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We prove existence of time consistent equilibria in a wide class of dynamic models with re-

cursive payoffs and generalized discounting involving both behavioral and normative applica-

tions. Our generalized Bellman equation method identifies and separates both: recursive and

strategic aspects of the equilibrium problem and allows to precisely determine the sufficient

assumptions on preferences and stochastic transition to establish existence. In particular

we show existence of minimal state space stationary Markov equilibrium (a time-consistent

solution) in a deterministic model of consumption-saving with beta-delta discounting and
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1 Introduction

Since the seminal work of Ramsey (1928) and Samuelson (1937), the question of how agents in

dynamic choice models discount future utility streams has been a central focus of large body

of research in the social sciences. Ramsey (1928) suggested intertemporal utilities be modeled

as weighted sum of future utilities, while Samuelson (1937) proposed exponential discounting.

With the work of Koopmans (1960), however, on the axiomatic foundations of dynamically

consistent choice, it become clear how profoundly these two situations differ. At this point in

time, many researchers adopted a dynamically consistent approach, and exponential discounting

as the standard approach to modeling dynamic preferences in various economic problems.

Strotz (1956) however proposed a theory of dynamically inconsistent choice, and with his

paper started a new and separate line of research studying the implications of dynamically in-

consistent preferences in intertemporal economic models. With the important work of Laibson

(1997), models with dynamically inconsistent preferences have become workhorse tools in be-

havioral economic models that challenge the rational foundations of dynamic choice. Motivation

for studying such models with dynamically inconsistent preferences is found in a large empir-

ical and experimental literature where numerous papers have documented the importance of

preference reversals on dynamic choice when modeling how agents compare current vs. future

utilities. These empirical results over the last two decades have led to a subsequent resurgence

of theoretical work that seeks (i) to provide further axiomatic foundations to time inconsistent

choice,1 as well as (ii) tools constructing theories of coherent dynamic choice in various settings,

where agents have changing intertemporal tastes. Work on self-control, the role of impulse

and temptation, and time consistency in dynamic choice has appeared in many fields such as

mathematical psychology, political science, philosophy, decision theory, game theory, as well

as economics, and included studies of consumption-savings, dynastic choice with altruistic or

paternalistic preferences, dynamic collective household choice, distributive justice and dynamic

social choice, public policy design, models of social discounting in environmental cost-benefit

analysis, theories of endogenous preference formation and reference points including theories

of habit-formation, addiction, focus-weighted choice and salience, and dynamic random utility.

And although much of this work on time inconsistent choice has focused on its positive aspects,

recent work has also begun to addresses welfare issues, including how to design the optimal

policy, how to assess paternalistic policies that seek to “improve” agents welfare in the presence

of dynamically inconsistent choice, as well as the welfare implications of commitment devices

that can induce self-control among consumers.2

1For a recent selection of axiomatic work see e.g. Wakai (2008), Montiel Olea and Strzalecki (2014), Galperti
and Strulovici (2017), Chambers and Echenique (2018), Drugeon and Ha-Huy (2018), among many others. This
work includes also papers on temptation preferences of Gul and Pesendorfer (2001, 2004, 2005), as well as related
work on self-control and time-inconsistent choice of Noor (2011), Dekel and Lipman (2012), Ahn et al. (2019),
and Ahn et al. (2020), Noor and Takeoka (2020b,a) among others.

2Relative to the question of welfare, there is also a large literature on the role of commitment devices in
dynamic models with time inconsistent preferences. For a nice survey of this work, see Bryan et al. (2010) and
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This paper contributes to many different strands in the literature of behavioral, dynamic

economic models. Optimal plans under such preferences over time are often time-inconsistent

and (perhaps surprisingly) a decision maker has no incentive to follow the optimal plan in the

future. More formally, decisions are time inconsistent if plans (e.g. consumption) chosen in period

t for the following τ, . . . , T periods, say (ctτ )Tτ=t, change with the planning date t. Our focus is on

developing new tools for studying the existence and characterization of time-consistent choice

in dynamic resource allocation problems where decisionmakers have preferences that exhibit

general forms of behavioral discounting.3 Modeling coherent choice in the presence of dynamic

inconsistent preferences has a long history in economics, and is found in the early papers of

Strotz (1956), Phelps and Pollak (1968), Pollak (1968) and Peleg and Yaari (1973), as well as

the much of subsequent work over the last two decades that has followed the work of Laibson

(1997) and Harris and Laibson (2001). Out of many interesting problems economists have

studied, the question of design and computation of optimal among time consistent plans (i.e.,

planned sequential choice policies that are followed and not re-optimized) has received a great

attention in economic literature. This also includes important from behavioral and numerical

perspective short memory decision rules, like Markov or semi-Markov ones.

One important limitation of the existing work relative to this paper is that most of it has

focused exclusively on the case of quasi-hyperbolic discounting (e.g., for recent work see Krusell

and Smith (2003), Krusell et al. (2010), Harris and Laibson (2013), Chatterjee and Eyigungor

(2016), Balbus et al. (2015b, 2018), and Cao and Werning (2018)).4 Although quasi-hyberbolic

discounting is a very important, it is also a somewhat special case. In particular, it has a

simple pattern of “1 period forward misalignment/bias” in intertemporal preferences. Recent

empirical and experimental work in both economics and psychology has found strong support

for more general forms of behavioral discounting in dynamic choice models (e.g., including

various versions of hyperbolic discounting), however. The work in the literature considering more

general behavioral discounting has either focused on special cases where the models admit closed-

form solutions (e.g., Young (2007)), or emphasize numerical approaches to the computation

of time consistent equilibrium, and do not consider the question of sufficient conditions for

its existence (e.g., Maliar and Maliar (2016) or Jensen (2020)).5 Extending the set of tools

developed for characterizing time-consistent choice in dynamic models with quasi-hyberbolic

discounting to models with generalized behavioral discounting is not a trivial matter, as the

Beshears et al. (2018). A small sampling includes the papers of Laibson (1997), Harris and Laibson (2013), Gine
et al. (2010), Karlan et al. (2016), Casaburi and Macchiavello (2019), Beshears et al. (2020).

3By“behavioral discounting”we mean all forms of discounting generated by changing tastes over utility streams.
4We should mention, there is a parallel important literature on self-control and impulse management in so

called on dual-self models. For example, in economics, see the papers of Fudenberg and Levine (2006, 2012). The
tools developed in this paper can be applied to most of these models, as they can be mapped into our language
of “behavioral discounting”. See Jensen (2020) for a discussion of this mapping.

5Per the latter numerical approach, our paper complements this work nicely as we provide sufficient conditions
for existence of time consistent equilibrium with monotone investment/savings strategies in general models of
behavioral discounting. Monotonicity of investment/savings in the general behavioral discounting model greatly
simplifies the theory of approximation and computation in the numerical approach.
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existing approaches to time consistent choice taken for the quasi-hyberbolic do not appear to

extend to the generalized discounting case. Therefore, from a theoretical vantage point, the need

for new tools to cover such cases of generalized discounting case is important and challenging.

It is important to mention that there has also been a great deal of empirical and experimental

support for various general forms of dynamic inconsistencies in intertemporal preferences that

can be tied to some form of behavioral (or non-exponential) discounting. For example, in early

work, Laibson et al. (2007) show how high short-term discount rates are needed to explain

observed borrowing behavior in US data. More recently, Duflo et al. (2011) estimate a model of

naivete random quasi-hyberbolic discounting for fertilizer use in Kenya where there is a positive

probability placed on time consistent choice, and find time inconsistency plays an important

role in the adoption decision. Chan (2017) estimates a hyperbolic model of discounting where

differences in discount factors play a key role in explaining how workers make labor supply

decisions in the context of participation in welfare programs. He finds most agents appear

to make time inconsistent choices exhibiting general forms of present-bias. In Dalton et al.

(2020), the authors study the role of discounting and myopia in the purchase of Medicare D

drug insurance contracts, and find strong support of the presence of general time inconsistent

behavior and behavioral discounting. Using an experimental approach, Augenblick et al. (2015)

find support for time inconsistent behavior in discounting in the context of making effort choices

in real tasks. In the context of credit card paydowns, Kuchler and Pagel (2020) find strong

support for general forms of present-bias and time inconsistency.6

This empirical work has in turn motivated a great deal of new theoretical work seeking to

characterize the structure of dynamic choice models in situations with non-exponential discount-

ing of future utility streams. For surveys of this body of theoretical work, see the earlier papers

of Fishburn and Rubinstein (1982), Frederick et al. (2002), and Noor (2009), as well the recent

surveys of Ericson and Laibson (2019) and Cohen et al. (2020).7 Some important very recent

theoretical contributions to this literature include Harstad (2020), who has studied the interac-

tion between various forms of hyperbolic discounting for government policymakers and dynamic

investment to study the structure of optimal investment subsidies in the presence of externali-

ties. He shows that larger subsidies are optimal in the presence of technologies that exhibit a

particular form of dynamic strategic complementarities. Halec and Yared (2019) study a proto-

type small open economy where the government is setting fiscal rules under limited commitment,

but where the government has present-bias objectives. This present-bias emerges naturally in

any dynamic collective choice problem (e.g, see Jackson and Yariv (2015) and Lizzeri and Yariv

(2017))8. They show in this case, optimal incentives are bang-bang, with optimal rules en-

6For additional discussions of empirical motivation for the importance of present-bias and dynamic inconsis-
tency in choice, see Angeletos et al. (2001), Ameriks et al. (2007) and Cohen et al. (2020).

7A separate line of research consider revealed preferences theory of dynamic discounting models see e.g.
Echenique et al. (2016) or Dziewulski (2018).

8Some behavioral discounting models have implications that coincide with those coming from normative models
(see Jackson and Yariv (2015); Ebert et al. (2020), among others, for arguments as to why time-inconsistency
shows up at the social preferences level). See also Becker (2012) and Drugeon and Wigniolle (2020) for related

4



forced by maximally enforced debt limits. Gottleib and Zhang (2020) study the implications of

time-inconsistency on the structure of dynamic incentives in a long-term contracting problems

between present-bias consumers and risk-neutral firms, and show that firms can offer contracts

such that as the length of a contracting problem increases, the welfare-losses associated with

present bias disappear. They also explore the role of commitment in supporting this result, all

this work done in the setting of a repeated-game. See also the related work of Ceteman et al.

(2019) for studying similar questions in the context of a continuous time model. In Iverson

and Karp (2020), the authors study a Markov perfect equilibria in a dynamic model of climate

with carbon taxes and generalized behavioral discounting, where the decentralized economy de-

termines aggregate savings, and a planner determines climate policy. For a particular class of

preferences and technologies (log-linear), they are able to solve the model in closed-form, and

characterize the nature of commitment devices and the structure of optimal carbon taxes in their

model economy. In Beshears et al. (2020), the authors develop a model of optimal illiquidity

in an economy where agents are subjected to taste shocks and have present-bias preferences.

