which illustrates to what extent volatility shocks from all other markets are absorbed

by market k.

2. Gross directional spillovers transmitted by market k to all other markets j:

Sg
•←k,t(H) =

N∑
j=1
j ̸=k

θ̃gjk,t(H) × 100, (B.7)

which shows to what extent volatility shocks originating in a particular market k

are transmitted to other markets.

Based on measures (B.6) and (B.7) we compute net spillovers for variable k:

Sg
k,t(H) = Sg

•←k,t(H) − Sg
k←•,t(H), (B.8)

which indicates whether market k transmits or receives shocks from other markets. Fi-

nally, this framework allows also to compute net pairwise spillovers as:

Sg
kj,t(H) = θ̃gjk,t(H) − θ̃gkj,t(H). (B.9)

However, in this paper, we do not focus on differences between spillovers transmitted from

market k to market j and those transmitted from j to market k.
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Appendix C The Barunik and Krehĺık (2018) connected-

ness approach

The starting point for the Barunik and Krehĺık (2018) framework is to define for each

frequency ω ∈ (−π, π) and period t the Fourier transform of the moving average repre-

sentation coefficients Λt from equation (B.1):

ΛH,t(exp{−iω}) =
H−1∑
s=0

exp{−iωs}Λs,t, (C.1)

and the spectrum of forecast error at horizon H:

Sy,t(ω,H) = ΛH,t(exp{−iω})ΩtΛ
′

H,t(exp{iω}), (C.2)

so that the total forecast error variance amounts to 1
2π

∫ π

−π Sy,t(ω,H)dω. Next, we notice

that the contribution of shocks j to the spectrum of forecast error of variable k is:

θgkj,t(ω,H) =
σ−1jj,t|e

′

kΛH,t(exp{−iω})Ωt)ej|2

e
′
kΛH,t(exp{−iω})ΩtΛ

′
H,t(exp{iω})ek

,

which is the frequency equivalent of equation (B.3).

In our investigation we are interested in decomposing the value of θgkj,t(H) defined in

equation (B.3) into selected bands of frequencies. For that purpose, we need to weight

θgkj,t(ω,H) by the share of frequency ω in the total variance of forecast for variable k:

Γk,t(ω,H) =
e
′

kΛH,t(exp{−iω})ΩtΛ
′
H,t(exp{iω})ek

1
2π

∫ π

−π e
′
kΛH,t(exp{−iλ})ΩtΛ

′
H,t(exp{iλ})ekdλ

. (C.3)

Consequently, the contribution of frequencies within band d = (a, b) : a, b ∈ (−π, π), a < b

to the value of θgkj,t(H) amounts to:

θgkj,t(d,H) =
1

2π

∫
d

Γk,t(ω,H)θgkj,t(ω,H)dω, (C.4)

so that θgkj,t(D,H) = θgkj,t(H) for D = (−π, π). In turn, the contribution of frequencies

within band d to the normalized value θ̃gkj,t(H) defined in equation (B.4) can be easily

calculated as:

θ̃gkj,t(d,H) = θgkj,t(d,H) ×
θ̃gkj,t(H)

θgkj,t(H)
. (C.5)

Finally, the values of θ̃gkj,t(d,H) can be inserted to the nominator of equation (B.5)

and equations (B.6)-(B.8) to compute the contribution of frequencies in the band d to DY

spillover measures. The exact formulas are:
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Sg
t (d,H) =

1

N

N∑
k,j=1
k ̸=j

θ̃gkj,t(H) × 100 (C.6)

Sg
k←•,t(d,H) =

N∑
j=1
j ̸=k

θ̃gkj,t(d,H) × 100 (C.7)

Sg
•←k,t(d,H) =

N∑
j=1
j ̸=k

θ̃gjk,t(d,H) × 100 (C.8)

Sg
k,t(d,H) = Sg

•←k,t(d,H) − Sg
k←•,t(d,H) (C.9)
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Appendix D The BMA approach

The BMA framework ensembles individual models Mj of the form:

zd = α
(j)
0 + X

(j)
d β(j) + ξd, ξd ∼ N (0, h) (D.1)

where X(j) is a vector of size kj and constitutes a subset of vector X that collects all

potential explanatory variables. The posterior probability of each model Mj, denoted as

p(Mj|z,X), is proportional its prior p(Mj) and the conditional probability of observations,

p(z|Mj, X). In particular, the Bayes’ theorem implies that:

P (Mj|z,X) =
p(z|Mj, X)p(Mj)

p(z|X)
(D.2)

Consequently, computing P (Mj|z,X) requires eliciting prior p(Mj) and estimating the

model to derive p(z|Mj, X).

Let us discuss model prior. As a benchmark, we assume the uniform prior, which

implies that each model is equally plausible: p(Mj) = 2−K . As a robustness, we use fixed

binomial model prior, which sets the prior on variable inclusion probability θ. It implies

the expected model size of θ ×K and model probability p(Mj) ∝ (θ)kj(1 − θ)K−kj (Sala-

i-Martin et al., 2004). We also check random binomal model prior, in which θ is assumed

to be a random variable θ ∼ Beta(a, b) rather than a fixed scalar (Ley and Steel, 2009).

Regarding the estimation process of individual models Mj, we use a non-informative,

improper prior on the constant and the error variance, thus assuming their even distri-

bution over their domain, p(α(j)) ∝ 1 and p(h) ∝ h−1, respectively. Moreover, we use a

well-established prior structure called the Zellner’s g prior for the regression coefficients,

where for β(j) coefficients prior mean of zero is set to reflect the agnostic beliefs regarding

regressors significance. As for the variance, we define it as follows:

β(j)|g, h ∼ N(0, hg(X(j)′X(j))−1)

where the hyperparameter g reflects the degree of certainty with respect to the value of

parameters β(j) being 0. It can be noted that for g −→ 0, the importance of the prior rises,

whereas for g −→ ∞ the prior becomes non-informative. In the benchmark, we use the

unit information prior by setting g = D. This mean that the impact of the prior on the

posterior is comparable to one additional observation. As a robustness, we also consider

the so-called BRIC prior suggested by Fernández et al. (2001) that sets g = max{D,K2}.

Given that in our application various choices of priors yield very similar outcomes, in

the paper we present solely the results for the benchmark.

45


	Introduction
	Literature review
	The connectedness of crude oil and other markets.
	What drives connectedness of oil and financial markets?
	Intraday data within the connectedness framework.

	Data
	Methodology
	Results
	Conclusion and discussion
	The multivariate Kalman filter
	The 2012DieboldYilmaz,2014DieboldYilmaz connectedness approach
	The BarunikKrehlik:2018 connectedness approach
	The BMA approach

