Pokaż uproszczony rekord

dc.contributor.authorOwczarczuk, Marcin
dc.date.accessioned2025-05-26T09:52:19Z
dc.date.available2025-05-26T09:52:19Z
dc.date.issued2009-05-01
dc.identifier.citationOwczarczuk M., Support vector machines with two support vectors, 2009, 2-09, s. 1-9en
dc.identifier.urihttp://hdl.handle.net/20.500.12182/1360
dc.description.abstractIn this article we present a new class of support vector machines for binary classification task. Our support vector machines are constructed using only two support vectors and have very low Vapnik-Chervonenkis dimension, so they generalize well. Geometrically, our approach is based on searching of a proper pair of observations from different classes of explained variable. Once this pair is found the discriminant hyperplane becomes orthogonal to the line connecting these observations. This method deals well with data sets with large number of features and small number of observations like gene expression data. We illustrate the performance of our classification method using gene expression data and show that it is superior to other classifiers especially to diagonal linear discriminant analysis and k-nearest neighbor which achieved the lowest error rate in the previous studies of tumor classification.en
dc.language.isoen
dc.rightsDozwolony użytek*
dc.subjectsupport vector machinesen
dc.subjectVapnik-Chervonenkis dimensionen
dc.subjectmicroarray experimenten
dc.subjecttumor classificationen
dc.subject.classificationG12en
dc.titleSupport vector machines with two support vectorsen
dc.typeworkingPaperen
dc.description.number2-09en
dc.description.physical1-9en


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Dozwolony użytek
Korzystanie z tego materiału jest możliwe zgodnie z właściwymi przepisami o dozwolonym użytku lub o innych wyjątkach przewidzianych w przepisach prawa, a korzystanie w szerszym zakresie wymaga uzyskania zgody uprawnionego.