They show that the socially optimum is a approximately a two-tier account system which in-

cludes completely illiquid accounts and completely liquid accounts. Finally, Heidues and Strack

(2019) and Mahajan et al. (2020) discuss methodological issues related to the identification of

present-bias and behavioral discounting in econometric models.

One final aspect worth mentioning is the inherent uncertain nature of the future in many

of these behavioral discounting models. That is, although dynamic models of choice over time

can be applied to both deterministic and stochastic environments, it is the latter that is of

utmost importance for empirical studies. There is a number of recent papers showing that

preferences over time as well as over uncertain (or risky/stochastic) outcomes are intertwined (see

Loewenstein and Prelec (1992), Saito (2009), Andreoni and Sprenger (2012), Ioannou and Sadeh

(2016) among others). As Halevy (2008) and Baucells and Heukamp (2012) argue: delaying a

prize in time has the same effect as increasing uncertainty of getting this prize. More specifically,

uncertainty over future states plays an important role in our analysis. As we will argue, whenever

preferences of consecutive generations are misaligned for more than two periods ahead a certain

form of transition uncertainty is necessary to obtain existence of stationary time consistent

Markov equilibria.

Taking many of these considerations into account, in this paper we study various general

forms of behavioral or normative discounting rules that generate dynamically inconsistent pref-

erences in dynamic stochastic decision problems, and study the structure and existence of time-

consistent decision rules. In this paper, we focusing primarily on Markovian equilibria in a

minimal state space. The task of defining, finding, characterizing, and computing (developing

appropriate numerical procedures) is far from trivial. And the above mentioned tasks are only

prerequisites of any empirical analysis of implications of various forms of discounting on alloca-

tion of scarce economic or environmental resources over current and future generations under

results.
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intrinsic uncertainty (see Dasgupta (2008), Arrow et al. (2014) and Gerlagh and Liski (2018)).

The central aim of this paper is to prove existence of time consistent equilibrium (e.g., minimal

state space Markovian equilibrium) in a large class of dynamic economies with generalized dis-

counting that includes in its catalog many important models from the cited literature as special

cases. Such results are needed to explore both the behavioral and normative applications of

these preferences in dynamic equilibrium models.

Overview of the results Before we proceed to the formalities, we begin by previewing the main

results of the paper. Consider a discrete time, infinite horizon, stochastic consumption-saving

model, where the sequence of time separable lifetime preferences over sequences of consumption

(cτ )τ=t is given any date t by:

u(ct) + Et
∞∑
τ=1

δτu(ct+τ ). (1)

We shall refer to these preferences as (δt)
∞
t=0-behavioral discounting preferences.9 Notice, at any

time period t, the consumer uses the sequence of discount factors:10

δ0, δ1, δ2, δ3, . . .

to value current and continuation utility streams (where, for convenience, we normalize δ0 = 1).

A few additional remarks on these preferences are in order. First, notice these preferences embed

the discounting ideas of both Ramsey (1928) and Samuelson (1937) as special cases. Second,

most cases in the literature of behavioral discounting fit into this general setting. To mention

a few common special cases, we have the following: (i) exponential discounting when δt = δt,

(ii) quasi-hyperbolic discounting when δt = βδt for t ≥ 1, and (iii) hyperbolic discounting when

δt = 1
1+t . Third, these preferences are generally time-inconsistent. That is, the discount rate

between utilities in any two time periods τ + 1 and τ is given by:

δt+1u(cτ+1)

δtu(cτ )
,

for any t ∈ {0, . . . , τ}. We say the intertemporal preferences between the consecutive periods

are misaligned whenever for some t:

δ2
t 6= δt−1δt+1.

For the special case of exponential discounting, preferences are aligned. For the case of quasi-

hyperbolic discounting, preferences are misaligned and exhibit “1 period forward misalignment”.

For the case of hyperbolic discounting, these preferences also misaligned, but for any t. As a

9More compactly, one might refer to these intertemporal preferences with Ramsey discounting, given their
discounting is just a weighted-sum of future utilities. But as our motivation is mainly empirical (or behavioral),
we use to refer to them as “behavioral discounting” in the paper.

10And has a very general form of “changing tastes” as, for example, in Hammond (1976).
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result, the preferences in (i) are time-consistent, and in both cases (ii) and (iii), time-inconsistent.

Now, let us consider the structure of a stochastic dynamic optimization problem, where the

dynamics on the state variable (e.g. assets or capital levels) st induced by sequences of current

(consumption) choices is governed by a Markov transition st+1 ∼ q(st|st − ct), where st − ct
denotes investment.

Considering a sequence of feasible and measurable consumption policies (c∗t )t mapping cur-

rent state to current consumption level, we can compute its expected value from period t on:

Ut((c
∗
τ )τ=t)(s) = u(c∗t (s)) + Es

∞∑
τ=1

δτu(c∗t+τ ).

where Es is the conditional expectation operator with respect to date t information. We say a

sequence (c∗t )t of measurable consumption policies is a Markov Perfect Equilibrium (MPE) in a

consumption-savings model with (δt)-behavioral discounting if for any s ∈ S and t we have:

c∗t (s) ∈ arg max
c∈[0,s]

{u(c) + δ1EsUt+1((c∗τ )τ=t+1)(s− c)} .

If additionally, this MPE is time-invariant,11 i.e. c∗t = c∗ we refer to this as a Stationary Markov

Perfect Equilibrium (SMPE), or in this paper, simply a Time Consistent Equilibrium.

For the moment, assume states space S ⊂ R is bounded, and the temporal return function

u : S 7→ R is continuous, increasing and strictly concave. Moreover, assume q is stochastically

increasing and stochastically continuous.12

The first main result of the paper concerns Time Consistent Equilibrium in the special case

of behavioral discounting model where preferences are quasi-hyberbolic with δ ∈ (0, 1) and

β ∈ (0, 1].

Proposition 1. There exists a Time Consistent Equilibrium in β− δ quasi-hyperbolic discounting

model with deterministic state transition q.

Notice, for the case of quasi-hyberbolic discounting consumption-savings models, we do not

require stochastic state transitions. Given our weak sufficient conditions for this result, Propo-

sition 1 generalizes substantially the existing literature.13

Our second main set of results concerns the case of general behavioral discounting with each

δt ≤ δ < 1. Here, we allow preferences for consecutive “generations” of selves to be misaligned

11The question of MPE time-consistent solutions, and more generally sequential time consistent solutions, is
very interesting. We shall discuss MPE time consistent solutions later in the paper. For the quasi-hyperbolic
case, for repeated games, see Chade et al. (2008), and for dynamic games, see Balbus and Woźny (2016) for a
discussion of how one might extend the analysis to sequential time consistent solutions.

12The definitions of stochastically continuous and stochastically increasing we apply are standard. Stochasti-
cally continuous means the transition q satisfies the Feller property. For a standard definition of stochastically
increasing, see Topkis (1998), section 3.10.

13For example, our main existence result for the quasi-hyberbolic case generalizes the results in Harris and
Laibson (2001), Krusell and Smith (2003), Krusell et al. (2010), Bernheim et al. (2015), and Cao and Werning
(2018).
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in much more general ways than in the quasi-hyberbolic discounting model. For this case, we

need some uncertainty in the state transition process to obtain existence of Time Consistent

Equilibrium.14 The second main result can be stated as follows:

Proposition 2. There exists Time Consistent Equilibrium in the stochastic (δt)-behavioral dis-

counting model with preferences given by (1) whenever q is nonatomic.

In fact, our existence and characterization results in this paper are more general than both

Propositions 1 and 2.

First, in all cases of Time Consistent Equilibrium, we will provide a sharper characterizations

of equilibrium policies. Namely, for any Time Consistent Equilibrium with consumption c∗, the

associated equilibrium decision rule for investment i∗ is monotone (and right-continuous) in S.

Additionally, per characterization of Time Consistent Equilibrium, in models with present-bias

preferences (i.e. β < 1), we are able to break all indifference between the “current-self” in favour

of the earlier selves who prefer a higher level of investment. As Caplin and Leahy (2006) show

in their work related to Strotz (1956), “optimal” Time Consistent Equilibrium must resolve such

indifferences in this manner for both positive and normative reasons. This is critical aspect of

our existence construction, and is new relative to existing work on Time Consistent Solutions

for quasi-hyperbolic models.

Second, we can allow for both S and u to be unbounded above. Relative to Proposition 2,

we are also able to substantially relax the assumption of (δt)-behavioral discounting preferences,

in particular by allowing for non-stationary preferences (i.e., time-dependent) represented by

non-additive aggregators.

Finally, in characterizing time consistent equilibria in the (δt)-behavioral discounting model,

we will introduce the notion of a “semi-hyberbolic” model, i.e. a model where agents, in a precise

mathematical sense, have “finite” bias/misalignment. We will show in what sense the time

consistent equilibrium in the behavioral discounting model can be generated as limits of time

consistent solutions to “semi-hyberbolic” models. In such situations, our approximation results

will provide a new conceptual foundation for understanding Time Consistent Equilibrium in

the (δt)-behavioral discounting model. Importantly, the hyperbolic discounting model will be a

special case of a behavioral discounting model where our approximation tools work.

Also, an important technical aspect of our approach is, we introduce a new functional equa-

tion method that robustly links recursive utility models with strategic aspects of limited com-

mitment. Our approach substantially extends and integrates separate ideas developed in a series

of contributions by Balbus et al. (2015b, 2018), Balbus et al. (2020) and Balbus (2020), among

others. In doing so, we provide the first attempt of which we are aware to analyze existence of

minimal state Markovian equilibrium in dynamic economies with general recursive payoffs and

time-inconsistent preferences. Our results can be hence of independent interest for equilibrium

14Without such uncertainty in the state transition, counterexamples to the existence of time consistent equilib-
rium can be constructed.
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existence in dynamic/stochastic games with recursive payoffs and general discounting (see Obara

and Park (2017) for a recent contribution).

In the remainder of the paper, we discuss in more detail Propositions 1 and 2, as well as

their generalizations. Namely, in section 2, we provide some intuition into how we approach

the existence problem. In particular, we start with the motivating example of quasi-hyberbolic

discounting, and use it to suggest a more general functional equation approach to other dis-

counting problems. The key ingredient of this argument is the development of what we refer to

as a “generalized Bellman operator”. This then allows us to link the structure of our solution

approach (taken to the quasi-hyberbolic case) to the more general class of models with (time-

separable) behavioral discounting. From there, we are able to generalize the approach further

to a recursive (non-separable) representations of the Time Consistent Equilibrium problem. We

then use this general recursive representation to give sufficient conditions under which we can

prove an existence result for this class of models. Then, in section 3, we continue exploration

of the structure of our recursive approach, and analyze the case of semi-hyberbolic discounting.

Although this case is interesting in itself, it also serves as a powerful tool for verifying existence

of Time Consistent Solutions for the important case of hyperbolic discounting. In particular,

we show precisely that one can view the hyperbolic discounting case as the limiting case of a

sequence of semi-hyperbolic discounting problems, which we show in section 4. In this section,

we also show how to build a powerful approach to approximating other generalized behavioral

discounting models. In section 5, we show how our results can be extended to even more general

models with behavioral features e.g. magnitude effects, backward looking discounting or short-

lived players. We also provide many examples of special cases in the literature that fit into our

setting.

2 A preliminary existence result

In this section, we consider the case of time separable quasi-hyberbolic discounting model, the

most studied case in the literature. We not only study this case because of its importance,

but because it provides the necessary intuition as to how we approach more general cases of

behavioral discounting. That is, we use this example to build a new language for how to

approach the more general case of (non-additive) discounting. We then prove existence of time

consistent equilibria in this more general case, but as a corollary, we consider how the result can

be specialized to the quasi-hyberbolic model.

2.1 A motivating example: quasi-hyperbolic discounting

Consider the standard, infinite horizon, stochastic consumption-savings model with quasi-hyberbolic

preferences. In this model, at each period t, there is one “generation” who enters the decision

9



problem inheriting a capital/asset stock st ∈ S, where S = R+ or S = [0, S̄] ⊂ R+.15 Generation

t selects a consumption level ct ∈ [0, st], with the remaining resources it = st− ct allocated as an

investment for next generation t+ 1. In general, the capital stock at t+ 1 is random, and drawn

from the distribution q(·|it). The temporal utility for each generation is u(ct), where u : S → R
is continuous and strictly increasing function.

Then, for any stock-consumption history (st, ct)
∞
t=1, we denote:

J(ct)(st) := Est

(
u(ct) + βδ

∑
τ=t

u(cτ+1)δτ−t

)
,

as generation t lifetime preferences, where 1 ≥ β > 0 and 1 > δ ≥ 0, and expectations operator

Est is taken with respect to the realization of random variables (sτ )τ=t+1 with sτ drawn each

period from a transition distribution q. Here, as typically ct = (cτ )∞τ=t. This objective is well-

defined by the Ionescu-Tulcea theorem. Denoting by:

U∗(ct+1)(st+1) = Est+1

(∑
τ=t

u(cτ+1)δτ−t

)
,

we can rewrite this objective more conveniently as:

J(ct)(st) = Est
(
u(ct) + βδU∗(ct+1)(st+1)

)
. (2)

Let c∗t : S → S be a measurable and feasible policy, and interpret it as a Markov policy generating

a history (st, c
∗
t (st))

∞
t=1. Suppose then the generation t deviates from c∗t by choosing c ∈ [0, st].

Then, we can define a payoff:

P (c, (c∗)t+1)(st) := u(c) + βδ

∫
S
U∗((c∗)t+1)(st+1)q(dst+1|st − c).

We then have the following definition.

Definition 1. A sequence (c∗t ) of measurable policies is a Markov Perfect Equilibrium (MPE) if

for any s ∈ S and t:

c∗t (s) ∈ arg max
c∈[0,s]

P (c, (c∗)t+1)(s).

If additionally, the MPE is time invariant, then we refer to it as a Stationary Markov Perfect

Equilibrium (SMPE) or Time Consistent Equilibrium.

Let c∗ be a Time Consistent Equilibrium. It is clear for the quasi-hyperbolic discounting

model, as the decisionmaker has time separable preferences, finding c∗ requires decomposing

15Here, we interpret the dynamic choice model “dynastically”, i.e., the infinite-horizon decisions are chosen by
a collection of generations under limited commitment. Alternatively, those “generations” could represent “selves”
in a model of a single agent with changing tastes as in Phelps and Pollak (1968), Peleg and Yaari (1973), or
Hammond (1976). In all cases, optimal policy is modeled as an equilibrium in a dynastic game with a countable
number of players.
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this optimization problem into two functional equations and solving then. The first functional

equation involves finding the recursive part of preferences, i.e. future value U∗ computed for

a given candidate policy c∗. The second functional equation then assures strategic consistency

between the consumption policy c∗ and U∗ (i.e., the current choice of c∗ must be a best response

to the considered value U∗). These two equations describe the structure of minimal state space

Markovian equilibrium self-generation for a candidate equilibrium policy c∗.

More formally, for any s ∈ S we have:

U∗(c∗)(s) = u(c∗(s)) + δ

∫
S
U∗(c∗)(s′)q(ds′|s− c∗(s)), (3)

c∗(s) ∈ arg max
c∈[0,s]

u(c) + βδ

∫
S
U∗(c∗)(s′)q(ds′|s− c),

where for notational simplicity, we shall write U∗(c∗) instead of U∗((c∗)t) whenever the context

is clear. As observed by Balbus et al. (2018), these two functional equations can be summarized

by a single generalized Bellman equation:

U∗(c∗)(s) =
1

β
max
c∈[0,s]

(u(c) + βδEs−cU∗(c∗))−
1− β
β

u(c∗(s)), (4)

where Es−c is a short-hand notation for the conditional expectation operator in the current state

s ∈ S with respect to transition q(·|s− c). Here, in (4), one can think of the last element of this

expression 1−β
β u(c∗(s)) is the quasi-hyberbolic dynamic inconsistency adjustment factor. That

is, this additional term depending on β appearing on the right-hand side of the maximand in

(4) quasi-hyberbolic model is “added” to a standard Bellman to incorporate the fact agents have

changing preferences over time. So, for the case of β = 1 (the case of dynamically consistent

preferences with exponential discounting), this dynamic inconsistency adjustment factor reduces

to 0, and the generalized Bellman operation reduces simply to the standard (time consistent)

Bellman equation.16

It turns out this formulation of Time Consistent Equilibria in the time-separable quasi-

hyberbolic case in the pair of equations in (3) represented by a single generalized Bellman in

(4) can be extended in a number a directions for more general forms of behavioral discounting.

For example, one can consider both (i) more general ways of evaluating certainty equivalents

of future utility streams (see e.g. Kreps and Porteus, 1978)) and (ii) allow for a nonlinear ag-

gregation of current utilities and their associated certainty equivalent (see e.g. Epstein and

Zin, 1989).17 To see how this generalization works, consider now a general time aggregator

16It is important to note that the so-called “generalized Euler equation” approach to solving time inconsistent
problems is just the “first order” decomposition of the same idea we have in our generalized Bellman equation. See,
for example, Harris and Laibson (2001), section 3, equation (8) for first-order analog of our generalized Bellman
equation.

17For more recent recursive preferences literature, the reader is referred to works by Le Van and Vailakis (2005),
Rincon-Zapatero and Rodriguez-Palmero (2009), Martins-da Rocha and Vailakis (2010), Matkowski and Nowak
(2011), Galperti and Strulovici (2017), Bich et al. (2018) and Balbus (2020).
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W (c∗(s),Es−c∗(s)U∗(c∗)) that is used by the decisionmaker to evaluate current and future utili-

ties. Then, the two functional equations linking future utility U∗ and time consistent equilibrium

c∗ in (3) now take a following form:

U∗(c∗)(s) = W (c∗(s),Es−c∗(s)U∗(c∗)), (5)

c∗(s) ∈ arg max
c∈[0,s]

W (c, βEs−cU∗(c∗)).

Similar to the quasi-hyberbolic case, in many settings (e.g., of time-inconsistent choice with-

out time-separability), these two equations in (5) can be mapped into a single equation of a

form similar to (4), where this latter single functional equation can be characterized by an

time-inconsistency aggregation mapping V : S × S × R→ R given by:

U∗(c∗)(s) = V (c∗(s), c∗(s),Es−c∗(s)U∗(c∗)) = max
c∈[0,s]

V (c, c∗(s),Es−cU∗(c∗)) (6)

where the first element of V is current consumption, the second element of V is a “dynamic

inconsistency adjustment factor” that corrects intertemporal preferences for the evolving struc-

ture of time-inconsistency, and the third argument is a “recursive” utility term from the next

period onward that is evaluated under some candidate consumption function c∗. Our existence

theorem in a moment will be based on this new general formulation of the dynamic inconsis-

tency problem in (5), and will prove existence of value U∗ and a function c∗ solving the single

functional equation in (6).

Before we proceed, we first note that the formulation in (5) and (6) has many important

examples in the literature as special cases. We discuss few of them now.

Example 1 (Time separable quasi-hyperbolic discounting). In case of a standard, time separable

quasi-hyperbolic discounting model W (x, z) = u(x) + δz, the aggregation mapping V takes the

form:

V (x, y, z) :=
1

β
(u(x) + βδz)− 1− β

β
u(y).

Example 2 (Risk-sensitive preferences). Consider now generalization involving the exponential

certainty equivalent as defined by Weil (1993) (see also Bäuerle and Jaśkiewicz (2018) for a

motivation). In such case the risk-sensitive preferences are given by

u(c)− βδ

γ
ln

∫
S
e−γU

∗(c∗)(s′)q(ds′|s− c),

where U∗(c∗)(s) = u(c∗)− δ
γ ln

∫
S e
−γU∗(c∗)(s′)q(ds′|s−c∗(s)) and γ > 0. Then the time aggregator

takes the form: W (x, z) := u(x) + δz and the certainty equivalent for given (integrable) f is

− 1
γ ln

∫
S e
−γf(s′)q(ds′|s−c). The aggregation mapping V takes the same form as in the example 1.
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Example 3 (Kreps-Porteus Utility). Kreps and Porteus (1978) and Epstein and Zin (1989)

introduced the following CES aggregator:

W (x, z) = ((u(x))1−ρ + δz1−ρ)
1

1−ρ

for ρ ∈ (0, 1). In case of β − δ version of this model with Wβ(x, z) = ((u(x))1−ρ + βδz1−ρ)
1

1−ρ

we have:

V (x, y, z) = [
1

β
W 1−ρ
β (x, z)− 1− β

β
(u(y))1−ρ]

1
1−ρ .

2.2 An existence result

We now state an initial general existence result for this class of dynamic preferences with be-

havioral discounting. For this result, we need the following assumptions on V and the transition

probability q(·|i).

Assumption 1 (Aggregator). V : S × S × [ϑ,∞) 7→ [ϑ,∞) is continuous, with ϑ ∈ R and

(x, y, z) 7→ V (x, y, z) is increasing in (x,−y, z). Moreover:

(i) The function z → V (x, y, z) is a contraction mapping with a constant δ ∈ (0, 1);

(ii) The function

ζ(s) = V (s− i1, φ(s), ψ(i1))− V (s− i1 + (i1 − i2), φ(s), ψ(i2))

has Strict Single Crossing Property (SSCP) for any s ≥ i1 > i2 and Borel functions φ and

ψ18;

(iii) There is a sequence ξk (k ∈ N) of elements of S, 0 < ξ1 < ξ2 < . . ., and a sequence ηk of

R+ such that ϑ < η1 < η2 < . . . such ηk → ∞ as k → ∞ and r := sup
k∈N

ηk+1

ηk
∈ (1/δ,∞).

Moreover,

sup
(x,y,z)∈[0,ξk]2×[ϑ,ηk+1]

|V (x, y, z)| ≤ ηk for all k,

or equivalently

max (V (ξk, 0, ηk+1), V (0, ξk, ϑ)) ≤ ηk.

Assumption 2 (Transition). The transition probability q(·|i) satisfies:

(i) i 7→ q(·|i) is stochastically increasing, satisfies a Feller property, and

q([0, ξk+1]|s) = 1 for all s ∈ [0, ξk];

18Under our monotonicity assumptions it suffices to verify the SSCP condition for ψ such that ψ(i1) > ψ(i2).
Indeed, in the opposite case, i.e. ψ(i2) ≥ ψ(i1) function ζ is negative so SSCP is satisfied trivially.
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(ii) For any s ∈ S, the set of all i such that q({s} |i) > 0 is countable.

Assumption 1 (i) is standard. Condition (ii) assures that (each) best response equilibrium

policy selection is monotone increasing on S. Assumption 1 (iii) and 2 (i) assure we can use

the local contractions argument for the case of unbounded states and/or unbounded above

rewards. If the states space S is bounded or rewards are (uniformly) bounded then these are

automatically satisfied. Finally, we should make an important remark on assumption 2 (ii).

Observe, this assumption is satisfied for a purely deterministic transition structure and as well

their convex combinations. Moreover, we allow all sets we consider (i.e. {i ∈ S : q({s} |i) > 0})
be empty. This is the case, for example, when q is non-atomic. These are the two cases mostly

consider in the paper.

Now define the set of candidate time consistent equilibrium investment functions:

H := {h : S 7→ S : h(s) ∈ [0, s] : h is increasing and right continuous} .

By the arguments similar to Lemma 1 in Balbus et al. (2020), the set H is weakly compact when

endowed with the weak star topology (i.e. the topology with the following notion of convergence

hn →w h iff hn(s)→ h(s) whenever h is continuous at s).

Under these conditions, we now have a very general result on the existence of Time Consistent

Equilibrium c∗ such that the corresponding investment h∗ ∈ H, where h∗(s) := s− c∗(s).

Theorem 1. Assume 1 and 2. There exists a Time Consistent Equilibrium c∗ with a correspond-

ing monotone investment h∗ ∈ H. That is, if c∗ : S 7→ S is the time consistent equilibrium, then

there is U∗ : S 7→ R such that for any s ∈ S

U∗(s) = max
c∈[0,s]

V (c, c∗(s),Es−cU∗) = V (c∗(s), c∗(s),Es−c∗(s)U∗).

We now proceed with some preliminary definitions, constructions, and lemmata necessary to

prove this theorem. Begin by defining the following set: E := {(s, h) ∈ S ×H : h is continuous at s} .
As is usual, S is endowed with the Euclidean topology and S ×H is endowed with its product

topology. It is well-known that the evaluation function e(s, h) = h(s) has a continuous restric-

tion to E . Since h ∈ H is increasing, the section Eh := {s ∈ S : (s, h) ∈ E} has a countable

complement.

Next, define the space V to be the set of real valued functions on S × H such that each

f ∈ V:

� is bounded on any Sk ×H, where Sk := [0, ξk];

� is continuous from the right on S, and upper semicontinuous on S ×H;

� obeys the following condition: for any h ∈ E , there is a countable set Sf,h ⊂ Eh such that

if s /∈ Sf,h then f is continuous at (s, h).
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Endow the space V with the topology induced by the seminorms:

||f ||k = sup
s∈Sk×H

|f(s, h)|,

where Sk := [0, ξk]. Further define the following:

V :=

{
f ∈ V :

∞∑
k=1

||f ||k
rkηk

<∞

}
,

and a norm on V:

||f || =
∞∑
k=1

||f ||k
rkηk

.

Finally, define the set U to be:

U := {f ∈ V : ||f ||k ≤ ηk, k ∈ N} .

We are now ready to present the key steps in the proof of main theorem of this section.

Proof of Theorem 1. Lemma 1 in the Appendix shows that U is a closed subset of a Banach

space (V, || · ||). We then define an operator T on U as follows:

T (f)(s, h) := max
i∈[0,s]

V (s− i, s− h(s),Eif(h)),

where f(h) := f(·, h). Lemma 3 shows that T is a self map on U , while lemma 4 claims that T is a

contraction mapping and thus has a unique fixed point. Denote by f∗ ∈ U this unique fixed point

of T in U , and define the following mapping that characterizes the best reply correspondence

for each generation:

BI(h)(s) = arg max
i∈[0,s]

V (s− i, s− h(s),Eif∗(h)),

and

bi(h)(s) := maxBI(h)(s).

Lemma 5 shows that any selection of s 7→ BI(h)(s) is increasing in s. Finally, our key Lemma 7

shows that bi is continuous on compact H. By Schauder-Tychonoff Theorem we immediately

obtain the existence of a fixed point h∗ of bi. Then c∗(s) := s − h∗(s) is a Time Consistent

Equilibrium.

We conclude this section with an very important corollary of Theorem 1. The corollary offers

a very general new existence result in a standard deterministic quasi-hyperbolic discounting

model for the case when (i) the state space S is bounded or unbounded, and (ii) the utility

function u is allowed to be unbounded above. To the best of our knowledge, this corollary with
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sufficient conditions for the existence of Time Consistent Equilibrium for the standard quasi-

hyberbolic discounting model is the most general in the current literature (i.e., compare the

result in the corollary to theorem 5 in Cao and Werning (2018) or theorem 6 in Bernheim et al.

(2015)).

Corollary 1 (Deterministic quasi-hyperbolic discounting). There exists a Time Consistent Equi-

librium with investment monotone in the deterministic β − δ model whenever u is continuous,

increasing and strictly concave.

We finish this section with an very important comment on the nature of our existence result

and its interpretation.

Remark 1 (Selection from the argmax correspondence and Optimal Time Consistent Equilib-

rium). Our construction of Time Consistent Equilibrium in theorem 1 uses the greatest invest-

ment selection from the argmax correspondence. This selection procedure guarantees in our mod-

els with present biased preferences (i.e. β < 1), all indifference of the current self are arbitrarily

resolved in favor of the earlier selves who prefer higher investment. In an important paper,

Caplin and Leahy (2006) (following the work of Strotz (1956) argue that optimal time consistent

solutions should resolve all indifference in such a manner (for not only positive reasons, but for

normative interpretations of time consistent solutions). Technically, this is also critical for our

existence result. To the best of our knowledge, such investment selection construction is new

relative to the existing work on Time Consistent Solutions for quasi-hyperbolic models.

As stressed in the remark, our construction of equilibrium in the deterministic case is novel

and based on the greatest investment selection. Technically, whenever investment is upper

semicontinuous, its associated consumption is lower semicontinuous, which assures the upper

semicontinuity of the value U∗. And upper semicontinuity of U∗ is critical for proving non-

emptiness of the argmax correspondence. Indeed, it is not clear how the general existence for

a deterministic quasi-hyperbolic discounting model can be extended using the least investment

selection.19

3 Semi-hyperbolic discounting

We now proceed with new versions of dynamic model with time inconsistent preferences which

we refer to as “semi-hyberbolic” discounting models. The semi-hyberbolic model has the flavor

of quasi-hyberbolic, but allows for a more general pattern of present-bias (see Montiel Olea

and Strzalecki (2014) section IV for an introduction and motivation). These models also will

be useful in characterizing Time Consistent Equilibrium in more general models of behavioral

discounting (e.g., the hyperbolic discounting model). To build intuition as to how to characterize

19Recall, the recent equilibrium existence results in certain classes of stochastic games use the least investment
selection (see Balbus et al. (2015a, 2020) e.g.).
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Time Consistent Equilibrium in this class of models, we first study the special case of β1−β2−δ
semi-hyperbolic discounting, a direct extension of the quasi-hyberbolic model.

3.1 β1 − β2 − δ semi-hyperbolic discounting

Consider a special case of preferences in (1) where the sequence of discount factors at any date

t is specified as follows:

1, β1β2δ, β1β
2
2δ

2, β1β
2
2δ

3, β2β
2
2δ

4, . . .

We shall refer to this model as the β1−β2−δ semi-hyperbolic discounting. Notice, in this model,

from period t+ 3 on, the discount factor becomes exponential. However, unlike in β − δ model,

in the case of β1− β2− δ semi-hyperbolic discounting, preferences are misaligned for more than

just one date forward. Indeed, we have the following:

(β1β2δ)
2 6= β1β

2
2δ

2,

whenever β1 6= 1; as well as

(β1β
2
2δ

2)2 6= (β1β2δ)(β1β
2
2δ

3),

whenever β2 6= 1. So although these preferences are in the spirit of β− δ preferences, they allow

for a more general pattern of forward preference misalignment.

As before, for this model, we aim to show the existence of a Time Consistent Equilibrium c∗.

For this, we seek an appropriate generalized of the“decomposition”approach to quasi-hyberbolic

discounting we developed in Section 2. For β1 − β2 − δ semi-hyperbolic discounting model, our

decomposition involves three functional equations, namely:

U∗(c∗)(s) = u(c∗(s)) + δ

∫
S
U(c∗)(s′)q(ds′|s− c∗(s)),

W ∗1 (c∗)(s) = u(c∗(s)) + β2δ

∫
S
U(c∗)(s′)q(ds′|s− c∗(s)),

W ∗2 (c∗)(s) = u(c∗(s)) + β1β2δ

∫
S
W ∗1 (c∗)(s′)q(ds′|s− c∗(s))

= max
c∈[0,s]

u(c) + β1β2δ

∫
S
W ∗1 (c∗)(s′)q(ds′|s− c). (7)

We now discuss how our generalized Bellman equation approach proposed in the previous

section can be extended this semi-hyperbolic discounting problem. To obtain a single functional

equation linking these three functional equations, one needs again to construct corrective factors,
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but only now twice. Indeed, simplifying U∗(c∗)(·) with U∗(·) we obtain the functional equation:

U∗(s) =
1

β1β2
2

max
c∈[0,s]

{
u(c) + β1β2δ

∫
S

[u(c∗(s′)) + β2δ

∫
S
U∗(s′′)q(ds′′|s′ − c∗(s′))]q(ds′|s− c)

}
− [

1

β1β2
2

− 1]u(c∗(s))− [
1

β2
− 1]δ

∫
S
u(c∗(s′))q(s′|s− c∗(s)).

Notice, for β2 = 1, the second corrective factor disappears, and the problem reduces to a

standard β − δ discounting model. Similarly, for β1 = 1 the problem also reduces to a version

of β − δ discounting, but not the standard quasi-hyberbolic model; rather, it would be a β − δ
model where the additional impatience shows up between third and the second period (not the

second and the first).

Next, as is clear from the above formulation, for the deterministic semi-hyberbolic problem,

the argmax in the decisionmaker need not be necessarily well-defined in the space of investments

H.20 We resolve this issue by considering a stochastic transitions on the state s ∈ S. Under this

extra assumption, we can easily extend our existence result for the quasi-hyberbolic case to the

separable semi-hyberbolic discounting. In fact, these assumptions suffice to prove existence in a

more general model of discounting that we discuss in the next subsection. For this reason, we

now introduce a more general version of the semi-hyberbolic model, and then state the general

existence result relative to this model.

3.2 General semi-hyperbolic models

Consider a very general version of semi-hyperbolic discounting preferences that includes the

β1 − β2 − δ semi-hyperbolic discounting model as a special case. In studying Time Consistent

Equilibrium in this more general semi-hyberbolic case, we will use the existence results for this

class of semi-hyberbolic models to elucidate the structure of Time Consistent Equilibrium in the

(δt)-behavioral discounting preferences given in (1) via a limiting approximation argument.

Along these lines, first assume in that the semi-hyberbolic model is characterized by a se-

quence of discount factors that take the following sequential form:

1, β1β2 . . . βT , β1(β2 . . . βT )2, β1β
2
2(β3 . . . βT )3, . . . , β1β

2
2 . . . β

k−1
k−1(

T∏
s=k

βs)
k, . . . ,

T∏
τ=1

βττ ,

while for any t > T it is:
T∏
τ=1

βττ β
t−T
T ,

Assume βT < 1. The intuition for this formulation of the semi-hyberbolic model is that each

decision maker/generation at date t is impatient up to T periods ahead and then from period T

20Indeed in the deterministic transition case function: i 7→ u(s− i) + β1β2δ[u(c∗(i)) + β2δU
∗(i− c∗(i)) may fail

to be upper-semicontinuous if c∗ or s− c∗(s) is not usc. See also e.g. example 2 in Balbus et al. (2015a).
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on the problem becomes stationary with exponential discounting at rate βT . If additionally all

βt ≤ 1 the decision maker has a growing patience (alike a generalized notion of present-bias).

Remark 2. Per notation, in the previous examples, we used δ = βT . Now, we substitute for βT

to keep the notation concise. So, for example, we have the following special cases: for T = 1,

we have a standard exponential discounting with βt1; for T = 2, it is a quasi-hyperbolic β1 − β2

discounting model; for T = 3 , we have an ”order two” quasi-hyperbolic β1 − β2 − β3 model, etc.

We can now again develop a functional equation representation of the consumption-savings

problem for this class of semi-hyberbolic preferences. In particular, the functional equations will

have the following recursive structure:

U∗(s) = u(c∗(s)) + βT

∫
S
U∗(s′)q(ds′|s− c∗(s)),

and c∗(s) ∈ arg max
c∈[0,s]

{u(c) +
T∏
t=1

βt

∫
S
AT−1(U∗)(s′)q(ds′|s− c)},

with At(U
∗)(s) = u(c∗(s)) +

T∏
τ=T+1−t

βτ

∫
S
At−1(U∗)(s′)q(ds′|s− c∗(s)),

where A0(U) := U∗.

The next theorem considers our general existence for Time Consistent Equilibrium for this

class of semi-hyperbolic discounting models. For this result, we will need to impose two new

assumptions.

Assumption 3. Let u : S → R be continuous, increasing, strictly concave and max(|u(0)|, |u(ξk)|) ≤
(1− δT )ηk.

Assumption 4. The transition q satisfies Assumption 2. Moreover, q is nonatomic.

With these assumptions in place, we now have the following result:

Theorem 2. Assume 3 and 4. For any T ≥ 1, there exists a Time Consistent Equilibrium c∗

with corresponding monotone investment h∗ ∈ H.

This is a central result for the case of semi-hyperbolic discounting model. Some aspects of its

proof follow the lines developed for the quasi-hyperbolic discounting model. The key difference

though is in the argument that concerns the continuity of best responses. That is, in the case

of quasi-hyberbolic discounting, we used the space of upper semicontinuous value functions

and allowed for deterministic transition functions. In the case of semi-hyperbolic discounting,

this argument cannot proceed without the imposition of nonatomic noise relative to the state

transition (see lemma 7 versus lemma 12).

To present the proof of theorem 2, we need to define certain new objects. Let V0 be the

space of real valued functions on S ×H in which f ∈ V0 if and only if
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� for any k ∈ N, f is bounded on any (s, h) ∈ Sk ×H,

� for any h ∈ H there exists a countable Sf,h ⊂ S such that f(·, ·) is continuous at any (s, h)

such that s /∈ Sf,h.

Endow V0 with analogous seminorms || · ||k := sup
(s,h)∈Sk×H

f(s, h). Let V0 ⊂ V0 be the set

of all functions satisfying ||f || :=
∞∑
k=1

||f ||k
rkηk

< ∞. Clearly (V0, || · ||) is a normed space. Define

U0 := {f ∈ V0 : |f(s, h)| ≤ ηk, for all (s, h) ∈ Sk ×H, k ∈ N} . Let V∞0 be the countable product

of V0 endowed with the seminorms ||f ||∞k := sup
(t,s,h)∈N×Sk×H

ft(s, h). Similarly, define V∞0 and

the norm on V∞0 to be ||f ||∞ :=
∞∑
k=1

||f ||∞k
rkηk

and similarly for the set U∞. In Lemma 8 we show

(V0, || · ||) is a Banach space and U0 is a closed subset of (V0, || · ||) (hence a complete metric

space). We also have the same conclusion for (V∞0 , || · ||∞) and U∞0 .

Proof. For f ∈ U0, and t = 1, 2, . . . , T we define the following operator

Λ(f)(s, h) := u(s− h(s)) + βTEh(s)(f(h)),

where Ei(f(h)) is the operator defined as in the previous section. By lemmas 8 and 9 there exists

f∗, the unique fixed point of Λ. We now adapt the definition of the best response mapping as

follows. Let

BI(h)(s) := arg max
i∈[0,s]

{
u(s− i) + kT

∫
S
AT−1(s′, h)q(ds′|i)

}
.

where kt =
∏T
τ=T+1−t βτ and for any t > 0 we have

At(s, h) = u(s− h(s)) + kt

∫
S
At−1(s′, h)q(ds′|h(s)),

with A0(s, h) := f∗(s, h). Put

bi(h)(s) := maxBI(h)(s).

Lemma 10 assures that any selection of s 7→ BI(h)(s) is increasing. Next our key lemma 12

shows that the operator bi maps H into itself and is continuous. Hence, we find a fixed point h∗

of bi. Similarly, we may choose an equilibrium as c∗(s) = s− h∗(s).

Remark 3. Our technique allows us to generalize these existence results and also allow for more

general non-additive aggregators satisfying Assumption 1. See section 5 for a more general

model.
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4 Approximations, general behavioral discounting, and hyberbolic dis-

counting

We now extend our results on Time Consistent Equilibrium to the more general class of behav-

ioral discounting models, namely the (δt)-behavioral discounting. In doing so, we develop an

approximation approach that allows us to relate the set of Time Consistent Equilibria in the (δt)-

behavioral discounting model to the set of Time Consistent Equilibrium in limiting collections

of semi-hyberbolic discounting models. This allows us to achieve two goals. First, we are able

to extend our results in the previous sections to models with very general forms of behavioral

discounting. Second, using the approximation approach, we are able to understand better the

structure of (δt)-behavioral discounting models.

In particular, at the end of this section, we show how one can view the standard hyberbolic

discounting model as a limit of a collection of semi-hyberbolic discounting models. Specifi-

cally, our approximation method allows us to construct Time Consistent Equilibrium in the

very general (δt)-behavioral discounting with preferences as in (1) by finding an appropriate

approximating sequence of semi-hyberbolic discounting models with an appropriate sequence

of discount factors (βt)
∞
t=1. The corresponding Time Consistent Equilibrium in the limiting

semi-hyberbolic case can be used to build representations of Time Consistent Equilibrium for

the original problem parameterized by the discount factors (δt)
∞
t=1.

4.1 Limiting semi-hyperbolic discounting

We begin this section by discussing the case of limiting semi-hyperbolic discounting. A limiting

semi-hyberbolic discounting model studies the T -period bias in the semi-hyberbolic discounting

model as T gets arbitrarily large. For given T , denote the effective discount factors by:

T δ1 :=β1β2 . . . βT ,

T δ2 :=β1(β2 . . . βT )2 = T δ1

T∏
τ=2

βτ ,

T δk :=β1β
2
2 . . . β

k−1
k−1(

T∏
s=k

βs)
k = T δk−1

T∏
τ=k

βτ .

Hence for k ≤ T , we have the following recursive formulation:

T δk = T δk−1

T∏
τ=k

βτ . (8)

We now seek existence of Time Consistent Equilibrium in these models as T → ∞, and

use the result to build an approximation theory of Time Consistent Equilibrium in the (δt)-

behavioral discounting model. Suppose that T δ1 has a limit; then, any of T δk has a limit with
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T → ∞. We will denote this limit by δk. Therefore, the recursive formula for the evolution of

the successive discount factor δk takes the following form for any k:

δk = δk−1

∞∏
τ=k

βτ . (9)

We then have a new result per existence of Time Consistent Equilibrium in the limiting semi-

hyberbolic model relative to the (δt)-behavioral discounting model:

Theorem 3. Assume 3 and 4. Consider a model with generation t preferences given by:

UTt = u(ct) + Et

( ∞∑
τ=1

T δt+τu(ct+τ )

)

with T δt satisfying the above recursive formulation in (8). Then, for any T , there is a Time

Consistent Equilibrium cT , whose limit, say c∗ is also a Time Consistent Equilibrium in the

model with utility

U∗t = u(ct) + Et

( ∞∑
τ=1

δt+τu(ct+τ )

)
where the sequence δt satisfies the recursive formulation in (9).

Proof. The results follows from Theorem 2.

This is another central result of our paper. It allows us to approximate general behavioral

discounting models with preferences such as (1). The key technical contribution in Theorem 3

is based on the upper semicontinuity of the set of Time Consistent Equilibrium with respect to

the parameter T at T =∞.

4.2 Approximating general behavioral discounting models

With this result in place, we are now able to explore the relationship between limiting semi-

hyberbolic models and (δt)-behavioral discounting models even further than in Theorem 3. That

is, suppose we have a (δt)-behavioral discounting model where the discount factors (δt)
∞
t=1 are

given with each δt ∈ (0, 1). We now ask if we can construct a sequence of (βt)
∞
t=1 collection

and its corresponding sequence of behavioral semi- discounting games whose Time Consistent

Equilibria can approximate Time Consistent Equilibria of the (δt)-behavioral discounting model.

The following result answers this question.

Proposition 3. Define

βt :=

{
δ21
δ2

if t = 1
δ2t

δt+1δt−1
if t ≥ 2.

(10)
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then a time consistent equilibrium of the semi-hyperbolic discounting model β1 − β2 − . . . , is

a time consistent equilibrium of the behavioral discounting model with (δt)
∞
t=1 provided R :=

limt→∞
δt+1

δt
= 1.

Proof. To see that observe:

δt+1

δt
=

∞∏
τ=t+1

βτ

and hence

βt :=
δ2
t

δt+1δt−1

for t > 1. Further we have limt→∞
δt+1

δt
= limt→∞

∏∞
τ=t+1 βτ , that by assumptions is equal to 1.

To recover β1 proceed as follows:

δ1 = β1

∞∏
t=2

βt = β1

∞∏
t=2

δ2
t

δt+1δt−1
= β1 lim

T→∞

T∏
t=2

δ2
t+1

δt+2δt

= β1 lim
T→∞

(
T+1∏
t=2

δt

)2

T∏
t=1

δt
T+2∏
t=3

δt

= β1
δ2

δ1
lim
T→∞

δT+1

δT+2
= β1

δ2

δ1
.

Hence β1 =
δ21
δ2

.

4.3 The hyperbolic discounting case

We now use the result in the previous section to discuss how the time consistent equilibrium in the

standard hyperbolic discounting model can be approximated using time consistent equilibrium

in a limiting version of a semi-hyperbolic discounting model. To see how this can be done, let

for any date t, the discount factor for the (δt)-discounting model take a specific hyperbolic form:

δt =
1

1 + t
.

In this case, this implies that the discount factor between any two time periods t+ 1 and t is:

1
t+2

1
1+t

=
t+ 1

t+ 2
.

Applying our approximating formula in (10) in Proposition 3, we get:

βt+1 =
(t+ 1)(t+ 3)

(t+ 2)2

with

β1 =
3

4
.
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Hence, for this simple case, a Time Consistent Equilibrium of this version of the standard

hyperbolic discounting model can be expressed as a limit of Time Consistent Equilibrium of the

semi-hyperbolic models.

But importantly, this same argument applies to a more general form of hyperbolic discounting

(e.g., see the model studied in Loewenstein and Prelec (1992)). Specifically, let for each t

δt = (1 + αt)−
β
α .

Indeed, in such case, we then have:

βt :=

(
(1 + αt+ α)(1 + αt− α)

1 + αt

) β
α

,

R = 1 and β1 := (1+2α
1+α )

β
α .

So our approximation machinery developed in Theorem 3 and Proposition 3 is very general

and flexible. Further, we are not aware of any result in the existing literature regarding Time

Consistent Equilibrium existence in hyperbolic discounting game played between consecutive

generations.

5 A more general existence result with additional applications

We have shown so far that many general classes of (δt)-behavioral discounting models can be ap-

proximated using collections of semi-hyperbolic discounting models. The restrictive assumption

in that discussion is that R = 1. Indeed, there is a class of behavioral discounting models that

cannot be approximated in this manner. In this section, we consider these time inconsistency

problems, and extend our methods (and results) to even more abstract formulations of recursive

(time-inconsistent) preferences. We then provide four additional examples of where this more

general existence result can be applied (where our approximating technique cannot necessarily

be applied).

5.1 The general existence result

We first state our most general existence result. Following the reasoning developed for a general

quasi-hyperbolic discounting model in section 2, assume the existence of an abstract recursive

aggregator Vt : S × S × R as in the functional equation (6):

Vt(c̃, s− c̃,Es−c̃Ut+1(c)).

Here c̃ is the current consumption, Es−c̃Ut+1(c) is the certainty equivalent of the evaluation of the

next generations following policy c. Corrective terms (if necessary) can be used to account for

other behavioral considerations, like magnitude effects, for example (more on this in moment).
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Observe, in this case, we are studying versions of the functional equation in (6) that allow the

recursive aggregator to be nonstationary. So, the stationary case occurs, of course, when Vt is

independent of t, which will be a special case of our general existence result in a moment.

For some given c, we first look for recursive utility (U∗t )t:

U∗t (c)(s) = Vt(c(s), s− c∗(s),Es−c(s)U∗t+1(c)).

We then seek the solutions to:

c∗(s) ∈ arg max
c̃∈[0,s]

V1(c̃, s− c∗(s),Es−c̃U∗2 (c∗)).

We now have our most general existence theorem in the paper:

Theorem 4. Suppose Assumption 4 holds, and for any t, the continuous aggregator (x, y, z) 7→ Vt

is increasing in (x, z) for each y, and obeys Assumption 1 (i)-(iii) with a common constant

δ ∈ (0, 1). Then, there exists a Time Consistent Equilibrium c∗ with corresponding monotone

investment h∗ ∈ H.

Proof. Let us consider V∞0 and endow it with the natural product topology. The natural family

of seminorm || · ||k on V∞0 is defined as follows

||f ||k := sup
(t,s,h)∈N×Sk×H

|ft(s, h)|

and the norm

||f || =
∞∑
k=1

||f ||k
rkηk

.

Let T(f) = (Tt(f))t∈N where f = (ft)n∈N. For t > 1 let

Tt(f)(s, h) = Vt(s− h(s), s− h(s),Eh(s)ft+1(h)).

Lemma 15 shows that T is a contraction mapping on U∞ and has a unique fixed point: f∗.

Define

BI(h)(s) = arg max
i∈[0,s]

V1(s− i, s− h(s),Eif∗2 (h)),

and bi(h)(s) := maxBI(h)(s). Similarly as before (i.e. as in Theorem 1 and 2), lemma 18 shows

that the operator bi maps H into itself and it is a continuous operator. This suffices to prove

existence of a fixed point on convex and compact space H.

5.2 Applications to other behavioral discounting models

We now can provide few additional applications of the main results of the paper. Let us begin

with the case of generalized quasi-geometric discounting.
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Example 4 (Generalized quasi-geometric discounting). Young (2007) considers a dynamic opti-

mization model with the following sequence of discount factors:

1, β̃1δ, β̃1β̃2δ
2, β̃1β̃2β̃3δ

3, . . .

Therefore, between any two consecutive dates (say t+1 and t), the discount rate is β̃tδ. Suppose

we have that the limit limt→∞ β̃t ∈ (0, 1] exists and each β̃tδ < 1. Then, if we seek time consistent

equilibria in the resulting model, we have:

c∗(s) ∈ arg max
c̃∈[0,s]

u(c̃) + β̃1δEs−c̃U2(c∗).

where for t ≥ 2, we also have:

Ut(c
∗)(s) = u(c∗(s)) + β̃tδEs−c∗(s)Ut+1(c∗).

Here, we can take

Vt(c̃, s− c̃,Es−c̃U(c)) = u(c̃) + β̃tδEs−c̃U(c).

It is straightforward to see that this aggregator satisfies our assumptions in the paper, and there-

fore, Time Consistent Equilibrium exists whenever transition q is nonatomic, and u increasing

and strictly concave. In this case R 6= 1 (generally) and hence our approximation technique

cannot be applied.

Example 5 (Backward discounting). Following Ray et al. (2017) we consider an individual whose

current utility is derived from evaluating both present and past consumption streams. Each of

these streams is discounted, the former forward in the usual way, the latter backward. Specifically,

assume an individual at date t evaluates consumption according to a weighted average of his

own felicity (as perceived at date t) and that of a “future self” as perceived from date T > t.

More specifically, for a generation born in τ = 0 and taking the backward looking date to be

T (τ) := T + τ for some T > 0, her preferences are:

E0

T∑
t=0

δtu(ct)[α+ (1− α)δT−2t] + δTET+1

∞∑
t=T+1

δt−Tu(ct)[α+ (1− α)δ−T ].

where α (resp. (1−α)) is the forward (resp. backward) looking weight. Observe that from t ≥ T
the preferences become stationary with exponential discounting δ. So put

W (sT+1) = ET+1

∞∑
t=T+1

δt−Tu(c(st))[α+ (1− α)δ−T ]

to denote the value for this stationary part (for some candidate stationary policy c). That is,
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for t ≥ T , we can take the aggregators:

Vt(c̃, s− c̃,Es−c̃U(c)) := u(c̃)[α+ (1− α)δ−T ] + δEs−c̃U(c).

Observe this implies that the problem resembles a finite-bias discounting model discussed in

section 3. Then for t < T , we need to, however, construct our preferences recursively (backwards)

using aggregators Vt:

Vt(c̃, s− c̃,Es−c̃U(c)) := u(c̃)[α+ (1− α)δT−2t] + δEs−c̃U(c)

with UT (c)(sT ) = u(c(sT ))[α+ (1− α)δ−T ] + δTW (sT+1 − c(sT+1)).

Then, in this case, we seek Time Consistent Equilibria that are solutions of the following

functional equations:

c∗(s) ∈ arg max
c̃∈[0,s]

u(c̃)[α+ (1− α)δT ] + δEs−c̃U1(c∗).

Again, with δ < 1 the above aggregators (Vt) satisfy our assumptions and Time Consistent

Equilibrium exists whenever transition q is nonatomic, u increasing and strictly concave.

So far, in the paper, we have focused on models where this decisionmaker is infinitely-lived.

It happens, our approach is also useful when attempting to understand cases where agents are

short-lived. Many important problems in economics have the latter form of short-lived agents

making decisions within the context of some long-term generation planning problem with ex-

amples including dynamic sustainable resource models with public policy, economic models of

the transmission of human capital and endogenous preferences across generations, models of en-

dogenous fertility, as well as related models of sustainable dynastic choice with intergenerational

altruism and paternalism. One particularly relevant case is that of bequest games. We now

show how our results can be applied in these models.

Example 6 (Limited time horizon discounting and bequest games). Consider a sequence of dis-

count factors 1, δ1, δ2, . . . , δT , 0, 0, . . . for some T ≥ 1. This, therefore, is a class of T -period

paternalistic bequest games with changing discount factors. To apply our results to this model,

simply take:

Vt(c̃, s− c̃,Es−c̃U(c)) = u(c̃) + δtEs−c̃U(c).

Then again, we are able to verify Time Consistent Equilibria exist with monotone increasing

investments whenever transition q is nonatomic. Again, observing that δT+1 = 0 we immediately

have that the problem resembles a finite-bias discounting model discussed in section 3.

Finally, we can also allow for a discount factor to be state or choice dependent, e.g. β(s) or

β(s − c) to account e.g. for magnitude effects in discounting (see Epstein and Hynes (1983) or

Noor (2009) for a motivation).
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Example 7 (Magnitude effects). Suppose the present bias discount factor β is a function of

investment, i.e. β : S → [0, 1] that is continuous and increasing. Then the aggregator takes the

form:

V1(c, s− c∗(s),Es−cU∗(c∗)) = max
c∈[0,s]

(u(c) + β(s− c)δEs−cU∗2 (c∗))

where for t > 1:

Ut(c
∗)(s) = Vt(c

∗(s), s− c∗(s),Es−cU∗(c∗)) = u(c∗(s)) + δEs−c∗(s)U∗(c∗).

In a similar way, we can consider a case of δ being investment dependent. In such a case, one

would need to impose:

Ut(c
∗)(s) = Vt(c

∗(s), s− c∗(s),Es−cU∗(c∗)) = u(c∗(s)) + δ(s− c∗(s))Es−c∗(s)U∗(c∗).

It is easy to see that this specification is also a special case of the general model, and hence Time

Consistent Equilibrium c∗ exist in this model.

6 Concluding Remarks

In this paper, we propose a new collection of functional equation methods for proving existence of

(pure strategy) Time Consistent Equilibria in a general class of dynamic models with“behavioral”

discounting with recursive payoffs with a bounded or unbounded state space. Our approach

allows use to link recursive utility models with the literature on the strategic aspects of stochastic

games, and in particular models of dynamic choice with dynamically inconsistent preferences.

Our approach includes two notable examples such as the deterministic β − δ quasi-hyperbolic

discounting and various versions of stochastic hyperbolic discounting models. We think that

the general existence methods applied in section 5 can be extended to also show existence of

Time Consistent Equilibria in more general models of altruism with recursive payoffs as recently

axiomatized by Galperti and Strulovici (2017). We leave it for further research.

A Appendix. Omitted lemmas and proofs

A.1 Quasi-hyperbolic discounting

We now state and prove a number of important preliminary results concerning these spaces and

two important mappings defined in them. First, note the structure of the space (V, || · ||) and

its subset U ⊂ V.

Lemma 1. (V, || · ||) is a Banach space and U ⊂ V is a closed set.

Proof. For any f ∈ V consider (Vk, || · ||k), the restriction of f to Sk ×H. Clearly Vk is a subset

of Banach space of bounded functions on Sk ×H, hence we only need to show Vk is closed. The
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convergence in norm || · ||k is equivalent to the uniform convergence on Sk×H. Suppose φn ⇒ φ

as n → ∞ in || · ||k and any of φn ∈ Vk. We show φ ∈ Vk. Obviously φ is bounded on Sk ×H.

We check further desired properties.

� We show φ is right continuous on s for any fixed h.

Let ε > 0 be given. Let sn ↓ s0 and let N be such that ||φN − φ||k < ε
2 . We have

|φ(sn, h)− φ(s0, h)| ≤ |φ(sn, h)− φN (sn, h)|+ |φN (sn, h)− φN (s0, h)|+ |φN (s0, h)− φ(s0, h)|

≤ 2||φ− φN ||k + |φN (sn, h)− φN (s0, h)|.

Since φN is right continuous at s0, hence taking a limit with n→∞ we have lim sup
n→∞

|φ(sn, h)−

φ(s0, h)| < ε. Since ε is arbitrary, hence φ(sn, h)→ φ(s0, h). Hence φ(·, h) is right contin-

uous.

� We show φ is upper semicontinuous. Let (sn, hn)→ (s0, h0). As before ε > 0 is given and

N is such that ||φ− φN ||k < ε
2 , Hence

φ(s0, h0)− φ(sn, hn) =

φ(s0, h0)− φN (s0, h0) + φN (s0, h0)− φN (sn, hn) + φN (sn, hn)− φ(sn, hn) ≥

−ε+ φN (s0, h0)− φN (sn, hn).

Since φN is upper semicontinuous

lim inf
n→∞

(φ(s0, h0)− φ(sn, hn)) ≥ −ε.

Since ε > 0, hence φ is upper semicontinuous.

� We show for any h ∈ H there is a countable S̃ ⊂ S such that φ is continuous at any

(s, h) ∈ E, such that s /∈ S̃. Let S̃N ⊂ Eh be a countable set such that fN is continuous

at any (s, h) with s /∈ S̃N . Let S̃ :=
∞⋃
N=1

S̃N . Observe S̃ is countable and any of φN is

continuous at (s, h) such that s /∈ S̃. Since φ is the uniform limit of φN on any set Sk×H,

hence φ is continuous at (s, h).

Consequently φ ∈ Vk and (Vk, || · ||k) is Banach space. Pick any φk ∈ Vk such that φk+1(s, h) =

φk(s, h) for any (s, h) ∈ Sk ×H. Define φ(s, h) = φk(s, h) whenever s ∈ Sk. Observe that φ(·)
is upper semicontinuous and φ(·, h) is right continuous. Moreover, for any h ∈ H, φ may be

discontinuous at (s, h) ∈ Eh, where s is chosen from at most countable set. Hence φ ∈ V. By

Lemma 1 in Matkowski and Nowak (2011), we conclude (V, || · || is a Banach space. It is easy to

see, U is a complete metric space with the metric induced by || · || since it is a closed subset of

V.
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Lemma 2. Let f ∈ U and suppose hn →w h. Then if µn → µ weakly on S, then

lim sup
n→∞

∫
S
f(s′, hn)µn(ds′) ≤

∫
S
f(s′, h)µ(ds′). (11)

Suppose that µ is concentrated on the set of continuity points of f(·, h). Then

lim
n→∞

∫
S
f(s′, hn)µn(ds′) =

∫
S
f(s′, h)µ(ds′). (12)

Proof. Define:

f(s) = sup

{
lim sup
n→∞

f(sn, hn)) : sn → s

}
and

f(s) = inf
{

lim inf
n→∞

f(sn, hn)) : sn → s
}
.

Since f is u.s.c. hence

lim sup
n→∞

f(sn, hn) ≤ f(s, h)

whenever sn →∞, hence f(s) ≤ f(s, h). Hence and by Lemma 3.2. in Serfozo (1982) we have

lim sup
n→∞

∫
S
f(s′, hn)µn(ds′) ≤

∫
S
f(s)µ(ds) ≤

∫
S
f(s, h)µ(ds).

Now suppose f is continuous at (s, h) for µ-a.a. s. Then for µ-a.a. s we have

lim
n→∞

f(sn, hn) = f(s, h)

whenever sn → s. Hence f(s, h) = f(s), µ-almost everywhere. Again by Lemma 3.2. in Serfozo

(1982) we have

lim inf
n→∞

∫
S
f(s′, hn)µn(ds′) ≥

∫
S
f(s)µ(ds) =

∫
S
f(s, h)µ(ds).

Since we have proven (11), hence∫
S
f(s, h)µ(ds) ≥ lim sup

n→∞

∫
S
f(s′, hn)µn(ds′) ≥ lim inf

n→∞

∫
S
f(s′, hn)µn(ds′) ≥

∫
S
f(s, h)µ(ds).

Hence (12) holds and the proof is complete.

Lemma 3. T maps U into itself.

Proof. Let f ∈ U . Obviously |T (f)(s, h)| ≤ ηk for (s, h) ∈ Sk × H. Similarly as in Lemma 5

in Balbus et al. (2020) we conclude Eif(h) is continuous from the right. We easily conclude

T (f)(·, h) is right continuous. We are going to show T (f) it is upper semicontinuous. Let
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(sn, hn)→ (s0, h0) in the corresponding topology. Pick

in ∈ arg max
i∈[0,sn]

V (sn − in, sn − hn(sn),Einf(hn))

and without loss of generality suppose in → i0. By Assumption 2, q(·|in) → q(·|i0) weakly. By

Lemma 2 we have then

lim sup
n→∞

Einf(hn) ≤ Ei0f(h0), (13)

We have

lim inf
n→∞

(sn − hn(sn)) ≥ s0 − lim sup
n→∞

hn(sn) ≥ s0 − h0(s0), (14)

Combining (13) and (14) we have

lim sup
n→∞

V (sn − in, sn − hn(sn),Einf(hn)) ≤ T (f)(s0, h0). (15)

Hence T (f) is upper semicontinuous. Finally, we show T (f) is continuous at any (s, h) ∈ E such

that s /∈ ST (f),h, where ST (f),h is at most countable subset of S. We can take

ST (f),h := {s ∈ Eh : q({s′ ∈ S : f is continuous at (s′, h)}|s) < 1}

and clearly ST (f),h is countable. Now assume (sn, hn) → (s0, h0) and s0 /∈ ST (f),h0 . Then by

definition of convergence of H and Lemma 2 we have

lim
n→∞

V (sn − i, sn − hn(sn),Eif(hn)) = V (s0 − i, s0 − h0(s0),Eif(h0)) (16)

for any i /∈ ST (f),h0 , in particular for s0. Again by (13) and (14) we have

V (s0 − i0, s0 − h(s0),Ei0f(h)) ≥ lim sup
n→∞

V (sn − in, sn − hn(sn),Einf(hn))

≥ lim inf
n→∞

V (sn − i, sn − hn(sn),Eif(hn))

= V (s0 − i, s0 − h0(s0),Eif(h0)).

Since the right hand side is right continuous, hence this equality holds for any i ∈ [0, s0]. Indeed,

we can take ĩm ↓ i as m→∞ such that ĩm ∈ ST (f),h0 , substitute i by ĩm above, and take a limit

m→∞.

Lemma 4. T is a contraction mapping on U , and therefore has a unique fixed point in U .
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Proof. Observe that by the standard argument

||T (f)− T (g)||k ≤ ||f − g||k+1 for any k ∈ N.

Hence T is 1-local contraction. By Theorem 2 in Rincon-Zapatero and Rodriguez-Palmero

(2009), T is a contraction mapping on U . By Lemma 1 and Banach Contraction Principle T has

a unique fixed point.

Lemma 5. Let h ∈ H. Then, any selection of s 7→ BI(h)(s) is increasing in s.

Proof. Suppose that it is not the case: there are s1 > s2 and i1 < i2 such that i1 ∈ BI(h)(s1)

and i2 ∈ BI(h)(s2). Then

0 ≤ V (s2 − i2, s2 − h(s2),Ei2f∗(h))− V (s2 − i2 − (i2 − i1), s2 − h(s2),Ei1f∗(h)).

But then from Assumption 1 (ii) we have

V (s1 − i2, s1 − h(s1),Ei1f∗(h))− V (s1 − i2 − (i2 − i1), s1 − h(s1),Ei2f∗(h)) > 0

which contradicts i1 ∈ BI(h)(s1).

Lemma 6. Let h ∈ H. If bi(h) is continuous at s, then BI(h)(s) is a singleton.

Proof. Suppose that bi(h) is continuous at s and pick y0 ∈ BI(h)(s). By Lemma 5 we have

bi(h)(s − δ) ≤ y0 ≤ bi(s + δ). Since bi(h) is continuous, hence y0 = bi(h)(s), and consequently

BI(h) is singleton.

Lemma 7. The operator bi maps H into itself and it is a continuous operator.

Proof. By Lemma 5 it follows that bi(h)(·) is increasing. We show it is right continuous. Let

sn ↓ s0. We show in := bi(h)(sn)→ bi(h)(s0). By Lemma 5, in ↓ i0. Since h is right continuous

h(sn) ↓ h(s0) as n→∞. Put

Π(s, i) := V (s− i, s− h(s),Ei(f∗)).

Suppose i /∈ Sf∗,h. Since h and i 7→ Ei(f∗) are both right continuous, hence we have

Π(s0, i0) = lim
n→∞

Π(sn, in) ≥ Π(s0, i)

for all i ∈ [0, s0). Hence i0 ∈ BI(h)(s0) if bi(h)(s0) < s0. If we allow, bi(h)(s0) = s0, by

Lemma 5 we have i0 ≤ bi(h)(s0) ≤ bi(h)(sn) for all n, hence taking a limit with n→∞ we have

i0 = bi(h)(s0). Now we show the continuity of bi on H. Suppose hn →w h0 in H such that s0

is a continuity point of bi(h0)(·). By Lemma 6 it follows that BI(h0)(s0) is a singleton in this
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case. Hence we are going to show in := bi(hn)(s0)→ i0 for some i0 ∈ BI(h0)(s0). Define

Z0 := {i ∈ S : q(Sf
∗,h0 |i) = 0}.

By Assumption 2 the complement of Z0 is at most countable. First, let us focus attention to

s0 /∈ Z0. By definition of Sf
∗,h0 , for any i /∈ Z0 we have

Eif∗(hn)→ Eif∗(h0)

as n→∞. Moreover, hn(s0)→ h(s0) and if in → i, then by Lemma 2

lim
n→∞

Einf∗(hn)) = Eif∗(h0)).

Hence

lim
n→∞

V (s0 − in, s0 − hn(s0),Einf∗(hn))

≥ lim inf
n→∞

V (s0 − i, s0 − hn(s0),Eif∗(hn)))

≥ V (s0 − i, s0 − h0(s0),Eif∗(h0))).

(17)

Since the right hand side above we right continuous, hence the inequality (17) holds for any

i ∈ [0, s0] since s0 /∈ Z0. To finish the proof observe

lim sup
n→∞

V (s0 − in, s0 − hn(s0),Einf∗(hn)) ≤ V (s0 − i0, s0 − h0(s0),Ei0f∗(h0)),

where the last inequality follows from (13). Then combining the inequality above with (17)

we have i0 ∈ BI(h0)(s0), consequently i0 = bi(h0)(s0). Hence we have proven, bi(hn)(s0) →
bi(h)(s0) as n→∞ whenever s0 ∈ Z0 and s0 is a continuity point of bi(h). To finish the proof,

we need to show that this convergence is true outside Z0 as well. If s0 /∈ Z0 is a continuity point

of bi(h0), we may find δ1 > 0 and δ2 > 0 such that bi(h0) is both continuous at s0 − δ1, s0 + δ2

but s0 − δ1 ∈ Z0 in s0 + δ2 ∈ Z0 . By Assumption 2, δ1 and δ2 can be sufficiently small. Then,

by the previous part of the proof

bi(s0 − δ1) = lim
n→∞

bi(hn)(s0 − δ1)

≤ lim inf
n→∞

bi(hn)(s0)

≤ lim sup
n→∞

bi(hn)(s0)

≤ lim
n→∞

bi(hn)(s0 + δ2) = bi(h0)(s0 + δ2).

Taking a limit δ1 → 0 and δ2 → 0 we have bi(hn)(s0)→ bi(h0)(s0) as n→∞.
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A.2 Semi-hyperbolic discounting

Lemma 8. (V0, || · ||) is a Banach space and U0 ⊂ V0 is a closed set.

Proof. For any f ∈ V0 consider (Vk,0, || · ||k), the restriction of f to Sk × H. Clearly Vk,0 is a

subset of Banach space of bounded functions on Sk × H, hence we only need to show Vk,0 is

closed. The convergence in norm || · ||k is equivalent to the uniform convergence on Sk × H.

Suppose φn ⇒ φ as n → ∞ in || · ||k and any of φn ∈ Vk,0. We show φ ∈ Vk,0. Obviously φ

is bounded on Sk × H. Similarly as in Lemma 1 we may show that for any h ∈ H there is a

countable S̃ ⊂ S such that φ is continuous at any (s, h) ∈ E , such that s /∈ S̃. Consequently

φ ∈ Vk and (Vk,0, || · ||k) is Banach space. Pick any φk ∈ Vk,0 such that φk+1(s, h) = φk(s, h) for

any (s, h) ∈ Sk ×H. Define φ(s, h) = φk(s, h) whenever s ∈ Sk. Observe that for any h ∈ H, φ

may be discontinuous at (s, h) ∈ E , where s is chosen from at most countable set. Hence φ ∈ V.

By Lemma 1 in Matkowski and Nowak (2011), we conclude (V0, || · ||) is a Banach space. It is

easy to see, U0 is a complete metric space with the metric induced by || · || since it is a closed

subset of V0.

Lemma 9. Λ maps U0 into itself and is a contraction mapping in U0 .

Proof. We omit the proof since it is similar as the proofs of Lemma 4.

Lemma 10. For any h ∈ H, any selection of BI(h)(s) is nonempty valued and has the greatest

and the least selection. Moreover, any selection of BI(h)(s) is increasing in s.

Proof. We omit the proof since it is similar to the proof of Lemma 5.

Lemma 11. Let h ∈ H and suppose h is continuous at s. Then, if bi(h)(s) is continuous at s,

then BI(h)(s) is a singleton.

Proof. Using Lemma 10 we repeat the same argument as in Lemma 6.

Lemma 12. The operator bi maps H into itself and it is a continuous operator.

Proof. Let hn →w h0 as n→∞ and let s′ be a continuity point of h0. We have

sup

{
lim sup
n→∞

f∗(s′n, hn) : s′n → s′
}

= inf
{

lim inf
n→∞

f∗(s′n, hn) : s′n → s′
}

= f(s′, h0),

whenever (s′, h0) ∈ E and s′ /∈ Sf
∗,h0 . Observe that for any s′n → s′ and hn →w h we have

hn(s′n) → h0(s′) whenever s′ /∈ Sf∗,h0 and it is a continuity point of h0. By Assumption 4 it

follows that this convergence above holds for all but countably many s′ ∈ S. Let in → i0 in S.

Hence by Lemma 2 ∫
S
f∗(s′, h0)q(ds′|i0) = lim

n→∞

∫
S
f∗(s′, hn)q(ds′|in). (18)
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We show that

lim
n→∞

∫
S
A∗t (s

′, hn)q(ds′|in) =

∫
S
A∗t (s

′, h0)q(ds′|i0). (19)

The thesis for t = 0 is in (18). If this thesis holds for some t, then by definition of A∗t+1(s′, h)

and (19) we have this thesis, and (19) holds for t+ 1. As a result, the function

(s, i, h) ∈ S × S ×H 7→ u(s− i) +

T∏
t=1

βt

∫
S
A∗T−1(s′, h)q(ds′|i)

is continuous. Let s0 be a continuity point of bi(h0)(·). Let yn = bi(hn)(s0) and suppose yn → y0.

Hence by Berge Maximum Theorem y0 ∈ BI(h0)(s0). By Lemma 11, BI(h0)(s0) is a singleton,

hence y0 = bi(h)(s0). But this implies bi(hn)→w bi(hn).

A.3 Limiting case

Lemma 13.
∞∏
k=1

βk exists and is nonzero if and only if lim
t→∞

∞∏
k=t

βk = 1.

Proof. Define r :=
∞∏
k=1

βk, and suppose r > 0. Then

−ln(r) =
∞∑
k=1

− ln(βk).

Since − ln(βk) > 0, hence the series above are convergent and

lim
t→∞

∞∑
k=t

− ln(βk) = 0. (20)

Moreover,

lim
t→∞

∞∑
k=t

− ln(βk) = − lim
t→∞

ln

( ∞∏
k=t

βk

)
= − ln

(
lim
t→∞

∞∏
k=t

βk

)
. (21)

Combining (20) with (21) we have the thesis. Now let r = 0. Then the right hand side in (20)

yields ∞. Furthermore, by (21) we have lim
t→∞

∞∏
k=t

βk = 0

A.4 General existence result

Lemma 14. (V∞0 , || · ||∞) is a Banach space, and U∞0 is a closed subset of V∞0 .

The proof is identical as proof of Lemma 8.

Lemma 15. T is a contraction mapping on U∞0 and has a unique fixed point.

35



Proof. We show T maps U∞0 into itself. Let f ∈ U∞0 . Then for any k ∈ N, s′ ∈ Sk+1, h ∈ H and

t ∈ N we have |ft+1(s′, h)| ≤ ηk+1. By Assumption 2 for any s ∈ Sk we have

|Eh(s)ft+1(h)| =
∣∣∣∣∫
S
ft+1(s′, h)q(ds′|h(s))

∣∣∣∣ ≤ ηk+1,

hence ∣∣Vt(s− h(s), s− h(s),Eh(s)ft+1(h))
∣∣ ≤ sup

(x,y,z)∈S2
k×[0,ηk+1]

|Vt(x, y, z)| ≤ ηk

where the last equality is a consequence of Assumption 1. Furthermore, applying Lemma 2 we

conclude

s ∈ S 7→ Vt(s− h(s), s− h(s),Eh(s)ft+1(h))

is left continuous and continuous at any s /∈ ST(f),h, where ST(f),h is a countable subset of S.

Hence T(f) ∈ U∞0 . Observe that by Assumption 1 and the standard argument

||T(f)− T(g)||k ≤ ||f − g||k+1 for any k ∈ N.

Hence is 1-local contraction. By Theorem 2 in Rincon-Zapatero and Rodriguez-Palmero (2009),

T is a contraction mapping on U∞0 . By Lemma 1 and Banach Contraction Principle T has a

unique fixed point.

Lemma 16. Let h ∈ H. Then, BI(h)(s) is nonempty valued correspondence with the greatest

and the least selection. Moreover, any selection of BI(h)(s) is increasing in s.

Proof. First we show BI(h)(s) is indeed nonempty valued correspondence with the greatest and

the least element. Let f∗ be a unique fixed point of T and f∗2 be the coordinate needed to

define BI. For any h ∈ H let S∗,h be a countable subset of S such that f∗2 is continuous at any

(s, h) ∈ S ×H such that s ∈ S∗. We show that the following function

(i, h) ∈ S ×H 7→ Eif∗2 (h)) =

∫
S
f∗2 (s, h)q(ds|i)

is continuous. Indeed, by Assumption 4, q(·|i) is nonatomic, hence q(S∗,h|i) = 0 for any h ∈ H
and i ∈ S. Let in → i in S and hn →w h in H. By Skorohod Representation Theorem, there

is a probability space (Ω,F , P ) and random variables Xn whose distribution is q(·|in) and X

whose distribution is q(·|i) such that Xn → X pointwise in Ω. Since q(·|i) is concentrated away

of S∗,h, hence X(ω) /∈ S∗,h for P - a.a. ω ∈ Ω. Hence f∗2 (Xn(ω), hn) → f∗2 (X(ω), h) for P -a.a.

ω. We have then

Einf∗2 (hn)) =

∫
S
f∗2 (s, hn)q(ds|in) =

∫
Ω
f∗2 (Xn(ω), hn)P (dω)→n→∞∫

Ω
f∗2 (X(ω), h)P (dω) =

∫
S
f∗2 (s, h)q(ds|i) = Eif∗2 (h)).
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Hence BI(h)(s) 6= ∅ and has the greatest and the least selection. The rest of proof is omitted,

since is the same as the proof of Lemma 5.

By Lemma 16 we repeat the same argument as in Lemmas 6 and 7 we have the following

lemma.

Lemma 17. Let h ∈ H and suppose h is continuous at s. Then, if bi(h)(s) is continuous at s

then BI(h)(s) is a singleton.

Combining Lemmas 16 and 17 we have the following lemma whose proof is similar to that

of lemma 12.

Lemma 18. The operator bi maps H into itself and it is a continuous operator.
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